
A Large-scale Temporal Measurement of Android Malicious Apps:
Persistence, Migration, and Lessons Learned

Yun Shen
Norton Research Group

Pierre-Antoine Vervier
Norton Research Group

Gianluca Stringhini
Boston University

Abstract

We study the temporal dynamics of potentially harmful apps
(PHAs) on Android by leveraging 8.8M daily on-device de-
tections collected among 11.7M customers of a popular mo-
bile security product between 2019 and 2020. We show that
the current security model of Android, which limits secu-
rity products to run as regular apps and prevents them from
automatically removing malicious apps opens a significant
window of opportunity for attackers. Such apps warn users
about the newly discovered threats, but users do not promptly
act on this information, allowing PHAs to persist on their
device for an average of 24 days after they are detected. We
also find that while app markets remove PHAs after these
become known, there is a significant delay between when
PHAs are identified and when they are removed: PHAs per-
sist on Google Play for 77 days on average and 34 days on
third party marketplaces. Finally, we find evidence of PHAs
migrating to other marketplaces after being removed on the
original one. This paper provides an unprecedented view of
the Android PHA landscape, showing that current defenses
against PHAs on Android are not as effective as commonly
thought, and identifying multiple research directions that the
security community should pursue, from orchestrating more
effective PHA takedowns to devising better alerts for mobile
security products.

1 Introduction

Millions of malicious Android apps have been observed over
the years [1], performing a variety of malicious activity from
sending premium SMS messages [23], to displaying annoy-
ing advertisements [31], to enabling stalking [5]. Malicious
apps on Android often come in the form of repackaged
apps, where a useful Android app is modified to contain hid-
den malicious functionality to entice users into installing
it [20, 31, 39]. To cover the variety of malicious apps that tar-

get Android, Google has coined the term Potentially Harmful
Apps (PHAs).1

A large body of research has been published measuring
the threat of PHAs on Android. Previous studies have mostly
relied on crawling app markets to retrieve malicious appli-
cations [1, 23, 31, 34, 40]. Alternative approaches include
downloading firmware from public repositories to study pre-
installed Android apps [11] and setting up public analysis
infrastructures relying on third parties to submit apps that
they suspect are malicious [21]. These approaches then ana-
lyze the collected apps by either performing static or dynamic
analysis. While useful to shed light on the functionalities of
malicious Android apps, these approaches do not have visi-
bility on the population of infected devices and on how users
interact with PHAs. An alternative approach relied on users
installing an app able to monitor network traffic on devices,
looking for security and privacy sensitive information [26].
This solution solves the aforementioned problem, but it is
challenging to recruit a large and representative population of
users; in fact, previous studies relied on 11k users to perform
their measurements [26]. A third approach that researchers
followed is monitoring the network traffic of a mobile ISP
and identifying malicious connections based on blacklist in-
formation [18]. This approach provides a real-time view of
malicious activity from a large number of devices but is lim-
ited to monitoring connections to known malicious hosts.
Additionally, this method is limited by the pervasive use of
encryption, and does for example allow to observe when a de-
vice connects to an app store, but not to inspect what specific
PHA a user is installing.

In this paper, we present the first large-scale study to under-
stand the temporal dynamics of PHA installations on Android.
We collect anonymized information about PHA installations
from users who installed a popular mobile security product
and opted into data collection. Between 2019 and 2020 we ob-
served over 8.8M PHAs installed on over 11.7M devices from

1https://developers.google.com/android/play-protect/
potentially-harmful-applications

https://developers.google.com/android/play-protect/potentially-harmful-applications
https://developers.google.com/android/play-protect/potentially-harmful-applications

Dataset Data Count

Mobile PHA detection log Total records 3.2B
(01/2019 - 02/2020) Days 416

Countries and regions 201
Devices 11.7M
Distinct app names 2.3M
Distinct app SHA2s 8.8M

VT Total reports 8.8M
PHA SHA2s (detections ≥ 4) 7M
Singleton SHA2s (w/o family) 1.3 M
PHA SHA2s w/ family 5.7 M
PHA families 3.2K

Table 1: Summary of datasets.

across the globe. This data allows us to develop a number of
metrics and answer the following key research questions:
How long do devices stay infected with PHAs? Mobile se-
curity products on Android run as regular users without root
privileges and are therefore limited in the actions they can
take after they detect a malicious program. Typically, they just
raise an alert informing the user about it, and relying on them
uninstalling the malicious app. Our study shows that users
do not act promptly on these alerts, and that PHAs persist on
devices for approximately 20 days once detected.
How long do PHAs survive on app markets? By observing
millions of mobile devices installing malicious apps from
app stores, we can estimate when a certain PHA is removed
from the store. We find that, on average, PHAs persist on
Google Play for 77 days, while they persist on alternative
marketplaces for 34 days on average.
Do PHAs migrate to other app markets once removed?
We observe 3,553 PHAs that exhibit inter-market migration.
However, those PHAs have on average shorter lifespans in
these markets compared to the average persistence time.
Do PHAs persist on devices for longer if migrating from
backup/clone services? Android devices allow users to
backup their apps and automatically install them on a new
device when the user gets a new phone. We discover that these
PHAs on average persist on these devices for longer periods.
For example, we find 14K PHAs that migrated to 35.5K new
Samsung devices by using the Samsung smart switch mobile
app (com.sec.android.easyMover). These apps persist in
the new devices for 93 days on average.
Implications for Android malware research. Our study has
a number of implications for the computer security research
community. We show that malicious apps can survive for
long periods of time on app markets, and that the Android
security model severely limits what mobile security products
can do when detecting a malicious app, allowing PHAs to
persist for many days on victim devices. Furthermore, our
results show that the current warning system employed by
mobile security programs is not effective in convincing users
to promptly uninstall PHAs. This could be due to usability
issues such as alert fatigue [28], and calls for more research
in this space. We also show that malicious app developers

1Mobile PHA detection

Cloud backend Mobile devices

APP signatures

1000

0101

10APK

Static
analysis

Dynamic
analysis

APP sig.

APP1

APP2

MARKET1

APP3

APP4

MARKET2

VirusTotal 2

PHA measurement

scan

Query

Response

AVClass 3

telemetry

Figure 1: Data Collection Architecture.

often move their PHAs to alternative marketplaces after they
have been removed. This suggests that an effective mitiga-
tion strategy should include cooperation between multiple
marketplaces.

2 Datasets
This section summarizes our data collection approach (see
Figure 1) and the datasets used in this study (see Table 1).

Mobile PHA reputation data ¶. In this paper, we use mo-
bile PHA reputation data collected from real-world Android
devices by NortonLifeLock’s mobile security product, which
covers over 200 countries and regions in the world. Similar
to the device geolocation distribution discussed in Kotzias et
al. [16], 25% of the devices used in our study were from
the United States, 28% of the devices were from European
countries, and 31% of the devices were from the APJ area
(although this distribution was skewed towards Japan and
India).

NortonLifeLock has an elastic infrastructure to collect and
carry out systematic static (e.g., flow and context-sensitive
taint analysis, fine-grained permission analysis) and dynamic
analysis (e.g., apk fuzzing, UI-automation, examining net-
work traces, behaviors, etc. in a sandbox environment) of mo-
bile apps from multiple markets and partners at scale. During
the process, nefarious activities and their triggering condi-
tions (such as reflection, dynamic code loading, native code
execution, requesting permissions not related to its advertised
description, etc.) are analyzed and fingerprinted. NortonLife-
Lock employs state-of-the-art commercial products to deal
with challenges such as emulator/motion evasion, obfuscated
code/libraries, and other evasive techniques, as well as to trig-
ger the critical execution paths in apps. The results are then
included in NortonLifeLock’s detection engine and deployed
in its mobile security product to scan and identify suspicious

apps on the mobile endpoints. NortonLifeLock also builds
machine learning models from the static and dynamic analysis
results of known PHAs and applies these models to inspect
unknown or low-prevalence apps. Also, apps are periodically
re-inspected by the analysis infrastructure.

At runtime, the mobile security product periodically scans
newly installed apps on a device and can perform a full device
scan when requested by the end-user. When having network
access, the security engine queries a cloud backend to obtain
the verdicts of the apps installed on a device. The query con-
tains certain metadata including timestamp, app hash, pack-
age name, certificate information, etc. The response from the
backend includes the reputation scores of the on-device apps
together with other proprietary data to guide further actions.
When network access is not available, the security engine
leverages the locally stored signatures to scan and identify
suspicious apps on the mobile endpoints. The corresponding
scan metadata will then be sent back once network access is
restored.

From the backend telemetry data lake, we extract the fol-
lowing information: anonymized device identifier, device
country code, detection timestamp, app SHA2, app package
name, and installer package name. This way, we are able to
tell the time at which a PHA is detected, on which device it
is installed, and which package installed it. We collected 416
days of detection data between January 1, 2019 and February
20, 2020. On average, we collect 8M raw events daily (i.e.,
3.2B events in total). Note that to carry out the temporal mea-
surement, we only select apps (per SHA2) that we observe
at least twice on the same device. This way, we can reliably
calculate their lifespan both on-device and in-market (see Sec-
tion 3.2). In total, our dataset covers 2.3M unique package
names with 8.8M unique SHA2s from 11.7M devices. We
provide a detailed discussion of bias potentially incurred by
our dataset in Section 9.

VirusTotal ·. Note that different security companies have
different policies when flagging PHAs (especially adware).
That is, a PHA flagged by NortonLifeLock that collaborated
on this study may not have the consensus from other security
companies. To minimize false positives and bias potentially
incurred by our dataset, we query the 8.8M SHA2s corre-
sponding to the PHAs in our dataset on VirusTotal. We con-
sider an app as a PHA if VirusTotal returns a minimum of
four detections in this paper. This is in line with the best
practices recently proposed in the malware research commu-
nity [16, 41]. We refer the audience to Kotzias et al. [16] and
Zhu et al. [41] for in-depth analysis of the impact of different
detection threshold values of VirusTotal reports. In total, we
identify 7M unique malicious SHA2s, and 3.5K PHA fami-
lies.

AVclass ¸. In our study, reliable PHA labeling is a necessary
condition to guarantee the quality of malware family attri-
bution. To this end, we use AVclass [29] to extract family

information from AV labels. This tool selects the top ranked
family corresponding to a majority vote from the VirusTotal
report of a given PHA, effectively removing noise in the labels.
In total, the observed PHAs belong to 3.2K families. Not all
PHAs are equally harmful. While some apps are clearly mali-
cious (i.e., mobile malware including ransomware, Trojans,
spyware, etc), others are merely an annoyance to users (e.g.,
adware). Google groups these apps into Mobile unwanted
software (MUwS) as “apps that are not strictly malware, but
are harmful to the software ecosystem” [12]. To investigate
differences in how malware and MUwS behave, we use the
feature provided by AVclass to classify a sample as Mobile
unwanted software (MUwS) or mobile malware (see Sec-
tion 5). Note that EUPHONY [13] also mines AV labels and
analyzes the associations between all labels given by different
vendors to unify common samples into family groups. Due to
their comparable labeling accuracy in terms of family attribu-
tion and the lower memory required by AVclass, we opt for
AVclass in this paper.

Data distillation and measurement data selection. To
study the provenance of PHAs, and in particular, which mar-
ketplaces they are installed from, we need to collect infor-
mation on the installer package names of the detected PHAs.
The mobile security product uses the Android API to record
a PHA’s installer package name when a detection event is
triggered. However, due to the well known fragmentation
from Android device manufacturers and limitations of our
measurement infrastructure (e.g., we cannot identify an in-
staller package’s certificate via Android API), it is hard to
accurately extract and attribute the installer packages of all
detected PHAs. For instance, if an app was already installed
on a device before the observation period started, our ap-
proach would not be able to attribute it to the app that in-
stalled it. Similarly, if an updated version of an existing
PHA was installed, this would be identified as being in-
stalled by an update component and not by a marketplace
(e.g., com.google.android.packageinstaller). To miti-
gate this issue, we first identify 3.7M out of 11.7M devices
that have at least one PHA installed. We then distill the afore-
mentioned datasets by selecting 2.46M devices in which we
can attribute their on-device PHAs to the respective installer
packages with high confidence. In total, we identify 197K
PHAs from 2.46M devices that we use in Section 6 and 7
to study the dynamics between PHA, devices, and markets.
These PHAs account for 22% of all installations recorded
by our dataset during the observation period. We provide
a detailed discussion on the limitations of this approach in
Section 9.

Ethics and Data Privacy. The data used in this paper is pri-
vacy sensitive. NortonLifeLock offers end users the possi-
bility to explicitly opt-in to its data sharing program to help
improve the security product’s detection capabilities. This
dialog is shown during the setup process when the app is run

Notation Description

p ∈ P a PHA
d ∈ D a device
m ∈M a market
f ∈ F a PHA family

xiy
x on/in y,
e.g., pid denotes a PHA pi detected on device d.

(F)
first seen timestamp,
e.g., p(F)

id denotes first seen timestamp of a PHA pi on device d.

(L)
last seen timestamp,
e.g., p(L)im denotes last seen timestamp of a PHA pi in market m.

δxy
lifespan of x on/in y,
e.g., δpid

denotes the lifespan of pi on a device d

Table 2: Summary of the notations used in this paper. We use
lowercase letters to denote an item and bold uppercase letters
to denote sets.

for the first time, and it informs the end-user about the pur-
pose of the telemetry collection, and how the global privacy
policy of NortonLifeLock safeguards the data. For instance,
the license agreement specifies that the telemetry “is pro-
cessed for the purposes of delivering the product by alerting
you to potentially malicious applications, malware, and links”
and “for the purpose of understanding product usage to fur-
ther develop and improve the product performance as well as
telemetry.” Since the analysis performed in this paper allows
the community to get a better understanding of the Android
PHA ecosystem and guide mitigation techniques, this falls
under the primary use of the data that users agreed to. The
telemetry data collection, storage, and process are guarded
by NortonLifeLock’s rigorous privacy policies. To preserve
the anonymity of users and their devices, client identifiers are
anonymized and it is not possible to link the collected data
back to the users and the mobile devices that originated it.
Also, NortonLifeLock does not track the devices or profile
user behavior nor has the capability to inspect network data.
For our measurement study, the anonymized device identifier
is only used to compute device-based prevalence rates. As
such, we are not using any PII and the risks to the users are
minimal.

3 Approach
In this section, we first introduce the overall relationships
among PHAs, installer packages, devices, and markets. We
then describe our overall measurement design philosophy and
methods together with examples.

3.1 Relationships
For the reader’s convenience, we summarize the notations
introduced here and in the following sections in Table 2. We
provide a detailed description of the relations observed in our
dataset to form the foundation of our measurements in the
rest of the paper. Figure 2 shows an example to illustrate the
complex dynamic relations among PHAs P, installer packages
Ψ, devices D, and markets M, coupled with a timeline. Each

Device

PHAs

D

time

f

Market M

Pi Pj Pj

d1 d2

installation

Pj

m1 m2

d3

Installer Ψ ψm1 ψm1
ψm2

d4

Pj

ψm2

lifespan

Pj
(F)
d1 Pj

(F)
d2

ψm1

Figure 2: Abstract model of the relations between PHAs,
installers, devices, and markets as observed in our dataset.

device d can have multiple PHAs installed (e.g., d1 has two
PHAs pi and p j in Figure 2). A PHA p j can be present in
multiple devices (e.g., p j is installed in all four devices).
Additionally, multiple PHAs can belong to a PHA family. For
example, as we can see in Figure 2, P f includes pi in d1 and
p j in all four devices. In addition, the Android API allows
the mobile security product to retrieve the package name (i.e.,
ψ) of the application that installed a PHA. This enables us
to identify which market a PHA came from if the package
name of ψ matches the name of the market. For example, p j
on device d1 is installed by a package ψm1 from market m1

at timestamp p(F)

jd1
(see Figure 2). Aggregating all installation

events of the same PHA pi in all devices D, we can estimate
the lifespan δpim in market m as [p(F)

jd1
, p(F)

jd2
] (see Figure 2).

3.2 Design Philosophy
Measuring the in-market presence of PHAs (e.g., how fast
PHAs are removed) is a challenging task as we are not the app
market owners. One solution is to crawl known app markets
and track all apps on a daily basis [35]. However, crawling
results cannot be correlated with the device installation data
since not all markets offer precise device installation informa-
tion. In this study, we adopt an outside-in design philosophy to
perform our market presence measurements. That is, we treat
mobile devices as sensors and their PHA installation events
as the probing results of a PHA’s existence. We then use
the information on the installer packages of apps to identify
the origin markets of installed PHAs (see the above section
for relations). By correlating this information with on-device
detection timestamps we can calculate PHA in-market per-
sistence and prevalence in a non-intrusive, outside-in way.
Similarly, we can also calculate PHA on-device persistence
using the detection timestamps. In this study we use different
metrics to study the PHA ecosystem along three axes: on-
device persistence, in-market persistence, and PHA migration
across markets. In this section, we define the metrics that we
will later use to measure these three aspects.

3.2.1 Measurement of PHA On-device Persistence
The mobile security product runs periodically in the back-
ground and sends telemetry data to the backend if PHAs are
detected. If a PHA was not removed from the device after
the user was displayed an alert, the mobile security product
records this recurrent detection at different timestamps until
the PHA is removed from the device. Given this series of
detection events, we are able to tell the first seen and last
seen timestamps of a PHA pi on a device d, consequently
enabling us to estimate the lifespan of pi on a device d (i.e.,
δpid

). Following this observation, we use Eq 1 to measure the
persistence period a PHA family f on a device d.

persistence(f ,d) = ∑
pi∈P f

(δpid
)/|P f | (1)

That is, we calculate the mean lifespan of all PHAs belong-
ing to a family f on device d. For example, in Figure 2,
family f has two PHAs (pi and p j) on device d1, hence
persistence(f ,d1) = (δp

id1
+ δp

jd1
)/2. We then use Eq 2 to

measure the mean persistence period per PHA family f on all
devices D.

persistence(f ,D) = ∑
d∈D

persistence(f ,d)/|D| (2)

For example, family f has presence in all four devices in Fig-
ure 2. Following Eq 2, we can calculate persistence(f ,D) as
[persistence(f ,d1) + persistence(f ,d2) + persistence(f ,d3)
+ persistence(f ,d4)]/4.

3.2.2 Measurement of PHA In-market Persistence
Given a single device d, when the mobile security product de-
tects a PHA on the mobile device, it also records the installer
package name of this PHA. Correlating this with the official
package names of the markets, we can identify if a PHA was
installed from a certain market m at a certain timestamp. For
example, if we observe the installer package name of a PHA
is com.android.vending, we can tell that this PHA comes
from the Google Play store. Note that malicious apps can
impersonate the legitimate apps on Android devices (e.g.,
com.android.vending may not be the legitimate Google
Play app). To avoid false attributions, we check the detection
telemetry data of the same device and verify if any detection
records match the same package names of the known mar-
ketplaces. By doing so, we are able to verify the legitimacy
of the market apps in this measurement study. We provide
a detailed discussion of the limitations of this approach in
Section 9. Note that first seen timestamp of a PHA on device
d can reliably prove that a PHA exists in a market at the time
of installation. By aggregating the first detection events of
a PHA pi across all devices D, we can represent a PHA’s
in-market appearances using Eq 3.

Ωpim = {p(F)

id j
},∀d j ∈ D, p

id j ∈ Pim (3)

Essentially, Ωpim represents a series of timestamps where pi
was first seen on all devices D. Take the relations in Figure 2
as an example, we have two detections of a PHA p j respec-
tively on d1 and d2 installed from market m1. In turn, we have
Ωp jm1 = {p(F)

jd1
, p(F)

jd2
}. Following the above observation, we

use Eq 4 to measure the persistence period of a PHA pi in a
market m.

persistence(pi,m) = max(Ωpim)−min(Ωpim) (4)

It is straightforward to observe persistence(p j,m1) = p(F)

jd2
−

p(F)

jd1
following Eq 3 and Eq 4. Note that we rely the on-device

detection to measure a PHA’s in-market persistence. It is
possible that a PHA still exists in a market but our dataset did
not reflect its existence. Consequently, we measure the lower
bound of the PHA in-market persistence. Finally, we use Eq 5
to measure the persistence period a PHA family f in a market
m.

persistence(f ,m) = ∑
pi∈P f

persistence(pi,m)/|P f | (5)

3.2.3 Measurement of PHA Inter-market Migration
Recall that the mobile security product records that a PHA
p was installed on a device d at a timestamp t by an in-
staller package ψ. By aggregating the telemetry data about
a specific PHA p and mapping its installer package names
to marketplaces across all devices D, we can track the ap-
pearance of a PHA pi across all marketplaces M. Take
PHA p j in Figure 2 for example, it was detected in four
devices (d1, d2, d3, and d4) from two marketplaces (m1 and
m2). Following Eq 3, the lifespan of p j in m1 and m2 are
respectively δp j

m1 = [min(Ωp jm1),max(Ωp jm1)] and δp j
m2 =

[min(Ωp jm2),max(Ωp jm2)]. As we observe in Figure 2 that
max(Ωp jm1) is less than min(Ωp jm2), we define that a PHA
p j exhibits inter-market migration from m1 to m2. Following
the observation, we use Eq 6 to represent the appearances of
a PHA pi across the marketplaces M.

appearance(pi,M) = {δpim},∀m ∈M (6)

Note that each δpim is an interval (i.e.,
[min(Ωpim),max(Ωpim)]). In turn, we sort appearance(pi,M)
by min(δpim), then identify sequentially non-overlapping
intervals from appearance(pi,M) to measure PHA
inter-market migration across the marketplaces M.

3.3 Right Censored Data
Censoring occurs when incomplete information is available
about the survival time of some individuals. Recall that our ob-
servation period is between January 1, 2019 and February 20,

Rank Family Total SHA2s Active SHA2s/Month
(01/19 - 02/20)

month
≥ avg

1 jiagu (U) 671K 7
2 smsreg (M) 438K 2
3 hiddad (U) 308K 6
4 airpush (U) 164K 6
5 revmob (U) 132K 6
6 dnotua (U) 105K 6
7 dowgin (U) 87K 6
8 leadbolt (U) 75K 7
9 mobidash (U) 74K 5

10 kuguo (U) 72K 6
11 locker (M) 60K 6
12 ewind (M) 57K 7
13 secapk (U) 51K 7
14 inmobi (U) 44K 5
15 tencentprotect 44K 5
16 koler (M) 42K 7
17 domob (U) 40K 8
18 secneo (U) 29K 7
19 autoins (M) 25K 6
20 datacollector (M) 15K 7

Table 3: Summary of the temporal patterns of the top 20 PHA
families. These families are ordered by the total number of
SHA2s. M denotes Malware and U denotes MUwS/Adware.

2020. There exist a number of PHAs that we cannot observe
if they have been removed from the markets after our study
ends on February 20, 2020. Such PHA data is defined as right
censored in survival analysis [14]. In our study, we assume
that censoring is independent or unrelated to the likelihood
of developing the event of interest (i.e., PHA removal). We,
therefore, keep these right censored data to avoid estimation
bias. More details can be found in Section 6.

4 Temporal Characteristics of PHA Families
Miscreants either repackage multiple apps with the same ma-
licious code or modify their code to avoid being detected by
security measures [23, 39]. These related malicious apps are
commonly referred to as families. In this section, we study
the temporal patterns of PHA families (e.g., do we see the
same top families all the time or do they gradually reduce
their operation due to increased detection efforts from mo-
bile security companies?). As discussed in Section 2, we use
AVclass [29] to group apps into families. Table 3 shows the
temporal prevalence of the top 20 PHA families and summa-
rizes our findings. These top 20 PHA families are detected
in 2.01 million devices, approximately 67% of the aforemen-
tioned 3.7M devices. Recall that we select PHAs (per SHA2)
that we observe at least twice on the same device to carry
out the measurements (see Section 2), hence our dataset is
purposely designed to measure the temporal behavior. Our re-
sults are consistent with the most recent Android PHA device
prevalence study [16]: 15 of the 20 PHA families in Table 3
were also among the top 20 PHA families found by [16]. As
we can see in Table 3, 16 out of the 20 top PHA families
manage to exceed their average number of monthly active
SHA2s for at least 6 months. Also, we see that majority of

Overall Malware MUwS

Devices Avg.
Persistence # Devices Avg.

Persistence # Devices Avg.
Persistence

3.7M 20.2 D 2.93M 20.3 D 1.97M 13.1 D

Table 4: Overall PHA on-device persistence.

the PHA families exhibit bell shaped temporal patterns. This
shows that these PHA families may eventually reduce their
operation due to increased detection efforts from mobile se-
curity companies and marketplaces. We will further analyze
this finding in Section 6 (e.g., how rapid takedown can dis-
rupt PHA operations) and, consequently, how miscreants may
move their PHAs to alternative markets in Section 7. Besides,
we notice that smsreg and smspay show an upward pattern
towards the end of our observation period (i.e., January and
February 2020). In light of the recent discussion of the limita-
tion of SMS-based 2FA authentication2, our findings indicate
that the possibility of such breaches still exists in the wild and
has attracted the attention of cybercriminals.

5 PHA On-Device Persistence
As we explained, mobile security products are limited by the
Android security model, and they lack the ability to delete
PHAs once they detect them. Instead, they typically inform
the user about the newly discovered threat, asking them to
manually remove the app. This leaves the question of how
promptly users remove identified PHAs from their devices.
In this section, we first study the PHA on-device persistence
to understand how long PHAs can persist on devices once
installed. We then study the consequences of PHA on-device
persistence and, for example, whether this leads to additional
PHA installations on devices.

5.1 On-Device Persistence of Different PHA
Types

As discussed, not all Android PHAs are equally harmful, but
some are merely annoying to users (MUwS). It is therefore
possible that users will react differently when the security
product informs them that they have installed malware com-
pared to mobile unwanted software (MUwS), possibly not
uninstalling the latter. To better understand this, we use AV-
Class [29] to distinguish mobile malware from MUwS among
PHAs. We then follow the approach outlined in Section 3.2
and measure the overall PHA on-device persistence. Our find-
ings are summarized in Table 4. We find that PHAs persist on
devices for approximately 20 days once installed. On average,
mobile malware can persist longer than MUwS (respectively
20.3 days and 13.1 days). It is surprising that end users do
not promptly remove PHAs once detected. The prolonged
persistence of PHAs on devices leaves a window of oppor-

2https://krebsonsecurity.com/2018/08/reddit-breach-highlights-limits-of-
sms-based-authentication/

Family Avg.
Persistence

Max
Persistence

Devices
(≤ Avg.)

Devices
(> Avg.)

jiagu 4.77 D 414.0 D 1132K 303K
smsreg 2.37 D 413.63 D 471K 34K
hiddad 5.54 D 415.08 D 611K 85K
airpush 20.9 D 413.5 D 183K 35K
revmob 3.54 D 413.82 D 354K 13K
dnotua 2.93 D 414.36 D 261K 12K
dowgin 7.24 H 412.11 D 239K 1K
leadbolt 5.74 D 413.45 D 243K 12K

mobidash 1.8 D 415.09 D 294K 10K
kuguo 6.18 H 408.89 D 155K 1K
locker 4.13 H 413.13 D 195K 322
ewind 8.72 D 414.11 D 118K 22K
secapk 12.98 H 412.03 D 215K 1K
inmobi 10.66 D 413.77 D 213K 23K

tencentprotect 5.27 D 413.58 D 173K 23K
koler 0.49 H 360.01 D 160K 1K

domob 1.87 D 409.91 D 174K 2K
secneo 3.32 D 413.15 D 157K 11K
autoins 22.45 D 414.0 D 174K 43K

datacollector 15.47 D 413.59 D 176K 54K

Table 5: Summary of the top 20 PHA family on-device per-
sistence. D denotes days and H denotes hours.

tunity during which attackers can cause harm to the victims
and their devices (e.g., displaying intrusive full screen ads,
collect private information, install additional malicious apps
without user consent).

5.2 PHA Family On-Device Persistence
We then follow the approach outlined in Section 3.2 to un-
derstand the on-device persistence of the top 20 largest PHA
families ranked by their device prevalence ratios. Our findings
are summarized in Table 5. It is interesting to observe that
15 out of the 20 top PHA families can persist on devices for
several days, and only five PHA families are removed by end
users in less than two days. For example, ewind, a Trojan
family, persisted on 118K devices for up to 8.72 days on aver-
age and on 22K devices for even longer. This is interesting
because it indicates that users choose not to uninstall the mali-
cious app after they are warned by the mobile security product.
In light of this, It is interesting to observe that end users re-
moved locker/koler rapidly after detection. We can only
speculate that the reason behind this might be the degradation
in user experience (i.e., screen lockdown by locker, fake
FBI warnings by koler). We hope that our findings would
enable mobile security companies to devise effective notifi-
cation systems to nudge the end users to remove PHAs upon
detection, taking for example into account alert fatigue [28].

5.3 PHA Multiple-Instance Persistence
The fact that end users do not remove the detected PHAs
promptly creates a window of opportunity (as shown in Ta-
ble 4) that enables attackers to update the installed PHAs,
install additional malicious apps without user consent, or en-
tice them to install apps via full screen ads. We call this phe-
nomenon multiple instance persistence. Figure 3 shows the

Figure 3: CCDF of the number of SHA2s on devices in our
dataset (log scale).

Family # Devices # Multi-inst.
Persistence Devices Ratio

jiagu 1.33M 849K 0.64
smsreg 499K 237K 0.48
hiddad 670K 208K 0.31
airpush 214K 43K 0.2
revmob 367K 186K 0.51
dnotua 272K 82K 0.3
dowgin 241K 80K 0.33
leadbolt 255K 85K 0.33

mobidash 304K 112K 0.37
kuguo 155K 34K 0.22
locker 196K 53K 0.27
ewind 139K 17K 0.13
secapk 216K 75K 0.35
inmobi 235K 62K 0.27

tencentprotect 194K 42K 0.22
koler 161K 45K 0.28

domob 176K 45K 0.26
secneo 167K 34K 0.21
autoins 209K 33K 0.16

datacollector 211K 45K 0.21

Table 6: Summary of multiple-instance persistence per PHA
family.

complementary cumulative distribution function (CCDF) of
the number of unique PHAs installed on devices in our dataset.
A large fraction of the devices that installed PHAs installs
more than one during the observation period. For instance,
810K mobile devices (21.6% of 3.7M devices that have at
least one PHA) installed more than 7 PHAs. In this section, we
investigate to what extent the presence of a PHA on a device
facilitates the installation of additional malicious components.
Our findings are shown in Table 6. 18 out of the top 20 PHA
families exhibit multiple-instance persistence on at least 20%
of the mobile devices they infected. For example, 237K out
of 499K mobile devices that installed PHAs from smsreg
family have at least two other PHAs from the same family
within the 14-month observation period. Even for locker
and koler whereas the end users act swiftly (see Table 5),
we observe 53K (27% of locker infected devices) and 45K
(28% of koler infected devices) exhibiting multiple-instance
persistence. Note that our data does not allow us to infer the
causality relationship of PHA installations. Our results only

Market # Total
PHAs #Apps #Families # Avg. Active

PHAs Active PHA (01/19 - 02/20)

Google Play
(com.android.vending) 81K 56K 642 26K

Huawei Market
(com.huawei.appmarket) 24K 10K 175 3K

Xiaomi Market
(com.xiaomi.market) 11K 5K 226 2K

Samsung Market
(com.sec.android.app.samsungapps) 10K 5K 206 2K

Bazaar Market
(com.farsitel.bazaar) 5K 5K 74 1K

Oppo Market
(com.oppo.market) 3K 2K 143 462

Table 7: Summary of active PHAs in the top 6 Android Mar-
kets.

demonstrate the fact that two PHAs from the same family
that are installed on the same device are highly correlated.

6 PHA In-Market Persistence
In this section, we first quantify the active PHAs in six app
markets, by leveraging the dataset of 197K apps for which
we could reliably establish their market provenance (see Sec-
tion 2). As discussed, this number is lower than the total num-
ber of PHAs installed for a number of reasons (e.g., PHAs
that were already installed on the devices before our study
started, and SHA2s that do not belong to newly installed apps
but are rather updates), but it still covers 66% of all devices
that installed any PHA and 22% of all PHA installations in
our dataset. We then study how markets react to the presence
of PHAs (e.g., how many PHAs the markets suspend or re-
move, etc). Finally, we study the PHA in-market persistence
(i.e., how long can PHAs persist in different markets once
published) and PHA in-market evolution (i.e., how PHAs
may evolve to evade app vetting systems).

6.1 PHA In-Market Prevalence
The mobile security product records the installer package
names of PHAs observed on mobile devices (see Sec-
tion 2). This enables us to track the origin market of in-
stalled PHAs. We first measure the in-market prevalence
of PHAs, serving as the foundation to understand PHA in-
market persistence in Section 6.3. We investigate the ac-
tive PHAs in six popular Android markets (i.e., Google
Play, Huawei Market, Samsung Market, Xiaomi Market,
Bazaar Market and Oppo Market). Our results are summa-
rized in Table 7. Google Play is the Android market hosting
most PHAs: 81K unique SHA2s from 642 PHA families,
with the largest monthly active PHA population (i.e., 26K
per month) on average. This makes sense, due to the fact that
Google Play is the largest Android market with approximately
2.87 million apps3, and consequently becoming the de facto
target of PHA makers. Overall, all markets demonstrate per-
sistent monthly presence of PHAs as we can see from the
temporal patterns in Table 7. Following this finding, we will

3https://www.statista.com/statistics/266210/number-of-available-
applications-in -the-google-play-store/

Market # Total
PHAs

Total
Removed %Removed # Avg.

Removed
PHA Removal

(01/2019 - 01/2020)

Google Play 81K 74K 91.4% 5.28K
Huawei Market 24K 22K 91.5% 1.58k
Xiaomi Market 11K 9.8K 92.2% 705

Samsung Market 10K 8.9K 91.3% 637
Bazaar Market 5K 4.7K 95.4% 337
Oppo Market 3K 3K 92.3% 223

Table 8: Summary of PHAs removed by the top 6 Android
markets.

discuss how these markets deal with the PHAs in the next
section.

6.2 Marketplace Actions against PHAs
When apps are submitted to an Android marketplace, they
are usually automatically analyzed for presence of malicious
activity. If undetected, a PHA will be published on the market-
place, but it may later be suspended or removed, for example
after the PHA is reported as malicious by users or security
researchers. Google discloses the percentage of PHA installa-
tions in its annual Android security and privacy reports [12].
It remains however unclear how many PHAs are suspended
or removed by all marketplaces. As we show in the previous
section, all markets demonstrate persistent monthly presence
of PHAs. For example, Google Play has 26K monthly active
PHAs and 81K total PHAs in 14 months. This implies that
the markets do remove PHAs, but not in a prompt manner. To
better understand this phenomenon, we follow the approach
in Section 3 to measure the number of PHAs removed or sus-
pended by the top 6 Android markets. Note that we define a
PHA pi as removed/suspended if we do not observe the same
SHA2 for the rest of our observation period after its last ap-
pearance (i.e., max(Ωpim)). This way, we exclude all SHA2s
that appeared in February 2020 to minimize false positives
and discuss the limitation of this strategy in Section 9. Our
findings are summarized in Table 8. Overall, each Android
marketplace removes at least 91.3% of the PHAs published
on it during our observation period. For example, Google Play
removed 74k PHAs (91.4% of 81K PHAs) while Bazaar mar-
ket performed the best removing 4.7K PHAs (95.4% of 5K
PHAs) from its market. Unlike previous work [35], we find
that Chinese marketplaces like Huawei, Xiaomi, and Oppo
also remove most of the PHAs published on them (91.5%,
92.2%, 92.3%). A reason for this discrepancy might be that
our observation period is later than the ones used in previous
work (2019-2020 vs 2017), and these markets might have
changed their security posture after coming under scrutiny.
The temporal removal patterns of each marketplace are shown
in Table 8, indicating that all marketplaces consistently re-
move PHAs. It is important to note that Table 8 does not indi-
cate that Google Play and Huawei Market are not trustworthy.
Rather, due to the popularity of these markets and their huge
user base, they consequently become the de facto targets of
PHA makers. For instance, Google Play removed 74K PHAs

Market Average
Persistence

Malware
Persistence

MUwS
Persistence

Google Play 77.64 D 78.72 D 77.11 D
Huawei Market 30.02 D 28.70 D 37.61 D
Xiaomi Market 29.93 D 27.40 D 37.27 D

Samsung Market 52.56 D 48.44 D 81.01 D
Bazaar Market 65.76 D 65.73 D 65.43 D
Oppo Market 28.29 D 26.32 D 36.47 D

Table 9: Summary of PHA in-market persistence in the Top 6
Android Markets.

P(
Su

rv
iva

l)

Figure 4: Survival analysis of PHAs, malware and MUwS in
the six markets.

during our observation period, which is respectively 8 times
and 9 times more than Xiaomi Market and Samsung Market.
This is in line with the findings by Lindorfer et al. [22].

6.3 In-Market Persistence of Different Types
of PHAs

An important yet unanswered question is how long PHAs can
persist in different markets before being taken down, since
the longer they persist the more devices may be infected.
To answer this question, we follow the approach outlined in
Section 3.3 to measure PHA in-market persistence in these
Android markets. Our findings are summarized in Table 9. We
observe that PHAs, on average, can persist in Google Play
for 77.64 days and on other markets for at least 24 days. This
leaves a large window of opportunity for miscreants to exploit
mobile devices putting the users and their data at risk. To fur-
ther investigate the significance of our findings on mean PHA
in-market persistence, we use the Kaplan-Meier Estimate [14].
Recall that our methodology allows us to include censored
data (see Section 3), hence our estimates is not biased nor
under-estimated. The survival distributions of PHAs in the
six markets are shown in Figure 4. It is visually evident that,
at any point across the timeline, we can see that the survival
probability of the PHAs in Google Play is more than the other
markets (except Bazaar Market). We further carry out the pair-

MUwS

Figure 5: Survival analysis of malware and MUwS persistence
in the six markets.

wise Peto-Prentice test to compare the survival distributions
of the PHAs between Google and the other markets to estab-
lish the fact that the PHAs in Google Play persist longer than
those in the other markets. The degrees of freedom are the
number of groups minus one, hence always 1 in our tests. A
χ2 test shows that these differences are statistically significant
as the test statistic values are significantly larger than 3.841
(from standard χ2 distribution table) and the p-values are all
less than 0.005. These results further validate our observa-
tion. Our observation is at odds with Lindorfer et al. [22]. We
hypothesize two factors that may lead to our results. First,
Android accounts for 87% of the global smart phone market,
and, inevitably, has become the de facto target for mobile
malware. In turn, some PHAs may end up on the Google Play
Store despite of Google tightening Android’s security and
app review. Second, Google Play may have different policies
to address PHAs (e.g., it may offer a longer grace period for
these PHAs to remove offending libraries/code). Neverthe-
less, Google Play removed 74K PHAs during our observation
period, which is far more than those removed by the other
markets.

We then use AVClass [29] to distinguish between malware
and MUwS among PHAs, investigating if there exists any
in-market persistence difference between these two types of
PHAs. Mobile MUwS have a slightly shorter persistence pe-
riod in Google Play (77.11 days on average) and Bazaar
market (65.43 days on average), while in the other four mar-
kets MUwS shows longer persistence than malware. In par-
ticular, the in-market persistence period of mobile MUwS is
almost twice longer than that of malware in Samsung market

Google
Play

Huawei
Market

Xiaomi
Market

Samsung
Market

Bazaar
Market

Oppo
Market

Family
Avg.

Persistence Family
Avg.

Persistence Family
Avg.

Persistence Family
Avg.

Persistence Family
Avg.

Persistence Family
Avg.

Persistence
airpush 153.3 D jiagu 32.3 D jiagu 30.6 D jiagu 39.9 D adpush 92.2 D jiagu 26.2 D
jiagu 153.5 D smsreg 46.9 D smsreg 32.1 D airpush 188.2 D hiddad 98.7 D hiddad 91.9 D

revmob 159.1 D tencentprotect 44.3 D umpay 100.1 D revmob 191.8 D toofan 83.5 D smsreg 65.4 D
leadbolt 159.9 D secneo 51.8 D datacollector 58.2 D leadbolt 173.37D privacyrisk 65.4 datacollector 46.3 D
inmobi 125.9 D datacollector 32.8 D tencentprotect 53.2 D smsreg 56.2 D ewind 129.0 D tencentprotect 52.4 D

anydown 191.6 D autoins 41.2 D secneo 31.9 D mobby 194.0 D dnotua 92.9 D utilcode 63.0 D
hiddad 165.9 D utilcode 26.0 D hiddad 82.2 D tencentprotect 56.44 D hiddenapp 80.4 D badiduprotect 39.3 D

plankton 136.1 D baiduprotect 83.5 D utilcode 52.5 D anydown 183.7 D hiddapp 99.7 D beitaad 45.9 D
datacollector 152.2 D autoinst 35.1 D baiduprotect 48.9 D wapron 8.4 D notifyer 75.2 D airpush 47.5 D

dnotua 115.2 D smspay 62.4 D wapron 13.5 D baiduprotect 84.9 D airpush 123.8 D revmob 106.6 D

Table 10: Summary of the top 10 families (ranked by the number of SHA2s) in-market persistence in the top 6 Android
marketplaces. A family name is in bold if its in-market persistence period is below average (see Table 9).

(81.01 days on average) and Oppo market (48.44 days on
average). This suggests that different markets apply different
policies when vetting for PHAs, and might prioritize certain
types of threats over others. To further validate our findings
on the in-market persistence difference between these two
types of PHAs, we again use the Kaplan-Meier Estimate. The
survival curves of mobile malware and MUwS in the six
markets are shown in Figure 5. We further carry out the Peto-
Prentice test to compare the survival distributions of malware
and MUwS within each market. A χ2 test shows that these dif-
ferences are statistically significant as the test statistic values
are significantly larger than 3.841 (from standard χ2 distribu-
tion table) and the p-values are all less than 0.005. The only
exception is Bazaar market, where the test statistic is not
significant. Hence, we cannot conclude if Bazaar market
applies different policies when vetting for PHAs.

In Section 5 we showed that the overall number of devices
infected is correlated with the number of SHA2s. Following
this finding, we further study if PHA families with a large
number of PHAs can persist longer in the marketplaces. Our
hypothesis is that these large families may persist in the mar-
kets longer since app vetting systems require both machine
and human inspection. Our findings on the top 10 largest fam-
ilies in the top six markets are shown in Table 10. We observe
that most of the large families in the top six marketplaces per-
sist longer than the mean persistence time (see Table 9). For
example, all top 10 families in Google Play have in-market
persistence of at least 115 days, which is 38 days longer than
the mean 77.64 days persistence time. These results show that
there is a need for more comprehensive app vetting measures.

6.4 PHA In-Market Evolution
In the previous sections, we showed that PHAs can persist in a
market for weeks. In this section we aim to further understand
how PHA families may evolve in the markets. For example,
PHA makers may proactively switch ad libraries in response
to market policy changes or gain better incentives from ads,
or they may modify their malicious code to evade market app
vetting systems, etc. Note that each app has a unique package
name in a given market, by correlating the SHA2s belonging

com.sinyee.babybus.season

2019-02-05 2019-07-02 2019-12-18

inmobi kyview domob
SHA2:6bed… SHA2: 771f… SHA2: a425…

time

Figure 6: Example of PHA in-market evolution
(com.sinyee.babybus.season).

Market #Apps #SHA2s
Approximate

SHA2s
per PHA

Avg.
In-market
Persistence

Avg.
Evolution

Gap

Google
Play 1,349 7,883 ∼6 250.1 D 66.5 D

Huawei
Market 320 1779 ∼5 276.6 D 116.2 D

Xiaomi
Market 89 443 ∼5 247.8 D 98.8 D

Samsung
Market 70 383 ∼5 238.9 D 86.8 D

Bazaar
Market 40 129 ∼3 213.9 D 120.5 D

Oppo
Market 43 234 ∼5 227.0 D 98.4 D

Table 11: Characteristics of PHA in-market evolution.

to a certain package name and the AVClass results of their
VT reports, we can track and measure if an app evolves over
time (i.e., if the SHA2s of a certain PHA belong to at least
2 PHA families over the time). We show an example in Fig-
ure 6 where SHA2s from com.sinyee.babybus.season in
Google Play are associated with three different PHA fam-
ilies (i.e., inmobi, kyview [36], and domob) during our ob-
servation period.4 Their overall evolution distribution is illus-
trated in Figure 7. As we can see, the majority of the PHAs
exhibiting in-market evolution are observed in Google Play
and HuaWei Market (1,340 and 320 PHAs respectively in
these two markets). There are a limited number of PHAs in

4Note that inmobi is Google’s preferred ad SDK partner. However, this
library is flagged by multiple mobile security products as MUwS, and has
leaked sensitive user data in the past. In fact, inMobi was charged by the
FTC for COPPA violations in 2016. Therefore we flag inmobi as PHA in
this paper even though we acknowledge that the definition of MUwS varies
by platforms.

median

interquantile
range

density plot
width=frequency

Figure 7: Violet plot summarizing PHA in-market evolution.
The white dot in the middle is the median value, the thick
black bar in the centre represents the interquartile range and
the contour represents the distribution shape of the data.

the rest of the markets exhibiting in-market evolution. For
example, we identify 10K PHAs in Samsung Market (see
Table 8), yet only 70 of them exhibit in-market evolution. On
average, these PHAs belong to two PHA families over time.
Additional characteristics of these PHAs exhibiting in-market
evolution are summarized in Table 11. Overall, these PHAs
exhibiting in-market evolution show longer in-market persis-
tence (i.e., over 200 days) in the top 6 markets. For example,
the PHAs exhibiting in-market evolution persists in Google
Play for 250.1 days compared to the average 77.6 days (see
Table 9). The average gap between PHAs switching families
in Google Play is 66.5 days, which is more frequent than
the other markets. We believe that the shorter gap in Google
Play is partially due to the stringent app vetting system and
security policies applied by Google Play. As such, miscre-
ants must be proactive to deal with the scrutiny from Google.

7 PHA Migration
When their PHAs are removed from a marketplace, miscreants
might migrate to alternative ones to keep their operation going.
In this section, we study how PHAs migrate among markets.

7.1 PHA Inter-Market Migration
An important unanswered question is if miscreants actively
move PHAs among markets to infect more devices or af-
ter such PHAs were removed from a market. For example,
the miscreants may move a PHA to alternative markets af-
ter Google Play takes it down. Alternatively, the miscreants
may move a PHA from alternative markets to Google Play to
profit from its massive end users even for a short period of
time. We show an example in Figure 8. We have a repackaged
app com.avatar.star with SHA2 79e6..., which origi-

com.avatar.star (79e6…)

20
19

-0
8-

01

20
19

-0
8-

15

20
19

-0
8-

20 time

Oppo market

VIVO market
Google Play

20
19

-0
8-

25

20
19

-0
9-

04

20
20

-0
1-

27

Figure 8: Example of PHA inter-market migration
(com.avatar.star).

Figure 9: PHA inter-market migration. Markets are ranked by
the total number of inter-market activities.

nally appeared in Oppo Market between August 1, 2019 and
August 15, 2019 (3 devices infected), then moved to VIVO
Market between August 20, 2019 and August 25, 2019 (2
devices infected), and finally settled down in Google Play
between September 4, 2019 and January 27, 2020 (215 device
infected). Recall that we can track a SHA2 across markets
and time to identify sequentially non-overlapping time inter-
vals. To quantify the aforementioned phenomenon, we use
the app package names and their associated SHA2s as seeds
(similar to previous work [22]), and use the approach detailed
in Section 3 to measure PHA inter-market migration. In total,
we observe 3,533 PHAs that exhibit inter-market migration.
The results for the top six markets are summarized in Figure 9.
We see that Google Play exhibits the most inter-market mi-
gration activities with 1,404 PHA migrations, while Google
Play also exhibits the most outward PHA migrations with
886 outward migration activities.

We next investigate whether mobile malware and MUwS
present different migration activity on the various markets.
We again use AVClass [29] to identify mobile malware and

Market
Total PHA

Migration (in) # Malware # MUwS
Avg.

Persistence
Device Infected

(upstream)
Device Infected

(current)

Google
Play 651 447 204 57.9 D 964 3,003

Huawei
Market 859 747 112 63.5 D 1,039 1,543

Xiaomi
Market 346 292 54 10.44 D 4,065 471

Samsung
Market 255 218 37 23.66 D 1,599 394

Oppo
Market 234 186 58 10.3 D 3,364 296

Bazaar
Market 107 63 44 63.84 D 121 284

Table 12: Market response to PHA migration.

MUwS from the package names that migrated. Lindorfer et
al. [22] found initial evidence that malicious apps jump from
market to market, possibly for survival. For instance, the au-
thors identified 131 apps that migrated to alternative markets,
but didn’t carry out further analysis of how long these apps
would survive after the migration. To fill this gap, we then
measure specifically the PHAs that migrated into the mar-
kets to understand their in-market persistence. The results are
summarized in Table 12. More mobile malware migrates into
the markets compared to MUwS for all top 6 markets. Our
hypothesis is that the ecosystem of MUwS usually leverages
ad libraries and can be more adaptable to market takedowns,
while the miscreants behind mobile malware use more so-
phisticated methods (e.g., code obfuscation, environment
awareness, etc) hence reusing the same PHAs across different
markets to maximize the number victims is more desirable. To
verify our hypothesis, we measure the device prevalence ratios
of these PHAs migrating into the markets and compare this
prevalence ratios to those of the immediate upstream markets
they migrated from. Our results are summarized in Table 12.
As it can be seen, PHAs migrating into Google Play and
Huawei Market (which have large user bases) manage to
infect at least 50% more devices than those from the imme-
diate upstream markets. However, PHAs migrating into the
rest of the markets (which have smaller user bases) do not
reach more devices. Nevertheless, those PHAs, on average,
have short lifespans in these markets compared to the aver-
age persistence time (see Table 9, Section 6) except Huawei
Market. Our hypothesis is that this is partially due to the fact
that these PHAs have been detected in the upstream markets,
therefore signatures were made available for the downstream
markets to detect them. At the same time, the exception of
Huawei Market shows that markets must be responsible and
rigorously vet the apps submitted. Our study only measures
the lower bound of the PHA in-market persistence since it
is possible that a PHA still exists in a market but our dataset
did not reflect its existence. The issue could be addressed if
our dataset is augmented with the method proposed by Lin-
dorfer et al. [22]. We leave such task as part of our future
work.

Service #PHAs #Malware #MUwS Dev
Infected

Avg.
Persistence

com.sec.android.easyMover
(Samsung) 14,038 10,960 3,078 35,557 93.38 D

com.samsung.android.scloud
(Samsung) 5,088 3,835 1,253 8589 56.41 D

com.hicloud.android.clone
(Huawei) 3,653 2,953 700 3,079 32.53 D

com.oneplus.backuprestore
(Oneplus) 1,072 794 278 1,361 22.69 D

com.coloros.backuprestore
(Oppo) 972 695 277 1,267 21.98 D

com.miui.cloudbackup
(Xiaomi) 1,243 928 315 1,235 33.23 D

Table 13: PHA migration from data backup/clone services.
Those services are ranked by the device prevalence ratios.

7.2 PHA Persistence After Migration via
Backup/Clone Services

Android phones typically offer backup functionality to their
users, allowing them to restore their apps and configuration
when they purchase a new device. This mechanism allows
users to quickly restore their data (e.g., contacts, settings,
apps) in the new devices without manual reinstallation efforts.
However, such services may inadvertently migrate existing
PHAs to the new device too, and compromise the security and
privacy of the new phones, even though these PHAs may have
been removed by the markets and therefore the user might not
be able to manually install them anymore. Kotzias et al. [16]
showed that backup restoration is an unintended unwanted
app distribution vector responsible for 4.8% of unwanted in-
stalls. Following this direction, we further investigate how
long PHAs can persist after migrating via backup/clone ser-
vices. Recall that the mobile security product captures an
app’s installer package name (see Section 2). This enables
us to identify apps that were installed by backup/clone ser-
vices in our dataset. To this end, we first identify the top
six data backup/clone services in our dataset and understand
how many PHAs migrate from backup/clone services, and
consequently how long these PHAs may persist on the de-
vices. To accurately identify the data backup/clone services,
we first remove all known market installer packages and rank
the rest of the installers by the device prevalence ratio. We
then investigate these apps on Google Play and on the Web
to understand the functions of the installers.

Our findings are shown in Table 13. Overall, we observe
that a considerable number of PHAs are not removed by end
users and consequently are migrated from the old phones
and backups. For example, 14K PHAs migrated to 35.5K new
Samsung models in our dataset. At the same time, it is interest-
ing to see that there is three times more mobile malware than
MUwS migrating via backup/clone services. In addition, these
PHAs persist longer than the average 20.2 days persistence pe-
riod (see Table 4). For example, PHAs migrated via Samsung
smart switch mobile app (com.sec.android.easyMover)
persist in the new devices for an averaged 93 days.

(a) fakeapp prevalence (global)

(b) fakeapp device infection rate (global)

(c) fakeapp prevalence (in Google Play market)

(d) fakeapp device infection rate (incurred by Google Play)

Figure 10: Case study: the fakeapp family

8 Fakeapp Case Study
In this section, we provide a case study on the fakeapp An-
droid malware family to demonstrate that our approach can
measure how a malicious campaign spread, persisted, and
later was removed by the markets. fakeapp is a family of
malicious apps that masquerades as popular legitimate apps,
by using a similar package name and icons as AV apps, bank-
ing apps, etc. Some of the apps from the fakeapp family
may engage in malicious activities such as sending/receiving
premium SMS messages and downloading other apps [17,40].

Figure 10 shows the prevalence rate and the device infec-
tion rate of fakeapp from a global and a local perspective
(we use the Google Play market in our case study). During
our observation period, at the global level, fakeapp had ap-
proximately 3K active SHA2s infecting 13K devices on a
monthly basis (see Figure 10a and 10b). From a local perspec-
tive, fakeapp had approximately 210 active SHA2s persisting
in the Google Play market and infecting 3K devices on a
monthly basis (see Figure 10c and 10d. This is rather inter-
esting because apps from the fakeapp family in the Google
Play market represent 7% of monthly active SHA2s belong-
ing to this family, and yet accounted for approximately 25% of
the global device infection. Our study shows that the Google
Play market ramped up its removal efforts over our observa-
tion period. The market had 322 active fakeapp SHA2s in
January 2019 and reduced the number to 106 active SHA2s in
February 2020, representing a twofold decrease (Figure 10c).
This, in turn, lead to a four-fold decrease in the number of
device infection rate (Figure 10d). However, the fakeapp
family, on average, persisted in the Google Play market for
86.6 Days before removal. This is about 9 days longer than
the average PHA persistence period on that market (see Ta-
ble 9, Section 6.2). At the same time, fakeapp apps installed
from Google Play persist 29.41 days on devices, which is 14
days longer than the average 15.17 days fakeapp on-device

persistence period. We believe that this is due to the fact that
Google Play is the de facto trusted source of Android apps,
hence the end users may keep the PHAs from Google Play
longer. Additionally, the fact that fakeapp apps come dis-
guised as useful apps might hide the fact that these apps are
malicious and lure users into keeping them on their devices
for longer, despite being warned by the mobile security prod-
uct. Our case study highlights the importance of the Google
Play market in fighting PHAs and demonstrates the in-depth
analysis that our measurement methodology can achieve.

9 Limitations and Discussion

Biases. While this paper presents the largest measurement of
on-device Android PHA to date, our dataset is biased towards
the users of a single mobile security product, and therefore
still presents some biases. For example, our device population
is skewed towards the United States and European countries.
It is possible that end users in the United States and Europe
tend to keep this mobile security app installed for longer,
hence more likely that these devices fit in our data selection
criteria (see Section 3). At the same time, we cannot observe
the behavior of users that do not use mobile security products,
and those who did not opt-in this data collection scheme.
Besides, we cannot observe certain events from the devices
protected by Google Play Protect. Nonetheless, we believe
that our dataset is representative of the worldwide mobile
users, and we do our best to minimize this bias, for example,
by using percentages when looking at per country infection
rates. In terms of the representativeness of the analyzed apps,
it is challenging to ascertain the coverage of our study since
it is infeasible to determine the total number of all Android
apps, given such a fragmented ecosystem and many alternative
markets. Still, by analyzing 8.8M unique apps, this study
is covering one of the largest sets of apps to date, and is
in line with the largest datasets collected by the academic
community [1].

Data Limitations. It is important to note that the PHA detec-
tion data is collected passively. That is, a PHA detection event
is recorded when the security product detects a potentially
harmful application that matches a pre-defined signature in-
cluding its behavior, communications, and policy violations.
Any mobile PHAs preemptively blocked by other security
products (e.g., application store link blacklists, cloud-based
app reputation systems) cannot be observed. Additionally, any
PHAs that do not match the predefined signatures on devices
are also not observed. Inferring the last seen timestamp of a
PHA in a market is practically hard since the mobile security
data is collected passively. Our inference therefore relies upon
the deduction that if we do not observe a given PHA from bil-
lions of events generated by 11.7M devices following its last
observation time, we consider that this PHA was removed by
a market. It is possible that this PHA could still remain in that
market and our dataset simply did not capture its existence

(i.e., this PHA is not installed by the 11.7M devices after its
last observation timestamp). Consequently, we measure the
lower bound of the PHA in-market persistence in our study.

The Android API enables the mobile security product to
identify the installer package name of a PHA. Correlating
this with the official package names of the markets, we can
identify if a PHA comes from a certain market at a certain
timestamp. However, miscreants or end users can install apps
via ADB and impersonate the official package names of the
markets. In this case, the mobile security product can wrongly
attribute a PHA as originating from a certain market. To min-
imize this risk, our study only selects a PHA observed in at
least two devices. We believe that such false positives incurred
by such impersonated official market package names are sta-
tistically ignorable. In addition, if an app was installed before
our observation period started, we cannot obtain market in-
formation for it. If an already installer app is consequently
updated, our system sees the updating software as the installer
and not the original marketplace the app came from. We there-
fore exclude the PHAs that we cannot confidently attribute
to certain markets. Still, this allows us to cover 66% of the
devices in our dataset and 22% of all PHA installations.

Implications for mobile security research. Our study
shows that many PHAs can persist on devices and in app
markets for many days once installed or approved. We hope
that our study can inspire better notification systems to nudge
the end users to remove PHAs once detected, and, ideally, de-
vise a prevention system able to convince users not to install
PHAs in the first place.

Implications to Android markets. Our study shows that
PHAs can persist in a market for at least 24 days. At the
same time, while we recognize the efforts from the Android
markets, not all PHAs are removed by them (e.g., Google
Play removes 5.28K PHAs per month and, in total, removes
74K out of 81K PHAs). We hope that our findings will en-
able Android markets to ramp up their app vetting systems
and takedown PHAs in a timely manner to minimize their
in-market persistence. In addition, despite of the transparency
report from Google Play, we hope that the markets can be
more transparent and disclose the performance figures relating
to PHA removal (e.g., the number of PHA removed monthly,
the average time to remove a PHA, etc.). Our study shows
that PHAs may evolve over time to survive in the markets for
longer and be able to reach more victims. We hope that our
findings can encourage app markets to make end users aware
of the security and privacy issues incurred by the previous
versions of an app if any. For example, certain versions of
the popular app com.intsig.camscanner in Google Play
were affected by the Trojan dropper necro due to the inte-
gration of a 3rd party SDK from AdHub. As the app remains
in Google Play after the removal of the 3rd party library, a
historical briefing of the security and privacy incidents as-

sociated with such apps would offer end users an informed
decision when installing them on their devices in the future.

10 Related Work
There is an enormous amount of research on mobile security
and privacy. In this section, we specifically review previous
measurement studies on malware characterization and mobile
app ecosystem. We refer the readers to [6,8,19,24,32,37] for
overviews and surveys on securing Android devices.

Mobile PHA characterization. The security research com-
munity has been actively investigating the ever-changing char-
acteristics of mobile PHAs for years [6, 8, 19, 24, 32, 37].
Previous efforts mainly focused on analyzing apps and sys-
tematically characterizing them from various aspects. From a
high level, these research center on installation methods [40],
evasion mechanisms [7], repackaging mechanisms [22,31,39],
malicious payloads [40], behaviors [21, 38], monetization [9],
etc. In recent years, Faruki et al. [7] summarized Android
security issues, malware growth (during 2010-13), their pene-
tration, stealth techniques, and strength as well as weaknesses
of some of the popular mitigation solutions. Mirzaei et al. [23]
introduced Andrensemble, a system to characterize Android
malware families by leveraging API ensembles. These ef-
forts collectively shed lights on how Android malware op-
erates in the wild, the main incentives of mobile malware,
the weaknesses of some of the popular mitigation solutions,
etc. However, they did not discuss potential threats posed by
PHA persistence in both mobile devices and markets as these
efforts center on app analysis and offer a less comprehensive
view of the real device prevalence.

Measurement studies on Android permission system. The
Android permission system has been extensively covered in
the previous literature [2, 3, 8, 24]. We only review the work
relating to our study in this paper. Felt et al. [8] built the Stow-
away system to detect overprivileged apps which could result
in privacy violations. Felt et al. [10] later showed that current
Android permission warnings do not help most users make
correct security decisions. Sarma et al. [27] discussed the
risks incurred by the Android permission system and outlined
13 permissions that may critically invade users’ privacy. Qu et
al. [25] designed AutoCog to measure the description-to-
permission fidelity in Android apps and assist the end users to
understand the security and privacy implications when grant-
ing permissions.

Measurement studies on mobile PHA. From a device per-
spective, Shen et al. [30] carried out a detailed quantitative
analysis on 6.14 million Android devices comparing rooted
and non-rooted Android devices across a broad range of char-
acteristics including PHA installations and network behavior.
Suarez-Tangil et al. [31] carried out a systematic study of
1.28M repackaged apps spanning between 2010 and 2017
to understand how Android malware has evolved over time.

More recently, Gamba et al. [11] collected 82K pre-installed
apps (424K files in total) on Android devices from more than
200 vendors and carried out a measurement study to under-
stand how the stakeholders primarily build their relationship
around advertising and data-driven services. From an app mar-
ket perspective, Lindorfer et al. [22] proposed the AndRadar
system to discover multiple instances of a malicious Android
application in a set of alternative application markets using a
set of package names as seeds. Wang et al. [35] leveraged 6M
Android apps downloaded from 16 Chinese app markets and
Google Play and provided a large-scale comparative study
to understand various aspects and dynamics relating to apps
(including PHAs), their behavior and the developers. These
efforts collectively shed lights on the overall picture of how
PHA evolves over the time. Different from these previous
efforts, our study focuses on the potential threats posed by
PHA persistence in both mobile devices and markets as these
efforts center on app analysis and offer a comprehensive view
of the real device prevalence.

Desktop PUP PPI ecosystem study. Another loosely con-
nected research line is related to measuring the PUP PPI
ecosystem in the PC environment. Caballero et al. [4] pro-
vided the first large scale measurement of blackmarket pay-
per-install services in the wild. Kotzias et al. [15] leveraged
file dropping graphs to build a publisher graph and identify
specific roles in the ecosystem, in turn revealing the relation-
ship between PUP prevalence and PUP distributors. Thomas
et al. [33] performed a similar study on unwanted software
on desktop computers.

Comparison with Close Work. The closest work is a re-
cent mobile unwanted app distribution study by Kotzias et
al. [16]. Their study focuses on understanding who-installs-
who relationships between installers and child apps, and un-
covering the main unwanted app distribution vectors. Similar
to the findings by Kotzias et al. [16], our study also shows
that Google Play remains the main app distribution vector of
PHAs, but also has the best defenses against PHAs (e.g., re-
moving most of the PHAs). Kotzias et al. [16] also identifies
many other distribution vectors such as bloatware, browsers,
instant messaging, etc. Our study does not cover these dis-
tribution vectors as we focus on the temporal behavior of
PHAs. Concretely, leveraging a longer observation period of
PHA installation events across 11M devices, our study of-
fers a large-scale temporal measurement study of Android
PHAs to comprehend the characteristics their on-device and
in-market persistence, and consequent inter-market migration
after taken down. In summary, Kotzias et al. [16] cover where
the PHAs come from while our study addresses the temporal
dynamics of PHA installations on Android.

11 Conclusion
We presented the largest on-device study to date of Android
PHAs installed in the wild. Our results show that PHAs on

Android are a pervasive problem, and that malicious apps
can persist for long periods of time both on devices and on
markets. Our results suggests that current measures against
malicious apps on Android are not as effective as commonly
thought, and that more research from the security community
is needed in this space.

Acknowledgements
We would like to thank our Shepherd Yousra Aafer and the
anonymous reviewers for their helpful guidance through the
revision process. This work was supported by the National
Science Foundation under Grant CNS-2127232.

References
[1] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein,

and Yves Le Traon. Androzoo: Collecting millions of
android apps for the research community. In MSR, 2016.

[2] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and
David Lie. Pscout: analyzing the android permission
specification. In ACM CCS, 2012.

[3] David Barrera, H Güneş Kayacik, Paul C Van Oorschot,
and Anil Somayaji. A methodology for empirical analy-
sis of permission-based security models and its applica-
tion to android. In ACM CCS, 2010.

[4] Juan Caballero, Chris Grier, Christian Kreibich, and
Vern Paxson. Measuring pay-per-install: The commodi-
tization of malware distribution. In USENIX Security,
2011.

[5] Rahul Chatterjee, Periwinkle Doerfler, Hadas Orgad,
Sam Havron, Jackeline Palmer, Diana Freed, Karen
Levy, Nicola Dell, Damon McCoy, and Thomas Ris-
tenpart. The spyware used in intimate partner violence.
In IEEE S&P, 2018.

[6] Zheran Fang, Weili Han, and Yingjiu Li. Permission
based android security: Issues and countermeasures.
computers & security, 43, 2014.

[7] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay
Ganmoor, Manoj Singh Gaur, Mauro Conti, and Mut-
tukrishnan Rajarajan. Android security: a survey of
issues, malware penetration, and defenses. IEEE com-
munications surveys & tutorials, 17(2), 2014.

[8] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn
Song, and David Wagner. Android permissions demys-
tified. In ACM CCS, 2011.

[9] Adrienne Porter Felt, Matthew Finifter, Erika Chin,
Steve Hanna, and David Wagner. A survey of mobile
malware in the wild. In SPSM, 2011.

[10] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman,
Ariel Haney, Erika Chin, and David Wagner. Android
permissions: User attention, comprehension, and behav-
ior. In SOUPS, 2012.

[11] Julien Gamba, Mohammed Rashed, Abbas Razagh-
panah, Juan Tapiador, and Narseo Vallina-Rodriguez.
An analysis of pre-installed android software. In IEEE
S&P, 2020.

[12] Google. Android Security & Privacy 2018 Year In Re-
view. 2019.

[13] Médéric Hurier, Guillermo Suarez-Tangil, Santanu Ku-
mar Dash, Tegawendé F Bissyandé, Yves Le Traon,
Jacques Klein, and Lorenzo Cavallaro. Euphony: Har-
monious unification of cacophonous anti-virus vendor
labels for android malware. In MSR, 2017.

[14] David G Kleinbaum and Mitchel Klein. Survival analy-
sis. Springer, 2010.

[15] Platon Kotzias, Leyla Bilge, and Juan Caballero. Mea-
suring PUP Prevalence and PUP Distribution through
Pay-Per-Install Services. In USENIX Security, 2016.

[16] Platon Kotzias, Juan Caballero, and Leyla Bilge. How
did that get in my phone? unwanted app distribution on
android devices. In IEEE S&P, 2021.

[17] Su Mon Kywe, Yingjiu Li, Robert H Deng, and Jason
Hong. Detecting camouflaged applications on mobile
application markets. In ICISC, 2014.

[18] Charles Lever, Manos Antonakakis, Bradley Reaves,
Patrick Traynor, and Wenke Lee. The core of the matter:
Analyzing malicious traffic in cellular carriers. In NDSS,
2013.

[19] Li Li, Tegawendé F Bissyandé, and Jacques Klein. Re-
booting research on detecting repackaged android apps:
Literature review and benchmark. IEEE Transactions
on Software Engineering, 2019.

[20] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques
Klein, Yves Le Traon, David Lo, and Lorenzo Cavallaro.
Understanding android app piggybacking: A systematic
study of malicious code grafting. IEEE Transactions on
Information Forensics and Security (TIFS), 2017.

[21] Martina Lindorfer, Matthias Neugschwandtner, Lukas
Weichselbaum, Yanick Fratantonio, Victor Van
Der Veen, and Christian Platzer. Andrubis–1,000,000
apps later: A view on current android malware
behaviors. In BADGERS, 2014.

[22] Martina Lindorfer, Stamatis Volanis, Alessandro Sisto,
Matthias Neugschwandtner, Elias Athanasopoulos, Fed-
erico Maggi, Christian Platzer, Stefano Zanero, and

Sotiris Ioannidis. Andradar: fast discovery of android
applications in alternative markets. In DIMVA, 2014.

[23] Omid Mirzaei, Guillermo Suarez-Tangil, Jose M
de Fuentes, Juan Tapiador, and Gianluca Stringhini. An-
drensemble: Leveraging api ensembles to characterize
android malware families. In ASIACCS, 2019.

[24] Mohammad Nauman, Sohail Khan, and Xinwen Zhang.
Apex: extending android permission model and enforce-
ment with user-defined runtime constraints. In ASI-
ACCS, 2010.

[25] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan
Chen, Tiantian Zhu, and Zhong Chen. Autocog: Mea-
suring the description-to-permission fidelity in android
applications. In ACM CCS, 2014.

[26] Abbas Razaghpanah, Rishab Nithyanand, Narseo
Vallina-Rodriguez, Srikanth Sundaresan, Mark Allman,
Christian Kreibich, and Phillipa Gill. Apps, trackers,
privacy, and regulators: A global study of the mobile
tracking ecosystem. In NDSS, 2018.

[27] Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul
Potharaju, Cristina Nita-Rotaru, and Ian Molloy. An-
droid permissions: a perspective combining risks and
benefits. In SACMAT, 2012.

[28] Angela Sasse. Scaring and bullying people into security
won’t work. IEEE Security & Privacy, 13(3):80–83,
2015.

[29] Marcos Sebastián, Richard Rivera, Platon Kotzias, and
Juan Caballero. Avclass: A tool for massive malware
labeling. In RAID, 2016.

[30] Yun Shen, Nathan Evans, and Azzedine Benameur. In-
sights into rooted and non-rooted android mobile de-
vices with behavior analytics. In SAC, 2016.

[31] Guillermo Suarez-Tangil and Gianluca Stringhini. Eight
years of rider measurement in the android malware
ecosystem. IEEE Transactions on Dependable and Se-
cure Computing, 2020.

[32] Darell JJ Tan, Tong-Wei Chua, Vrizlynn LL Thing, et al.
Securing android: a survey, taxonomy, and challenges.
ACM Computing Surveys (CSUR), 47(4), 2015.

[33] Kurt Thomas, Juan A Elices Crespo, Ryan Rasti, Jean-
Michel Picod, Cait Phillips, Marc-André Decoste, Chris
Sharp, Fabio Tirelo, Ali Tofigh, Marc-Antoine Courteau,
et al. Investigating commercial pay-per-install and the
distribution of unwanted software. In USENIX Security
Symposium, 2016.

[34] Haoyu Wang, Hao Li, Li Li, Yao Guo, and Guoai Xu.
Why are android apps removed from google play? a
large-scale empirical study. In MSR, 2018.

[35] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-
Rodriguez, Yao Guo, Li Li, Juan Tapiador, Jingcun Cao,
and Guoai Xu. Beyond google play: A large-scale com-
parative study of chinese android app markets. In Pro-
ceedings of the Internet Measurement Conference 2018,
2018.

[36] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou,
and Wu Zhou. Deep ground truth analysis of current
android malware. In DIMVA, 2017.

[37] Meng Xu, Chengyu Song, Yang Ji, Ming-Wei Shih,
Kangjie Lu, Cong Zheng, Ruian Duan, Yeongjin Jang,
Byoungyoung Lee, Chenxiong Qian, et al. Toward engi-
neering a secure android ecosystem: A survey of existing
techniques. ACM Computing Surveys (CSUR), 49(2),
2016.

[38] Chao Yang, Zhaoyan Xu, Guofei Gu, Vinod Yeg-
neswaran, and Phillip Porras. Droidminer: Automated
mining and characterization of fine-grained malicious
behaviors in android applications. In ESORICS, 2014.

[39] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning.
Detecting repackaged smartphone applications in third-
party android marketplaces. In CODASPY, 2012.

[40] Yajin Zhou and Xuxian Jiang. Dissecting android mal-
ware: Characterization and evolution. In IEEE S&P,
2012.

[41] Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi
Zhang, Linhai Song, and Gang Wang. Measuring and
modeling the label dynamics of online anti-malware
engines. In USENIX Security Symposium, 2020.

	Introduction
	Datasets
	Approach
	Relationships
	Design Philosophy
	Measurement of PHA On-device Persistence
	Measurement of PHA In-market Persistence
	Measurement of PHA Inter-market Migration

	Right Censored Data

	Temporal Characteristics of PHA Families
	PHA On-Device Persistence
	On-Device Persistence of Different PHA Types
	PHA Family On-Device Persistence
	PHA Multiple-Instance Persistence

	PHA In-Market Persistence
	PHA In-Market Prevalence
	Marketplace Actions against PHAs
	In-Market Persistence of Different Types of PHAs
	PHA In-Market Evolution

	PHA Migration
	PHA Inter-Market Migration
	PHA Persistence After Migration via Backup/Clone Services

	Fakeapp Case Study
	Limitations and Discussion
	Related Work
	Conclusion

