
How Did That Get In My Phone?
Unwanted App Distribution on Android Devices

Platon Kotzias∗, Juan Caballero†, Leyla Bilge∗
∗NortonLifelock Research Group, † IMDEA Software Institute

Abstract—Android is the most popular operating system with
billions of active devices. Unfortunately, its popularity and
openness makes it attractive for unwanted apps, i.e., malware
and potentially unwanted programs (PUP). In Android, app
installations typically happen via the official and alternative mar-
kets, but also via other smaller and less understood alternative
distribution vectors such as Web downloads, pay-per-install (PPI)
services, backup restoration, bloatware, and IM tools. This work
performs a thorough investigation on unwanted app distribution
by quantifying and comparing distribution through different
vectors. At the core of our measurements are reputation logs of a
large security vendor, which include 7.9M apps observed in 12M
devices between June and September 2019. As a first step, we
measure that between 10% and 24% of users devices encounter at
least one unwanted app, and compare the prevalence of malware
and PUP. An analysis of the who-installs-who relationships
between installers and child apps reveals that the Play market
is the main app distribution vector, responsible for 87% of
all installs and 67% of unwanted app installs, but it also has
the best defenses against unwanted apps. Alternative markets
distribute instead 5.7% of all apps, but over 10% of unwanted
apps. Bloatware is also a significant unwanted app distribution
vector with 6% of those installs. And, backup restoration is an
unintentional distribution vector that may even allow unwanted
apps to survive users’ phone replacement. We estimate unwanted
app distribution via PPI to be smaller than on Windows. Finally,
we observe that Web downloads are rare, but provide a riskier
proposition even compared to alternative markets.

I. INTRODUCTION

Android has become the most popular operating system with
over 2.5 billion active devices [43] and 75% of the mobile
device market share [40]. A major reason behind Android’s
success is its open environment that allows affordable access
to new app developers, app distribution through the official
Play market and alternative sources, and OS customization by
vendors and mobile network operators. Unfortunately, popu-
larity and openness comes with a cost. Abusive developers also
have easy access to the ecosystem allowing them to distribute
their unwanted apps to a large number of users [6]. We use
unwanted apps to jointly refer to malware (e.g., ransomware,
banking trojans) and potentially unwanted programs (PUP)
(e.g., adware, rogueware). AV vendors keep reporting ever-
increasing numbers of unwanted app detections and collected
unwanted app samples [7], [9], [12].

By default, Android only installs apps from the official Play
market, but the user can optionally enable installations from
other (unknown) sources. Among those, alternative markets
are popular especially in countries like China where Google

services such as the Play market are restricted [53], [77]. Since
app markets are popular and open to any user, prior work
has focused on analyzing them [15], [53], [72], [77], [83].
However, the security community lacks a global understanding
about how Android unwanted apps are distributed. While
apps are largely distributed through markets, other smaller
alternative distribution vectors such as Web downloads, pay-
per-install (PPI) services, bloatware, backup restoration, and
even instant messaging (IM) should not be ignored. We close
this gap in the existing research by investigating how un-
wanted apps get distributed into user devices through different
distribution vectors. We expect our findings to drive future
defenses that protect users when installing apps from lesser-
known distribution vectors such as backup restoration and
bloatware, which are still responsible for a significant fraction
of unwanted app installs. We also expect our findings to
motivate further research on protecting the Play market, which
despite its defenses, remains by far the largest unwanted app
distribution vector.

At the core of our measurements are reputation logs that,
over the four-month period between June and September 2019,
capture the presence in 12M Android devices of 7.9M apps
(34M APKs) and the who-installs-who relationship between
apps. Such internal view of what is installed on user devices,
and how it arrived, allows us to answer open questions such as
what fraction of apps are installed through different distribu-
tion vectors, which distribution vectors install more unwanted
apps, which apps in the same distribution vector (e.g., different
markets or browsers) are riskier compared to each other, and
what is the prevalence of unwanted app encounters by users.

Prior works have also leveraged a view of apps installed
in real user devices. A recent study analyzed the presence
of pre-installed apps in 2.7K Android devices [33]. In con-
trast, we examine the distribution of unwanted apps by pre-
installed bloatware, and compare it with other distribution
vectors. Furthermore, our device dataset is three orders of
magnitude larger and contains longitudinal logs over a four-
month period. Another recent work detects stalking apps by
analyzing 50M Android devices during 2017–2019 [61]. In
comparison, our analysis is performed on a smaller set of
devices in a four-month-period. However, our analysis does not
focus on one type of threat, but rather covers a large variety
of unwanted apps distributed through various vectors. Shen
et al. [67] compared rooted and unrooted devices, measuring
the prevalence of five malware classes on 6M Android devices

1



during April 2015. We also measure prevalence, finding, albeit
on a four month period and including all malware and PUP
classes, significantly higher prevalence.

As a prerequisite to analyze unwanted app distribution,
we first identify unwanted apps in the dataset. We use the
common practice to collect AV detection labels using the
VirusTotal (VT) online service [75] and consider unwanted
any APK flagged by at least a threshold number of AV
engines [84]. Using those unwanted APKs we measure the
number of devices that encountered at least one unwanted
app over the four month analysis period. We measure an
unwanted app prevalence of 10%–24%, depending on the
selected VT threshold. This range is very conservative as it
considers benign all APKs not queried to VT or not found
in VT. Compared to previous studies on Windows malware
prevalence on consumer and enterprise hosts [45], [46], [79],
this shows that, despite many security improvements provided
by the Android ecosystem, the security posture of Android
devices with respect to unwanted apps is not better than that
of Windows hosts. We also compare the prevalence of malware
and PUP finding that the prevalence of both categories is
almost identical, although we identify significantly more PUP
samples on the devices.

Then, we examine the who-installs-who relationships be-
tween installers and the child apps they install. To compare
distribution vectors we classify the installer apps into 12 cate-
gories: the official Play market, alternative markets, browsers,
commercial PPI, backup and restore, IM, theme stores, file
managers, file sharing apps, bloatware, mobile device manage-
ment (MDM), and package installers. To compare distribution
vectors we compute their vector detection ratio (VDR), i.e.,
the ratio of unwanted apps installed through that vector over
all apps installed through that vector. Below we list our most
significant findings on unwanted app distribution:

• The Play market is the main app distribution vector
responsible for 87% of all installs and 67% of unwanted
installs. However, its VDR is only 0.6%, better than all
other large distribution vectors. Thus, the Play market
defenses against unwanted apps work, but still significant
amounts of unwanted apps are able to bypass them,
making it the main distribution vector for unwanted apps.

• Among the remaining installs, alternative markets are the
largest, being responsible for 5.7% of all installs and
10.4% of unwanted installs. However, on average they
are five times riskier (3.2% VDR) than the Play market
(0.6%). Download risk highly varies among alternative
markets. Some like Amazon’s and Vivo’s are almost as
safe as the Play market, but users of other top alterna-
tive markets have up to 19 times higher probability of
encountering an unwanted app.

• Backup restoration is an unintended unwanted app distri-
bution vector responsible for 4.8% of unwanted installs.
Cloning of apps during phone replacement can facilitate
unwanted apps to survive phone changes by the user.

• Bloatware is another surprisingly high distribution vector,

responsible for 6% of unwanted installs. This is likely due
to ad-based monetization by device vendors and carriers
of the devices they sell. Bloatware installers are often
privileged, making their removal by security tools and
users challenging.

• App downloads from the Web are rare (<0.1% installs),
but have significantly higher risk (3.8% VDR) than down-
loads from markets, even alternative ones (3.2%).

• We provide a very conservative lower bound on com-
mercial PPI service distribution of 0.2% of all installs
and 0.1% of unwanted installs and observe that such
services seem to have improved their filtering of abusive
advertisers compared to their Windows counterparts. We
also estimate that all PPI activity may be responsible for
up to 4% of the unwanted app installs. That upper bound
is still significantly lower than the estimate of Windows
commercial PPI services being responsible for over a
quarter of PUP installs [45].

II. BACKGROUND

Android apps are distributed as Android application pack-
ages (APKs), which are compressed files that contain the
app’s code (e.g., DEX files and ELF libraries), a manifest
file, certificates, resources, and other assets. The manifest
file contains a package name commonly used to identify the
app. The developer is free to choose the package name and
collisions are possible between apps from different developers.
However, some markets, including the official Play market,
use the package name as a unique app identifier and therefore
do not accept two apps with the same package name. For
this reason, benign developers avoid reusing existing package
names. On the other hand, unwanted apps may impersonate
benign apps by selecting the same package name as an app
in the Play market, and distributing the impersonating app
through alternative markets (e.g., [26], [83]).

A. App Signing

APKs are digitally signed using a private key and they
include the signature and a certificate chain for the correspond-
ing public key, which the Android framework uses during
installation to validate that the APK has not been modified.
In practice, the vast majority of APKs contain only a single
self-signed certificate. An installed app can only be updated
by another APK with the same package name and only if
the new version is signed with the same private key and has
the same certificate as the old version. To prevent unwanted
app developers from surreptitiously updating the benign apps
with their own versions, it is strictly necessary that developers
keep their private keys confidential. We use the term signer
to refer to the entity that owns the private key that signs an
APK. We identify the APK’s signer by either the SHA1 hash
of the certificate or by the SHA256 hash of the certificate’s
public key. Both identifiers are essentially equivalent since in
an update the Android framework checks that the hash of the



certificates is the same, providing no incentive to reuse public
keys across certificates [21].

Fake apps may impersonate benign apps by using the same
package name as the benign app and distributing the fake app
through alternative distribution vectors. Impersonation allows
the fake app to inherit the positive reputation of the benign
app. Fake apps often correspond to repackaged versions of
the benign app with some possibly malicious modifications
(e.g., [25], [26], [81], [83]). Unless the attacker compromises
the private key of the app being impersonated, the fake app
will be signed with a different private key, and have a different
certificate. To identify such impersonations and distinguish the
original app from the impersonating app, we track apps in our
data using both their package name and signer.

Platform keys. Building an Android OS distribution requires
the publisher to provide four pairs of public/private keys:
platform, test, shared, media. Among these, the platform key is
used to sign the core Android platform packages. APKs signed
with a platform key can use System and SignatureOrSystem
permissions [32]. Each device vendor will have at least one
platform key to build its Android images. Some vendors
may use different platform keys for different devices. The
Android Open Source Project (AOSP) repository contains
default platform, test, share, and media key pairs, and their
corresponding certificates. The default AOSP private keys are
used to sign Android OS debugging builds, and should be
avoided when building production releases since the private
keys are not really private. Signing an APK with an AOSP
key is a well known security issue since any other app also
using the AOSP certificate can update those apps.

B. App Installation

This work analyzes the who-installs-who relationships
among apps. In particular, we examine installations where
a parent app installs a child app. When parent and child
are the same app, we call it an app update, otherwise we
call the parent app an installer and the event an install.
When installing a new app, the Android framework stores the
package name of the installer, which can then be accessed
using method PackageInstaller.getInstallerPackageName1. The
installer package is only updated if the app is re-installed from
a different source. The installer package may be null if the
installer is unknown, e.g., when the APK was pre-installed.

Since Android API level 26 (August 2017), a user-level
app that wants to install another app should declare the
REQUEST INSTALL PACKAGES permission. In addition,
if the installer is not a trusted source (i.e., not a first party
market such as the Play market or the device manufacturer
market), it needs to hold the install from unknown sources
permission2, which has to be explicitly granted by the user to

1Added in API level 5 (October 2009). Replaced in API level 30 (February
2020) by three methods from the InstallSourceInfo class: getInitiatingPacka-
geName, getInstallingPackageName, getOriginatingPackageName [18].

2Prior to API level 26 (August 2017), install from unknown sources was a
system-wide configuration.

the installer [27]. Even if the installer is authorized to install
from unknown sources, the user is prompted to authorize the
install. To perform installs that do not require user consent,
i.e., silent installs, the installer must hold the system-level
INSTALL PACKAGES permission, which is only granted to
apps signed by the platform key and privileged apps explicitly
granted that permission [13].

Uninstallation. Removing a user-level app prompts the user
to accept the uninstallation. Silent uninstallations require the
uninstaller to hold the system-level DELETE PACKAGES
permission and run in Device or Profile Owner modes [17].
Given these requirements, AV engines prompt the user to
uninstall detected unwanted apps. Furthermore, system apps
(i.e., installed under the read-only /system/ directory) cannot
be uninstalled, only disabled, unless the device is rooted.

C. Unwanted Apps, Malware, PUP

Malware is any software that intentionally causes harm to
computer systems, networks, and their users. Some examples
of malware classes are ransomware, banking trojans, and back-
doors. In contrast, potentially unwanted programs (PUP) [50],
also known as grayware [16], [54], potentially unwanted
applications (PUA) [20], [52], or unwanted software [37],
are software that, while not outright malicious (i.e., not mal-
ware) still may negatively impact computer systems, networks,
and their users, e.g., in terms of privacy, performance, or
user experience. PUP includes software that performs abusive
advertising (adware), that does not implement the claimed
functionality (e.g., rogueware), and tools that some users may
want to install, but can also be abused (e.g., rooting tools).
But, the boundary between malware and PUP is blurry and
often differs between security vendors [20], [37], [50], [52],
[54]. Some classes like spyware (i.e., software the leaks user
data) are sometimes considered malware and others PUP.

Regardless of such differences, which are beyond the scope
of this paper and deserve future work, AV engines alert users
about the presence of both malware and PUP in their protected
devices, although PUP treatment may be more lightweight.
For example, mobile AV engines may display more stern and
frequent notifications to ask the user to uninstall malware
compared to PUP notifications, and may even allow the user
to disable PUP notifications.

Currently, the security community lacks a term to jointly
refer to malware and PUP. Calling both categories malware
raises complaints that PUP is not necessarily malicious. On
the other hand, malware is clearly unwanted. In this work, we
use unwanted apps to jointly refer to Android malware and
PUP, and separate both categories when needed, e.g., in our
prevalence estimations.

III. DATASETS

This section details the datasets that lie at the core of our
study. We use two main datasets summarized in Table I. Repu-
tation logs from the security vendor contain information about



Dataset Data Full Subset
Reputation Logs Devices 12.2 M

Countries 243
APKs 34.6 M
Packages 7.9 M
Signers 4.1 M
Unique events 2.3 B
Install events 1.7 B 412.6 M
Installer packages 5.4 K 4.2 K
Child packages 2.8 M 1.6 M

VirusTotal Reports 4.6 M

TABLE I: Summary of datasets used.

# Country Devices
1 United States 20.7%
2 India 17.7%
3 Japan 15.3%
4 Germany 7.1%
5 United Kingdom 5.3%
6 Brazil 3.3%
7 Canada 2.6%
8 Australia 2.5%
9 France 2.3%

10 Netherlands 2.1%
11 Italy 1.9%
12 Spain 1.6%
13 Poland 1.3%
14 Belgium 1.0%
15 Russia 0.9%

TABLE II: Top 15 coun-
tries by devices.

Vendor Devices
Samsung 40.5%
Xiaomi 8.6%
Motorola 7.0%
LYF 4.9%
Huawei 4.6%
Sony 4.6%
LGE 4.3%
Lenovo 4.3%
Sharp 2.6%
Asus 1.9%
Fujitsu 1.8%
HMD Global 1.3%
OnePlus 1.1%
Oppo 1.1%
Google 1.0%

TABLE III: Top 15 device
vendors by devices.

apps installed on 12M Android devices, as well as parent-child
install relationships among them. We query VirusTotal (VT)
to obtain AV labels for unwanted app classification and APK
metadata such as permissions and certificate info.

Reputation logs. These logs capture metadata about the
presence of apps in 12M Android devices. The dataset does
not include the actual apps, but only their metadata. These
logs are collected from real devices in use by customers of
the security vendor. The customers opted-in to sharing their
data and the devices are anonymized to preserve the privacy
of the customers. The dataset covers four months that span
from June 1st, 2019 to September 30th, 2019.

The dataset contains devices in 243 country codes [3].
thus covering nearly all countries in the world, save a few
exceptions like North Korea. The top 15 countries by number
of devices are shown in Table II. These 15 countries cover
89% of the devices, but the distribution is long-tailed. The
dataset is skewed towards North America, Europe, and Japan
where the security vendor has a larger market share. Of the 20
largest countries by population we see that China, Indonesia,
Pakistan, Nigeria, and Bangladesh are underrepresented, but
we still have tens of thousands of devices in China and several
thousands in the rest.

The dataset includes devices from over 3K device vendors.
Table III shows the top 15 vendors by devices in the dataset.

Samsung is the dominant device vendor with over 40% of
the devices, followed by Xiaomi (8.6%) and Motorola (7.0%).
Again, the distribution is long-tailed with only 14 vendors
having more than 1% of the devices.

Each device in the dataset regularly queries a cloud-based
reputation system to obtain the reputation for the APKs
installed in the device. The query includes file metadata such
as APK hash, APK package name, the signer key (i.e., the
SHA256 of the public key in the APK’s certificate), and
optionally the name of the parent package that installed the
APK. The response includes a reputation score, which is one of
the inputs, but not the only one, used by the security vendor’s
AV engine to make a determination about an APK. Since the
reputation score is proprietary, we avoid using it to make our
approach replicable. We only use it to select samples with low
reputation to query to VirusTotal.

The AV client may query the same APK at different times.
To remove duplicated events, for each unique tuple of an
anonymized device identifier, APK’s SHA256 hash, APK’s
package name, APK’s signer key, and APK’s parent package
name (potentially null), we obtain the earliest date when
the tuple was queried to the reputation system. The dataset
comprises of 2.3B such unique events with 34.6M APKs from
7.9M packages using 4.1M certificate chains.

The AV client queries Android’s Package Installer3 to obtain
the name of the parent package for each installed APK. If
the parent package is known, it is included in the query to
the reputation server. However, in some cases parent packages
might be unknown to the Package Installer. Some examples
are apps that come preinstalled on the device and sideloaded
apps installed via the Android Debug Bridge (ADB) and for
which the user did not provide an installer package name.
Of the 2.3B unique events in the dataset, 75% correspond
to installations (i.e., have a parent package different from
the child package), 24% correspond to updates (i.e., same
parent and child package), and 1% have no parent package
information. The 1.7B install events contain 5.4K parent
(installer) packages and 2.8M child packages.

The interplay between the AV engine and the reputation
log collection is as follows. The APK reputation is part of
the decision made by the AV client. APKs are queried to the
reputation server prior to making a determination. Thus, apps
flagged by the AV client will appear in the reputation logs for
the device. Upon detection, if the app is classified as malware,
the AV client displays a large warning and asks for permission
to uninstall it. If classified as PUP, a notification explains the
risks to the user and how to uninstall it.

VirusTotal. We query the hash of APKs in VirusTotal
(VT) [75], an online service that analyzes files and URLs
submitted by users using a large number of security tools.
VT offers a commercial API that given a file hash returns file
metadata and the list of detection labels assigned by a large

3Using the PackageInstaller.getInstallerPackageName method.



number of AV engines used to scan the file. Unfortunately,
given VT’s API restrictions, we could not query all 34.6M
APKs. We queried all parent APKs that performed at least one
installation (i.e., all installers), the 10 most prevalent APKs
for each signer, all the APKs with negative reputation, and
a subset of the APKs with positive reputation. This resulted
in VT reports for 4.6M APKs. We use the AV labels in the
VT reports as an input to our unwanted app identification and
classification. Since we only have VT reports for 13% of all
APKs, our unwanted app prevalence results is a lower bound.
We also use the VT reports to obtain APK metadata such as
certificate information, used to analyze APK ownership, and
permissions declared in the manifest, used to identify installers
that can perform silent installations without user consent.
Having APK metadata for 13% of samples does not affect
our results because we only use the certificate information for
analysis of selected samples and permissions for installers. In
both cases, we have queried the necessary APKs.

Play market. We check if an app found in user devices is
available in Android’s official market by trying to download
its public webpage using the app’s package name. For apps
in the Play market, we obtain metadata such as its category.
We queried all 7.9M package names during February 2020. Of
those, 24% (1.9M) were present at that time in the Play market.
More may have been available in the past, but have since
been removed [76]. The rest may be distributed only through
alternative distribution vectors, or may come pre-installed.

IV. APPROACH

This section first describes data challenges we had to
overcome and then explains how we identified platform keys
and categorized installers.

Obtaining parent information. The reputation logs contain
the package name of the parent APK, but not the parent APK’s
hash or public key. This is problematic because benign apps
could be impersonated by unwanted apps, misleading us into
assigning unwanted installs to benign installers. To avoid this,
for each install event, we scan all reputation queries from that
device during the 4 months, extracting those that queried an
APK whose package name corresponds to the parent in the
install event (i.e., the parent we look for appears as child). If
such reputation queries exist, we sort them by decreasing time
difference from the install event and assign the APK’s hash
and public key from the closest event as the parent .

We apply this procedure on the 1.7B install events in the
reputation logs (Full column in Table I), recovering parent
information for 24% (412.6M) of the install events. This 24%
subset of install events covers 78% (4.2 K) of the installer
packages and 57% of the child packages in the full install
events, as summarized in column Subset in Table I. Recovery
failures are likely due to each APK being assigned a time-
to-live (TTL) indicating when to re-query its reputation. For
APKs positively benign, the TTL may be large enough so
that the install event happens before our study period and the

device never re-queries (or leaves the dataset before). Thus, the
24% install events may be skewed towards unwanted installers,
which may bias VDR absolute numbers. We avoid this bias by
computing the relative VDR and by confirming results do not
significantly change when computed on all 1.7B install events.

We use the Full dataset of 34.6 M APKs installed on 12M
devices to analyze unwanted app encounters in Section V. We
use the Subset of 24% install events to analyze distribution
vectors in Section VI.

Identifying platform keys. To identify platform keys in the
reputation logs we first obtain from the AOSP repository a
list of 65 package names that are part of the Android OS.
Then, we search for keys in the reputation logs that satisfy the
following properties: signs com.android.phone (a core Android
package) and signs at least ten AOSP packages. Third, for
each of those candidate keys we identify the top 10 packages
signed by the key. If at least half of those packages are present
in the list of 65 AOSP packages we keep the key, otherwise
we remove it. Finally, we examine the certificate information.
If the subject DN mentions a specific vendor, and we are
able to find a webpage for the vendor, we keep the key.
Otherwise we remove it. For 10% of the examined keys we
could not identify a vendor due to a generic Subject DN. This
verification is manual, so we restrict it to keys that appear in
more than 1K devices. However, thanks to this verification, we
are confident that the resulting keys are platform keys. Using
this procedure, we identified 201 platform keys belonging to
80 device vendors or OS publishers. The highest number of
platform keys is 57 for Motorola that uses separate keys for
different devices. Those 201 platform keys appear in over 6M
(50%) devices. Thus, when we say a key is a platform key we
are confident about it, but we may miss that some keys (e.g.,
for less prevalent vendors) are indeed platform keys.

Installer categorization. To analyze how apps are distributed
to the devices, we manually classify the installers into 12 cate-
gories that correspond to distribution vectors: the official Play
market, alternative markets, browsers, commercial PPI, backup
and restore, IM, theme stores, file managers, file sharing apps.
bloatware, mobile device management (MDM), and package
installers. Bloatware [51] corresponds to apps signed by a
device vendor or a carrier with unclear functionality, i.e., they
do not belong to any of the other categories. Bloatware typi-
cally comes pre-installed, although it could be installed later as
well. MDM apps enable the administration of corporate mobile
devices, e.g., ensuring corporate apps are installed and the cor-
porate security policy is configured. Package installers are apps
that enable installing APKs. They include implementations
of Android’s Package Installer module (e.g., com.android.
packageinstaller, com.google.android.packageinstaller, com.
samsung.android.packageinstaller) as well third-party APK
installers (e.g., com.apkinstaller.ApkInstaller, com.aefyr.sai).
We also add an Other category that comprises of apps that we
can classify but do not correspond to any of the 12 expected
distribution vectors such as games, video players, and news.



Fig. 1: Unwanted APKs per VT detection threshold.

Fig. 2: Unwanted app prevalence per VT detection threshold.

For installers available in the Play market we leverage their
app description since market categories are too coarse-grained.
However, only 12% of the installers were in the Play market
when we queried them in February 2020. For the rest, we need
to examine sources such as alternative markets, results from
Web searches, and forums. This process is quite challenging
for the long tail of less popular installers. Overall, out of the
4.2K installers, only 665 install at least one unwanted app. We
focus on those and are able to classify 622 (95%). Those 662
include the most prevalent installers so we classify 96.3% of
the 412.6M install events. The largest category is alternative
markets with over one hundred installers. The results of the
categorization are detailed in Section VI-A.

V. UNWANTED APP ENCOUNTERS

This section reports on unwanted app encounters that af-
fected the 12M devices in the full reputation logs. Section V-A
measures the prevalence of unwanted apps on the user devices.
Section V-C describes the most common families in our
dataset, and Section V-B details the top signers behind the
unwanted apps.

Value Unwanted Apps PUP Malware
Devices 2.2 M (18.3%) 1.3 M (11.1%) 1.4 M (11.2%)
APKs 3.0 M (8.6%) 1.8 M (5.1%) 1.2 M (3.4%)

TABLE IV: Unwanted app prevalence at selected t=4.

A. Unwanted App Prevalence

We measure the prevalence of unwanted apps on user
devices, i.e., the fraction of user devices that had an unwanted
app encounter throughout the four months analysis period.
For this, we first identify unwanted apps installed on user
devices. Then, we measure their prevalence across the 12M
user devices. A common practice to identify unwanted apps
is to collect their AV detection labels using VT and consider
any file flagged (i.e., assigned a non-empty label) by at least
a threshold number of AV engines [84]. A higher threshold
reduces false positives due to a few AV engines making an
incorrect determination, but may increase false negatives. As
explained in Section III, we could not query all 34.6M APKs
due to VT API restrictions, but were able to collect VT reports
for 13% (4.6M) of all APKs. Figure 1 shows the number of
unwanted APKs in our dataset depending on the selected VT
≥ t threshold. The number of unwanted APKs decreases as
the threshold increases.

We use the set of unwanted APKs obtained at each threshold
value to compute the device prevalence, i.e., the fraction of
devices where those unwanted APKs were installed. Threshold
selection varies among different works [84]. Thus, we provide
the prevalence at all threshold values in Figure 2. The preva-
lence quickly decreases from t=1 to t=3, and then at around
one percentage point per step increase until t=19. Recent work
has shown that threshold values between two and 14 are good
for stability and for balancing precision and recall [84]. Thus,
the unwanted app prevalence in our dataset ranges between
24.3% (t=2) and 10.0% (t=14).

For the rest of the paper we need to set a threshold value, so
that the set of unwanted APKs is fixed. We select t=4 as our
threshold. This value falls in the range recommended in [84]
and has been used in closely related works (e.g., [45], [47]).
Using this threshold, there are 3.0M unwanted APKs and the
prevalence is 18.3%, as summarized in Table IV. Clearly, this
estimate is very conservative as it considers benign all APKs
that were not queried to VT, or were not found in VT, or
were flagged by less than four AV products. We believe this
is a lower bound for prevalence. Among the devices with at
least one unwanted app encounter at t=4, the median is 2.0
unwanted apps per device (avg=5.0, std=1497.0). Figure 3 in
the Appendix details the distribution.

Table IV also provides the split between malware and PUP
APKs, according to the AVClass malware labeling tool [63]
(see Section V-C). It shows that 60% of the unwanted APKs at
t=4 are considered PUP and 40% malware. However, malware
prevalence (11.2% of all 12M devices) is almost the same
as PUP prevalence (11.1%), indicating the presence of some
high prevalence malware. The devices typically encounter only
malware or PUP, but 490K devices encounter both types.



Comparison with prior work. Shen et al [67] measured the
fraction of devices with an AV detection over 6M Android
devices in April 2015. Those detections belonged to five
categories: trojan, infostealer, backdoor, hacktool, spyware.
Unfortunately, they only provide the fraction of rooted and
non-rooted devices with at least one detection of each category.
Each number is in the range 0.10%–0.71%, but we cannot infer
the total prevalence, making the comparison difficult. Still,
our 10%–24% prevalence range seems significantly higher.
This is likely due to our measurement including also PUP
and covering four months. In addition, the last four years
may have seen an increase in unwanted apps as Android
became the dominant OS in user devices. We also examined
recent threat reports from security vendors [7], [12]. However,
those reports do not measure prevalence on devices, but rather
number of detections and number of new samples discovered,
which cannot be accurately compared. Other works have
measured malware and PUP prevalence on Windows enterprise
hosts [46], [79]. Some works [46] operated on a very different
time period (three years versus four months in our study),
making it difficult to compare prevalence estimates. However,
Yen et al. [79] observed that 15% of hosts in a large enterprise
encountered at least one detection by a specific AV engine
over a four-month period in 2014. Yen et al. call the flagged
samples malware, but the authors confirmed us they included
all detections by the AV client. That prevalence falls in
our 10%-24% range, also computed on a four-month period
although in mid-2019, and is slightly lower than the 18.3%
prevalence with the selected threshold.

Takeaway. Even the very conservative estimate of 18.3%
indicates that Android devices have an unwanted app preva-
lence rate similar and possibly slightly higher than Windows
(enterprise) hosts. Thus, despite many security improvements
provided by the Android ecosystem (e.g., OS app isolation,
OS permission model, official market) the security posture of
Android devices with respect to unwanted apps does not seem
better than that of Windows (enterprise) hosts.

In the remainder of the paper, unwanted apps refers to the
3M APKs at t=4, i.e., flagged by at least 4 AV engines.

B. Unwanted App Signers

We use the certificate’s public key hash to identify the
signer, i.e., the entity that signs an APK. For each of the
4.1M signers in the full reputation logs, we compute the signer
detection ratio (SDR), i.e., the fraction of unwanted APKs it
signs over the total number of APKs it signs. The SDR allows
to identify signers with a significant fraction of unwanted
APKs. The distribution is bimodal, 86% of the signers have
0% SDR and 13% have 100% SDR, with only 1% in between.
We consider a signer unwanted if it has SDR ≥ 4% and signs
at least 100 unwanted APKs. We experimentally chose these
thresholds to minimize flagging signers with a small number
of APKs compromised in a short time period (e.g., using an
abusive SDK in some versions), who later on addressed the

issue. Using these thresholds, we flag 146 (0.003%) of all
signers as unwanted, with only 70 of those being present in
over 1K devices.

Table V shows the top 10 unwanted signers by device
prevalence. For each signer, the table shows ranking; certificate
thumbprint; a name that corresponds to a well known key
or a distinguishing substring of the certificate’s Subject DN;
number of devices where APKs from the signer are installed,
number of distinct package names of APKs signed by the
signer, number of APKs signed by the signer, number of
unwanted APKs among those, and SDR.

Six of the 10 signers correspond to generic certificates that
sign apps from multiple developers. Ranks 1 and 3 correspond
to default AOSP keys. Signing an APK with an AOSP key is
a well known security issue since the private keys are known
and any other apps signed with the same key could perform an
update. There are 1.83M (1.5%) devices with APKs signed by
any of the AOSP keys. Since the Play market does not allow
apps signed with these keys to be uploaded, these apps must
have been installed from alternative sources. APKs signed with
these keys include popular package names such as MineCraft
and WhatsApp, indicating impersonation of benign apps by
unwanted app developers. Using the AOSP keys facilitates
the unwanted app developers to hide among the crowd of
other developers also using them. Prior work has observed
the use of AOSP keys in custom firmware images [80], [82].
Our work differs in reporting their abuse and the fraction of
devices affected by them. At rank 8 there is an Android Debug
certificate, used by Android Studio to sign applications during
debugging. Similar to the AOSP certificates, such certificates
should not be used outside debugging, and applications using
them cannot be uploaded to the Play market.

Generic certificates at ranks 2, 5, and 10 correspond to the
SeattleCloud [62], AppsGeyser [19], and WordPress2Apk [78]
online app generators (OAGs), respectively. OAGs automate
app development, lowering the technical skill required by
app developers, and may offer publishing the produced apps
to the Play market [55]. Our results indicate OAGs publish
unwanted apps from their clients, possibly due to limited
vetting of the apps they (are paid to) publish. Identifying such
generic certificates is fundamental to avoid false positives in
detection systems that leverage signer reputation, as well as
when attributing apps to their owners [64].

The remaining four signers correspond to specific unwanted
app developers. Both 1Mobile and Netdragon do not have
any apps in the Play market. 1Mobile publishes an alter-
native market of the same name. The 1Mobile market app
(me.onemobile.android) has 17,466 APKs, an unusually high
number of versions possibly indicating polymorphism to by-
pass detection. NetDragon sold part of its business to Baidu
in July 2013 [28]. We believe the reason why NetDragon
appears in the list is the 2015 discovery of a backdoor in
Baidu’s MoPlus SDK [66]. Both Outfit7 and iMobLife have
multiple apps in the Play market. Surprisingly, iMobLife uses



TABLE V: Top 10 unwanted app signers by prevalence.

# Certificate Thumbprint Name Devices Packages APKs Unw. APKs SDR
1 61ed377e85d386a8dfee6b864bd85b0bfaa5af81 AOSP Test 1,811,862 480,639 1,444,423 255,393 17.7%
2 9edf7fe12ed2a2472fb07df1e398d1039b9d2f5d O=Qbiki Networks 328,286 75,537 134,488 27,073 20.1%
3 27196e386b875e76adf700e7ea84e4c6eee33dfa AOSP Platform 197,602 22,782 355,841 16,489 4.6%
4 3246bde9e58a7e0cdf779a7b403581ba958361c3 O=Outfit7 Ltd. 156,932 40 1,363 219 16.1%
5 614d271d9102e30169822487fde5de00a352b01d OU=gsr 68,239 21,758 26,060 7,277 27.9%
6 ac640e8372e429f9894a5e1dff1081e223aa94e3 CN=1mobile 66,508 20 17,541 2,045 11.7%
7 bc87c82cd2886a4e07e1f2e1156ddc9b2c467dc8 O=NetDragon 60,171 13,176 31,311 10,806 34.5%
8 5d08264b44e0e53fbccc70b4f016474cc6c5ab5c CN:Android Debug 52,402 1,010 19,066 9,696 50.9%
9 971da0d8842f7539c666f87b74676c4548c26341 CN=iMobLife 46,609 230 1,849 130 7.0%

10 6d2aa36c370d8b6156dba70798a8c6c728265404 CN=Pravesh Agrawal 28,302 6,104 10,648 6,343 59.6%

Family Type Devices APK Pkg. Sig.
necro Mal Dropper 680K 985 288 608
jiagu PUP Tool 577K 248K 82K 49K
hiddad Mal Adware 225K 128K 11K 9K
smsreg PUP SMS 179K 150K 79K 49K
revmob PUP AdLibrary 169K 62K 54K 13K
inmobi PUP AdLibrary 131K 26K 24K 5K
leadbolt PUP AdLibrary 127K 37K 28K 10K
datacollector PUP Infostealer 123K 9K 4K 3K
autoins PUP Infostealer 112K 14K 6K 3K
anydown PUP Adware 109K 24K 18K 5K
mocen Mal Adware 94K 753 248 132
airpush PUP AdLibrary 91K 64K 39K 15K
dnotua PUP Riskware 80K 50K 32K 6K
secapk PUP Tool 72K 25K 14K 6K
domob PUP AdLibrary 70K 18K 10K 3K
appsgeyser PUP AppGen 59K 14K 13K 161
dowgin PUP Adware 58K 32K 25K 9K
dianjin PUP AdLibrary 58K 8K 5K 913
utilcode PUP Tool 50K 3K 785 678
secneo PUP Tool 50K 13K 5K 3K

TABLE VI: Top 20 families by device prevalence.

a large number of Play developer accounts to distribute their
performance optimization and mindfulness apps. The accounts
include iMobLife Inc.; AIO Software Technology CO., Ltd.;
Daily Yoga Culture Technology Co., Ltd; HK SMARTER MOBI
TECHNOLOGY CO.,LIMITED; SM Health Team; and The
Unexplainable Store®.

Takeaway. In addition to APK polymorphism, unwanted app
developers also leverage developer account polymorphism,
which provides isolation between apps in different accounts. In
this way, even if some of the apps are removed by the market,
others could remain available. We observe AOSP keys being
abused to sign unwanted apps and being present in 1.83M
devices. Moreover, we also observe online app generators
being abused to generate and publish unwanted apps.

C. Family Classification

To understand the most prevalent threats affecting Android
devices, we classify the unwanted APKs into families. For
this, we feed the AV labels from the 4.6M VT reports to
the AVClass malware labeling tool [63]. AVClass outputs the
most likely family name for each sample and also classifies
it as malware or PUP based on the presence of PUP-related
keywords in the AV labels (e.g., adware, unwanted). Overall,
AVClass labels 2.4M (76%) of the APKs belonging to 2.9K

families. For the remaining 700K samples with a VT report,
no family was identified as either they were not detected by
any AV engine or their AV labels were generic.

Table VI shows the 20 most prevalent malware and PUP
families identified by AVClass. PUP clearly dominates mal-
ware with 17 versus three families. Most PUP families are
related to abusive advertisement including six advertisement
libraries (inmobi, leadbolt, airpush, domob, dianjin), four ad-
ware families (hiddad, anydown, mocen, dowgin), and one app
generator that monetizes through advertisement (appsgeyser).
The ad libraries are added by other applications and their
behaviour varies from displaying in-app ads like inmobi and
leadbolt, to more aggressive techniques used by dianjin and
airpush such as ads in the system notification bar or shortcut
ads on the home screen or in the application list. Some ad
libraries also collect personal identifiable information (e.g.,
GPS coordinates) and track users using permanent identifiers
(e.g., IMEI), which violates Google Play policies [1]. Among
the PUP families there are also three tools used for obfuscating
mobile apps (jiagu, secapk, secneo). Obfuscation tools are
commonly used by malware, but may be used also by benign
software causing false positives [14].

The most prevalent malware family is necro, a trojan drop-
per that infected over 680K devices. Necro has been observed
embedded in popular applications available in the Play market
such as CamScanner [36]. According to the CamScanner
developers the malware made it into their app through the third
party advertising SDK provided by AdHub [34]. The table
also includes two information-stealing families (datacollector,
autoins). Other notorious malware families outside the top
20 are the triada rootkit (29K devices) [22], [44], the wroba
banking trojan (21K) [56], and agentsmith (16K) that replaces
installed apps such as WhatsApp with modified versions that
show fraudulent ads [39]. We also search for ransomware
and other banking trojans in our dataset. We identify 11
ransomware families affecting in total 31K devices includ-
ing svpeng, congur, and jisut. This very modest prevalence
matches industry reports that show ransomware decreasing in
the wild after 2017 [7], [8]. We also identify 17 banking trojans
affecting in total 30K devices. The most prevalent families
are wroba, hqwar, and asacub. Industry reports mention that
banking trojans samples increase over time, especially after
2018 [7], [12]. Their small prevalence in our dataset can
be potentially explained by banking trojans being heavily



polymorphic and AVs not always being able to assign them
non-generic labels.

Takeaway. The higher PUP sample prevalence in user devices
observed in Section V-A also manifests in the largest families
being PUP. Top PUP families are mostly ad-related and use
popular obfuscation tools for protection. The largest malware
families are information stealers, but we also observe rootkits
and ransomware in tens of thousands of devices.

VI. UNWANTED APP DISTRIBUTION

In this section, we investigate unwanted app installation
vectors, i.e., how unwanted apps ended up on the devices. To
this end, we use the Subset dataset in Table I with 412M install
events, corresponding to the 24% install events for which we
could recover parent information, as explained in Section IV.
We uniquely identify an installer by the pair of its package
name and its signer. That way we can differentiate unwanted
installers that impersonate (i.e., use the package name of) a
benign installer, as well as apps that have multiple signers,
e.g., system apps that are signed by different device vendors.
As explained in Section V-A, we consider unwanted any APK
flagged by at least 4 AV engines. For each installer, we
calculate the installer detection ratio (IDR), i.e., the fraction
of unwanted APKs it installs over the total number of APKs it
installs. We also compute the vector detection ratio (VDR) as
the fraction of unwanted APKs installed using a distribution
vector (e.g., alternative markets, browsers) over all APKs
installed through that vector.

A. Distribution Vectors

To analyze what fraction of installs is delivered through
each distribution vector we first classify the installer apps as
detailed in Section IV. Table VII summarizes the top app
distribution vectors we have identified. For each distribution
vector the left part shows the percentage of install events
(all and unwanted) the distribution vector is responsible for.
The middle part summarizes the installers in the category: all
installers, unwanted installers, installers signed with a platform
key, and package names and signers for the installers. The
right part of the table summarizes the child APKs installed
through the distribution vector: number of packages, signers,
and the vector detection ratio. VDR is the fraction of unwanted
APKs installed using a distribution vector over all APKs
installed via that vector. RVDR is the relative VDR with
respect to the Play market, which is set as 1.0. Overall, as
we explained in Section IV, we were able to classify 14%
of the installers covering 96.3% of the 412M install events.
While the fraction of classified installers is low, we cover the
vast majority of installs, enabling us to accurately compare
various distribution vectors.

The main distribution vector is the Play market, responsible
for 87% of all and 67% of unwanted installs. While the
percentage of unwanted installs is highest for the Play market,
its VDR is only 0.6% and its RVDR the fourth lowest. This

illustrates that installing from the Play market is safer than
installing from most distribution vectors including alternative
markets, browsers, and IM. However, unwanted app developers
have a large incentive to make their apps appear in the
Play market since it provides the apps with higher visibility,
reputation, and trust. This leads to a low fraction, but large
number overall, of unwanted apps being able to bypass Play’s
defenses. The effectiveness of Play defenses against unwanted
apps is illustrated by the lower rate of unwanted installs
compared to all installs, i.e., they manage to remove a fraction
of the unwanted apps. On the other hand, the defenses (if
any) against unwanted apps used by other distribution vectors,
save for commercial PPI, do not seem to be effective. The
second largest distribution vector are the over 100 alternative
markets identified, responsible for 5.7% of all installs and
10.4% of unwanted installs. We detail the top 10 markets in
Table VIII and discuss them below. Prior work has analyzed
the distribution of unwanted apps through markets by crawling
official and alternative markets (e.g., [77], [83]). However,
such crawling is limited to a fixed set of markets and a small
fraction of apps in each market. Also, paid apps are typically
ignored. In addition, some markets may not provide a web-
based app download interface that researchers can easily crawl,
e.g., the Vivo market in [77]. Compared to prior work, we can
observe apps installed by user devices regardless of the type
of app (paid or free) and from which market they come (we
observe over one hundred alternative markets).

The third distribution vector is through backup restoration.
These installs correspond to restoration of previously saved
apps in the cloud, as well as transfer of apps while cloning an
old phone into a new phone. These apps are not an intentional
distribution vector, but surprisingly they are responsible for
nearly 5% of unwanted apps installations. For cloud backups,
the most likely explanation is that the user decided not to
uninstall the unwanted app when prompted by the AV client
and the app was thus saved. This matches with the majority of
unwanted apps installed via this vector being PUP, for which
the AV client generates lighter and less frequent notifications.
In some cases it may also happen that the backup was
taken before installing the AV client. Phone cloning apps
are typically privileged (i.e., signed by the platform key) so
that they can copy all apps in an old phone to the new
phone. Otherwise, they cannot access the /system/ directory
where system apps are installed. Thus, it may happen that
privileged unwanted apps, which cannot be uninstalled by
the AV client, are surviving a phone change by the user
thanks to the high privilege of the phone cloning apps. One
example involves a pre-installed unwanted app infected with
the CoolReaper backdoor [5]. CoolReaper was discovered in
phones manufactured by Coolpad, a Chinese device vendor,
and among its many capabilities, it can perform fake over-
the-air (OTA) updates for installing other unwanted apps. In
conclusion, there seems to be an opportunity for backup and
phone cloning apps to improve defenses against unwanted
apps, e.g., by performing AV scans on the saved apps.



TABLE VII: Summary of app distribution.

Installs Installer Children
Vector All Unw. All Unw. Plat. Pkg. Sig. Pkg. Sig. VDR RVDR
Playstore 87.2% 67.5% 10 3 0 2 9 1.2M 816K 0.6% 1.0
Alt-market 5.7% 10.4% 102 31 15 87 67 128K 77K 3.2% 5.3
Backup 2.0% 4.8% 49 2 24 31 39 528K 355K 0.9% 1.5
Pkginstaller 0.7% 10.5% 79 5 25 11 74 197K 127K 2.4% 4.0
Bloatware 0.4% 6.0% 54 2 28 37 41 2.1K 1.3K 1.2% 2.0
PPI 0.2% 0.1% 21 0 2 20 11 1.5K 1.3K 0.3% 0.5
Fileshare <0.1% <0.1% 13 3 4 13 11 8.8K 7.4K 1.3% 2.1
Themes <0.1% <0.1% 2 0 2 2 2 634 14 0.3% 0.5
Browser <0.1% <0.1% 47 4 3 40 38 4.8K 3.3K 3.8% 6.3
MDM <0.1% <0.1% 7 1 1 7 6 766 489 0.3% 0.5
Filemanager <0.1% <0.1% 58 11 9 32 43 6.6K 4.7K 2.6% 4.3
IM <0.1% <0.1% 13 2 0 10 11 2K 1.2K 2.9% 4.8
Other <0.1% 0.3% 151 68 28 125 98 9.1K 5.3K 3.9% 6.5
Unclassified 3.7% <0.1% 3.5K 2.4K 386 3.3K 814 91K 16K <0.1% 0.1
All 100.0% 100.0% 4.2K 2.5K 79 3.6K 1.0K 1.6M 992K 1.6% 2.6

Installs by package installers rank fourth by fraction of
installs, but second by unwanted installs (10.5%). These
largely correspond to manual installs by the user, who may
be consciously installing unwanted apps that offer desired
functionality. For these installs, the vector through which the
user downloaded the app into the phone is not known.

Bloatware is another surprisingly high distribution vector,
being responsible for 6% of unwanted installs. Bloatware are
pre-installed apps with unclear functionality. As explained in
Section IV we consider in this category apps signed by a
device vendor or a carrier, which do not belong to any of the
other categories, i.e., for which we do not understand why they
are installing apps. The most likely reason behind installs in
this category, as well as the Other and Unclassified categories,
is advertising. In other words, if we do not understand why an
app is installing apps from other signers, then we assume that
publishers of the child apps are paying for the installations. We
discuss such pay-per-install (PPI) agreements in Section VI-B.
In summary, this high number of installs by bloatware likely
indicates aggressive ad-based monetization by device vendors
and carriers of the phones they sell.

The browser category shows that app downloads from the
Web are rare (<0.1% of all installs), but have the highest risk
of being unwanted (3.8% VDR). In particular, the browser
VDR is larger than that of alternative markets. Downloading
apps through the browser is a riskier proposition than down-
loading them from markets, even the alternative ones. This
highlights a need for stronger browser-based defenses against
unwanted app downloads.

Next, we analyze the markets and browsers categories to
understand differences between apps in the same category.

Markets. Table VIII shows the top 10 markets by number of
child signers. Each row corresponds to an installer, i.e., pack-
age name and signer pair. The top row corresponds to the Play
market (com.android.vending). It does not include the previous
package name for the official market (com.google.android.
feedback) nor Play APKs from other signers such as the AOSP

TABLE VIII: Top 10 markets by number of child signers.

Children
Rk Market IDR Sig. Pkg.

1 com.android.vending 0.6% 816K 1.2M
7 com.sec.android.app.samsungapps 1.2% 14K 26K
8 com.mobile.indiapp 1.6% 12K 15K
9 com.amazon.venezia 0.7% 12K 23K

10 com.oppo.market 2.8% 10K 12K
11 com.xiaomi.mipicks 1.1% 10K 12K
12 com.farsitel.bazaar 10.5% 10K 20K
13 ir.mservices.market 4.4% 8K 13K
15 com.vivo.appstore 0.9% 8K 9K
18 com.huawei.appmarket 11.7% 7K 9K

test key. For each market, the table shows the rank by number
of child signers across all categories. We observe significant
differences in IDR for different markets. The highest IDR
of 11.7% is for the Huawei market (com.huawei.appmarket),
followed by the Iranian Bazaar market (com.farsitel.bazaar)
with 10.5%, the Iranian MyKet market (ir.mservices.market)
with 4.4%, the NearMe market from Chinese vendor Oppo
(com.oppo.market) with 2.8%, and the 9Apps Indian market
(com.mobile.indiapp) with 1.6% IDR. On the better side of
the spectrum, there are the Play market and Amazon’s market
with the lowest IDRs of 0.6% and 0.7% respectively. This
indicates that the security vetting process that the Play market
applies to uploaded apps indeed has a positive effect on
user security [2]. Compared to the Play market, the users of
alternative markets have up to 19 times higher probability of
encountering unwanted apps.

Browsers. Table IX is similar for the top 10 browsers. UC
Browser tops the table followed closely by Chrome. These
two browsers rank 42 and 45, respectively, among all installers.
The top seven browsers are available in the Play market, while
the last three correspond to browsers preinstalled in Oppo
phones. Similar to the markets, we can observe significant
differences in IDR between some mobile browsers. Most
browsers have an IDR in the range 3.8%–5.1%, but Opera Mini
has twice that risk (10.5% IDR), even more compared to the



TABLE IX: Top 10 browsers by number of child signers.

Child
Rk Browser Name IDR Sig.
42 com.UCMobile.intl UC 3.8% 1,593
45 com.android.chrome Chrome 3.9% 1,521
80 com.opera.browser Opera 3.6% 536

142 com.uc.browser.en UC Mini 5.0% 225
158 org.mozilla.firefox Firefox 3.6% 193
164 com.opera.mini.native Opera Mini 10.5% 183
166 com.brave.browser Brave 5.1% 175
173 com.coloros.browser Oppo ColorOS 4.0% 157
197 com.android.browser Android (Oppo) 8.8% 133
215 com.nearme.browser Oppo NearMe 6.7% 111

full Opera browser (3.6%). We don’t have a good explanation
for the difference between Opera versions, as prior work
comparing mobile browser security does not flag significant
differences [49].

Privileged installers. An orthogonal classification is whether
installers are system or user level apps. System-level installers
signed by a platform key are responsible for 4.1% of all installs
and 9% of unwanted installs. The high ratio of unwanted
installs is especially worrying because these installers have
access to system level permissions and cannot be uninstalled
by normal users or security tools, only by the superuser or
through ADB. Security tools can only recommend the user to
disable them. Most system-level installers come pre-installed,
but we observe that 35% of their installs are for other system-
level apps. Thus, it is possible for other system-level installers
to be installed later in the device lifetime. Column Plat. in
Table VII shows the number of system-level installers per
category, which is dominated by bloatware and backup (i.e.,
phone cloning) apps. More than half of installers in those two
categories are privileged. This matches common complaints
by users that bloatware is installing apps in their phones and
cannot be uninstalled.

Considering all installs. So far, we have analyzed the
Subset dataset corresponding to the 412M install events for
which we could recover parent information. Table XI in the
Appendix presents the same results in Table VII, but for the
Full dataset of 1.7B install events. Results in Table XI could
misclassify some installs due to impersonation, but avoid any
bias introduced when selecting the Subset dataset. The results
on both datasets are very similar, indicating that no significant
sampling bias was introduced in the Subset dataset.

Takeaway. To summarize, we observe that the Play market
is the main app distribution vector responsible for 87% of
all installs and 67% of unwanted installs. However, its VDR
is only 0.6%, showing that the Play market defenses against
unwanted apps work, but still significant amounts of unwanted
apps are able to bypass them, making it the main distribution
vector for unwanted apps. Among the remaining installs,
alternative markets are the largest, being responsible for 5.7%
of all installs and 10.4% of unwanted installs. Furthermore,
on average they are five times riskier (3.2% VDR) than
the Play market (0.6%). App downloads from the Web are

rare (<0.1% installs), but have a significantly higher risk.
Backup restoration is an unintended unwanted app distribution
vector responsible for 4.8% of unwanted installs. Bloatware is
another surprisingly high distribution vector, responsible for
6% of unwanted installs.

B. Pay-Per-Install

Pay-per-install (PPI) is a software distribution model where
an advertiser pays publishers to advertise a program and have
it installed on user devices. Publishers are paid a commission
for each confirmed install on a new device. The advertiser
can reach direct agreements with publishers, e.g., setting up
an affiliate network, or can leverage PPI services, who act as
middle-men between advertisers and publishers.

Previous work analyzed Windows PPI services, dividing
them into underground and commercial [23], [45], [73]. Un-
derground PPI services mostly distribute malware, do not
advertise themselves publicly, and often use silent installs, i.e.,
the user is unaware of the installation [23]. Commercial PPI
services, instead, are backed by companies and prompt offers
for users to decide about the install [45], [73]. In both types,
publishers are paid for each install of a PPI installer program
that then downloads the currently advertised programs.

As far as we know, Android PPI services have not yet been
analyzed, so we provide a first look at them. Advertising in
Android often uses ad libraries that ad networks ask publishers
to include into their apps. For PPI services, if the publishers
are owners of popular apps, the service may provide them
with a library to include in their apps. On the other hand, if
the publishers are device vendors or carriers, the PPI service
provides them with a stand-alone installer to be pre-installed
in their branded devices. As a starting point, we knew the
package names of three stand-alone installers for two Android
commercial PPI services, IronSource (IS) and DigitalTurbine
(DT), mentioned in prior work [33]. Both commercial PPI
services partner with device vendors and carriers to pre-install
their installer, which can then offer apps to the user. If the user
installs an advertised app, PPI and partner (carrier or vendor)
split the commission paid by the advertiser. In addition, we
had a list of 59 apps identified in prior work [61] that pay
their users a commission if they install other apps. In this
PPI model, there is no publisher and the PPI service directly
interacts with users. While these 59 apps appear in a handful
of devices in the reputation logs, they did not perform any
installs in our dataset. Starting from the known IS and DT PPI
installers, we leveraged the 34.6M APKs in the reputation logs
to identify further installers for those two services. For this, we
examined apps from the same signer and/or similar package
name. This process identified 48 IS and 38 DT installers. The
identified 86 installers were used to produce the PPI results in
Table VII.

The PPI row in Table VII shows that those two commercial
PPI services are responsible for 0.2% of all installs and 0.1%
of unwanted installs with DT being responsible for 644K



installs and IS for 36K. Thus, DT is the larger PPI. Obviously,
this is a very conservative lower bound on commercial PPI
distribution as more Android commercial PPI services likely
exist. However, we have not been able to identify more stand-
alone commercial PPI installers in our dataset. It may happen
that DT and IS dominate the agreements with carriers and
vendors. Thus, other commercial PPI services provide their
publishers with a library to embed into their apps, rather
than a stand-alone installer. Those PPI publishers should
then appear under the Other and Unclassified categories in
Table VII. Thus, we can conservatively estimate that all PPI
activity (commercial and underground) can be responsible
between 0.1% and 4% of all unwanted app installs. Of course,
assuming all uncategorized installers are involved in PPI is a
conservative upper bound as well. But, that upper bound is
already significantly lower than the estimate that Windows PPI
services distributed over a quarter of all PUP [45]. Next, we
detail these two commercial PPIs. Then, in Section VI-C we
examine the unknown installers that may be involved in PPI
distribution.

IronSource. IS is an Israeli advertising company [41]. Its
offering includes the Aura out-of-the-box experience (OOBE)
platform, which they claim is installed in 130M devices [42].
The 48 IS installers include the name of vendor and carrier
partners in the package name (e.g., com.aura.oobe.samsung).
We observe 37 partners: 29 vendors (e.g., alcatel, huawei, htc,
samsung, xiaomi, zte), 7 carriers (e.g., digicel, hutchinson,
telus), and one OS publisher (remix). Of those, 8 vendors
(dewav, huawei, irulu, lge, longcheer, tinno, yulong) and the
OS publisher (remix) sign the IS installer with their platform
keys, which gives it system privilege. The IDR for IS installers
ranges 0%–5.6%, with a mean of 0.3% and a median of
0%. Thus, IS installs very few unwanted apps. In contrast,
their Windows PPI service had a 81% IDR [45]. The most
popular child apps are: Wish shopping, Booking, and Candy
Crush Soda Saga. We also observe TikTok, Netflix, Outlook,
SnapChat, Pinterest, Twitter, Skype, and Spotify. This shows
that some of the most popular apps leverage IronSource to
increase their user base. To conclude, we observe that IS has
significantly cleaned their practices. Their vetting limits abu-
sive advertisers, achieving a IDR lower than other distribution
vectors such as markets and browsers. And, while they use
many certificates and package names, those are clearly labeled
as belonging to IronSource.

Digital Turbine. DT is a public company headquartered in
Austin, Texas. According to their 2019 fiscal year state-
ment [11] it works with 30 carriers and OEM vendors, is
installed in 260M devices, and has delivered one billion app
installs. Their revenue for 2019 totaled $103.6M. Similar to IS,
the 38 installers include the partner name (e.g., com.dti.att).
We observe 21 partners: 9 carriers (e.g., att, cricket, comcast,
uscc), 18 vendors (e.g., blu, lenovo, samsung, zte), and two
others (sliide, smartapp). The IDR for the installers ranges
0.0%–9.7% with a mean of 1.1% and a median of 0%. This is

worse than IS, but still low compared with other sources. The
most downloaded apps are popular: Facebook, Slotomania, and
Empire: Four Kingdoms. We also observe Instagram, Yelp,
and YahooMail. The advertised apps are mostly disjoint from
those IS advertises, but we found a few advertised through
both PPIs, e.g., Wish Shopping and Candy Crush Saga. While
the advertised apps are predominantly benign, com.dti.gionee
(9.7% IDR) is a clear exception, distributing apps from two
advertisers in Table V (VideoBuddy and MrOwl). Gionee
mostly sells its devices in India, thus both apps likely target
Indian users. We also found user reports that the installer name
displayed in the device was changed from DT Ignite to Mobile
Services Manager, with users complaining that this was done
for obfuscation [4]. Thus, while their overall IDR is not bad,
DT can still improve its transparency and advertiser vetting.

Takeaway. We provide a very conservative lower bound on
commercial PPI service distribution of 0.2% of all installs
and 0.1% of unwanted installs and observe that such services
seem to have improved their filtering of abusive advertisers
compared to their Windows counterparts. We also estimate
that all PPI activity may be responsible for up to 4% of the
unwanted app installs. That upper bound is still significantly
lower than the estimate of Windows commercial PPI services
being responsible for over a quarter of PUP installs [45].

C. Top Unknown Installers

In this Section we take a look at the installers for which
it is not clear based on their public description why they
would need to install other apps, other than for pay-per-install
advertising. These correspond to three rows in Table VII, the
installers that our classification labels as Bloatware and Other,
as well as those left Unclassified. To make sure we analyze
relevant installers, we focus on installers that install apps
from at least 10 signers. Table X shows the top 10 installers
satisfying those constraints, sorted by decreasing IDR. The
top two installers are Unclassified, five are Bloatware (ranks
5–9), and three are Other, two video downloaders (Snaptube,
Videoder) and one optimizer (Baidu Mobile Guard).

The top unknown installer is cn.feelcool.superfiles. It is
clearly an unwanted installer since all its APKs known to VT
are considered unwanted (i.e., VT ≥ 4); its signing key has a
very high SDR (82.4%), i.e., its signer mostly signs unwanted
apps; and it has a very high IDR (71.4%), i.e., it mostly installs
unwanted apps. Furthermore, none of the 12 apps it installs
are available in the Play market. AVClass labels its samples as
adware from the hiddenads family. We believe we are the first
to cast light on this unwanted installer. The rest of the installers
are not unwanted (e.g., low SDR), but install a significant
fraction of unwanted apps.

None of these installers are available in the Play market,
so we examine how they arrived in the phone. We have no
installation events for the top two Unclassified installers, Thus,
they might come pre-installed, similar to the five bloatware



TABLE X: Candidate installers related to PPI identified. For each installer, it shows whether available in Play (GP), whether
signed by a platform key (Plt.), whether some APKs have the system-level INSTALL PACKAGES permission (IP), SDR, IDR,
number of children packages and signers, and the percentage of child packages in Play (GPR).

Children
# Package Cert Thumbprint GP Plt. IP SDR IDR Pkg Sig GPR
1 cn.feelcool.superfiles b0d2737aa9070973f8b66755f9cd32d98fd0bd83 7 7 X 82.4% 71.4% 12 11 0.0%
2 com.google.android.play.ms72 82f0e9ff5dd5ad52cf74eb5e7189a3278ca76358 7 X 7 0.6% 50.0% 12 12 41.7%
3 com.snaptube.premium be135353437d704f3a37e2b413d040a5ddff4f19 7 7 7 0.1% 42.6% 28 30 14.3%
4 cn.opda.a.phonoalbumshoushou 8f8360b284a2dfd65dffe47acbd64ffff674cfee 7 7 X 3.3% 18.5% 23 23 17.4%
5 launcher3.android.com.hivelauncher 28af6c75244a9cbd3f8aee304c425cdc1c66bc6c 7 X X 0.0% 10.5% 30 28 60.0%
6 com.vivo.game 283d60ddcd20c56ea1719ce90527f1235ae80efa 7 X X 0.4% 10.5% 18 17 0.0%
7 com.zte.aliveupdate 1ef46c04828e8994daab682bfe3211cae775a2b4 7 7 X 1.5% 10.4% 31 23 29.0%
8 com.miui.system 7b6dc7079c34739ce81159719fb5eb61d2a03225 7 X 7 0.3% 9.1% 11 11 63.6%
9 com.transsion.appupdate 37f3837469049e6022f3248b84372badb77d1a1e 7 X 7 0.5% 8.9% 25 24 84.0%

10 com.rahul.videoderbeta 9816a59361ccd7c33542205da5c7178f32f38042 7 7 7 1.1% 8.3% 21 21 9.5%

apps. The apps in the Other category are installed from
multiple alternative markets where they are quite popular.

Now we investigate whether those installs could have hap-
pened without user consent. While we do not know if there
was user consent, we can determine that in some cases there
had to be, as the installer lacks the necessary permissions for
silent installations. Column IP in the table captures whether at
least one APK from the installer have a VT report stating that
it requests the Android system-level INSTALL PACKAGES
permission in their manifest. This permission is a pre-requisite
for performing installs without user consent. The results shows
that half of the installers have that permission and thus could
perform silent installs if they wanted. Note that having the
ability to perform silent installs does not mean they use it. We
further discuss this issue in Section VIII.

Takeaway. The top unknown unwanted installers often dis-
tribute apps not available in the Play market. Among these,
cn.feelcool.superfiles clearly stands out distributing almost
exclusively unwanted apps not in the Play market. Seven
of these installers likely come pre-installed indicating PPI
agreements with vendors and carriers. Of the pre-installed
installers, five can perform installations without user consent.
However, we do not know whether they use that capability.

VII. RELATED WORK

Few studies have analyzed malware prevalence and dis-
tribution on real Android devices [33], [61], [67]. Recently,
Gamba et al. [33] analyzed pre-installed apps in 2.7K An-
droid devices. They discover that a significant fraction of
pre-installed software exhibits potentially unwanted behavior
like personal data collection and user tracking. Our work
considers pre-installed bloatware as one distribution vector
and compares it with other vectors. Furthermore, our device
dataset is three orders of magnitude larger. Roundy et al. [61]
propose an approach for detecting stalking apps. They evaluate
the detection on 50M Android devices, during the period of
2017–2019, discovering 855 stalking apps in 172K devices.
Our analysis, in comparison, uses a smaller device dataset for
a fourth-month period. However, we analyze a large variety
of threats against users.

Several studies have quantified malware in Google Play
Store [24], [74] and third-party markets [53], [57], [77].
In comparison, our work measures malware distribution via
multiple channels like the Play market store, alternative mar-
kets, browsers, IM, and PPI services. Prior work has an-
alyzed Windows malware distribution through underground
pay-per-install services [23], drive-by downloads [38], [58],
free streaming services [59], and download portals [35], [60].
Results from these studies do not necessarily extrapolate on
Android due to inherent platform differences.

Prior academic work identifies emerging trends in the An-
droid malware ecosystem [31], [48], [70], [71], [82]. Suarez-
Tangil et al. [71] conducts a behavioral analysis of 1.2M An-
droid malware samples collected from malware feeds, over a
period of eight years (from 2010-2017). We measure malware
families prevalence on real devices while prior work uses
malware feeds that may be biased towards highly polymorphic
families. Yearly industrial threat reports analyze new threats
in the Android malware ecosystem [7], [9], [10], [12]. A
comparison is difficult since they measure prevalence by
number of detections and not by number of devices.

Other works have analyzed mobile advertising libraries
including information leaks [29], [68], [69] and defenses
against ad fraud [30], [65]. In our work, we observe a large
prevalence of Ad libraries among AV detections.

VIII. LIMITATIONS

In this section, we discuss limitations of our work and
possible avenues for improvement.

Selection bias. Our dataset presents some selection bias worth
revisiting. First, the reputation logs only include devices with
an AV installed. Devices without an AV may have a different
prevalence of unwanted apps, which we hypothesize may
be somewhat larger. For example, the AV client may block,
or alert the user about, some unwanted installers, reducing
the number of unwanted apps they would otherwise install.
Thus, our prevalence estimates may be conservative when
considering all mobile devices. Second, the geographic distri-
bution is skewed towards countries where the security vendor
has a larger market share. We observe some large countries



like China, Indonesia, Pakistan, Bangladesh, and Nigeria may
be underrepresented, but we still have tens of thousands of
devices in China and several thousands in the others. Third,
to avoid assigning unwanted installs to benign installers we
focus our distribution vector analysis on the 412M (24%)
install events for which we can recover the parent’s signer.
This selection could be biased towards unwanted installers
since they have a shorter TTL that helps in the recovery. This
could bias VDR absolute numbers. To avoid this selection
bias, we also present relative VDR values. In addition, we
repeat the distribution vector analysis using the Full dataset
of 1.7B install events (Table XI in the Appendix). Using the
Full dataset some unwanted installs could be wrongly assigned
to benign installers, but selection bias should be removed.
Both sets of results are very similar, indicating that the Subset
dataset has no significant sampling bias.

Pre-installed apps. Previous works have considered pre-
installed apps to be the ones installed under the /system/
directory in an Android device [33]. Unfortunately, our dataset
does not include the APK’s installation path. In this work,
we use two proxies to analyze pre-installed apps. First, apps
signed by the device’s platform key are very likely pre-
installed. Second, we classify as bloatware those apps signed
by a carrier or device vendor for which we cannot identify their
goal, but observe user reports labeling them as bloatware. We
believe such bloatware is very likely to have been pre-installed.
Still, in both cases we cannot fully guarantee the apps were
pre-installed, so we are cautious and only say they may be.

User consent. The reputation logs do not directly capture if
an install had user consent. To understand which installers
may perform installs without user consent, we have examined
apps that request the INSTALL PACKAGES permission, a
prerequisite for silent installs. Unfortunately, a request for
this permission does not necessarily mean that the app is
performing silent installs. One caveat is that the app may have
the permission, but may not use it, although that could change
at any app update. Another caveat is that the permission
may not be granted, e.g., for user-level apps. Still, requesting
the permission may indicate an interest in performing silent
installs (e.g., in rooted devices).

Play presence. We only checked the presence of apps in the
Play market once during February 2020. Some apps may have
been available in the past, but had since been removed when
we queried them, making our 24% estimate a lower bound.
Prior work has shown that nearly half of all apps are removed
from Play during a two year period and that privacy violations
are an important reason for those removals [76]. Thus, our
lower bound may be conservative, especially for unwanted
apps, which may be more likely to be removed. Another caveat
is that we only query the Play market by package name and do
not check if the certificate of the app in the market matches the
one in our dataset. Thus, we may say an app was in the market
even if there is a certificate mismatch. Our methodology of a
single query for each app at a fixed point in time, and using

solely the package name, is the same used to estimate that only
9% of pre-installed apps are present in the Play market [33].
Since 87% of all installs come from Play, it makes sense that
our prevalence is a larger 24% as the ratio is expected to
increase over the device lifetime.

Malware vs PUP. Our classification using AVClass shows
that 60% of unwanted APKs are PUP and 40% malware,
although the prevalence of both classes is almost identical.
PUP prevalence could in reality be larger as AVClass by
default considers a sample is malware, i.e., a sample is PUP
only if enough grayware related keywords are found in its
labels. Thus, it could underestimate PUP samples. Overall, our
results highlight the importance of PUP in Android. However,
as we discuss in Section II-C, more research is needed into
how to cleanly delineate the boundary between PUP and
malware, especially on Android.

Publisher clustering. A publisher could use multiple app
signing keys and certificates. We did not cluster certificates
from the same publisher because we only had app meta-
data available. Prior approaches have leveraged the Subject
DN [47], which in Android can be spoofed. Publishers using
certificate polymorphism will be identified as multiple publish-
ers, possibly resulting in a lower DR. Developing a technique
to cluster signers is an interesting avenue for future work.

IX. CONCLUSION

This work performs an analysis on unwanted apps distri-
bution vectors on Android devices, including the official and
alternative markets, as well as secondary vectors such as Web
downloads, pay-per-install (PPI) services, bloatware, backup
restoration, and even instant messaging (IM) tools. We identify
that between 10% and 24% of users devices encounter at least
one unwanted app. We reveal that the Play market is indeed
the main app distribution vector of both benign and unwanted
apps, while, it has the best defenses against unwanted apps.
Alternative markets distribute fewer apps but have higher
probability to be unwanted. Bloatware is another surprisingly
high distribution vector. Web downloads are rare and much
more risky even compared to alternative markets. Surprisingly,
unwanted apps may survive users’ phone replacement due to
the usage of automated backup tools. Finally, we observe that
app distribution via commercial PPI services on Android is
significantly lower compared to Windows.

ACKNOWLEDGMENTS

This research was supported by the Regional Government
of Madrid through grant BLOQUES-CM P2018/TCS-4339
and by the Spanish Government through the SCUM grant
RTI2018-102043-B-I00. This research received funding from
the European Union’s Horizon 2020 Research and Innovation
Programme under Grant Agreement No. 786669. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors or originators, and do
not necessarily reflect the views of the sponsors.



REFERENCES

[1] Google Play Advertising ID. https://support.google.com/googleplay/
android-developer/answer/6048248?hl=en.

[2] Google Play Protect. https://www.android.com/play-protect/.
[3] Iso 3166-1 alpha-2. https://en.wikipedia.org/wiki/ISO 3166-1 alpha-2.
[4] PSA: disable Mobile Services Manager in System Apps.

https://forum.xda-developers.com/galaxy-s9-plus/how-to/psa-disable-
mobile-services-manager-apps-t3764366.

[5] Coolreaper: The coolpad backdoor, 2014. https://www.
paloaltonetworks.com/apps/pan/public/downloadResource?pagePath=
/content/pan/en US/resources/research/cool-reaper.

[6] The Judy Malware: Possibly the largest malware campaign found on
Google Play, May 2017. https://blog.checkpoint.com/2017/05/25/judy-
malware-possibly-largest-malware-campaign-found-google-play/.

[7] 2018 mobile threat landscape, 2018. https://www.trendmicro.com/vinfo/
in/security/research-and-analysis/threat-reports/roundup/2018-mobile-
threat-landscape.

[8] Android ransomware: From android defender to doublelocker,
2018. https://www.welivesecurity.com/wp-content/uploads/2018/02/
Android Ransomware From Android Defender to Doublelocker.pdf.

[9] 2019 crowdstrike mobile threat landscape report, 2019.
https://www.crowdstrike.com/blog/mobile-threat-report-2019-trends-
and-recommendations/.

[10] Android security and privacy 2018 year in review, 2019.
https://source.android.com/security/reports/Google Android Security
2018 Report Final.pdf.

[11] Digital turbine reports fourth quarter and fiscal full year
2019 results, June 2019. https://content.equisolve.net/
35bb1d6ea2a3024c2d067486da749df4/mandalaydigital/news/2019-
06-03 Digital Turbine Reports Fourth Quarter and Fiscal 577.pdf.

[12] Mcafee mobile threat report, 2019. https://www.mcafee.com/enterprise/
en-us/assets/reports/rp-mobile-threat-report-2019.pdf.

[13] Privileged permission whitelisting, 2020. https://source.android.com/
devices/tech/config/perms-whitelist.

[14] H. Aghakhani, F. Gritti, F. Mecca, M. Lindorfer, S. Ortolani,
D. Balzarotti, G. Vigna, and C. Kruegel. When Malware is Packin’Heat;
Limits of Machine Learning Classifiers Based on Static Analysis Fea-
tures. In Network and Distributed Systems Security Symposium, 2020.

[15] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. AndroZoo:
Collecting Millions of Android Apps for the Research Community. In
International Conference on Mining Software Repositories, 2016.

[16] B. Andow, A. Nadkarni, B. Bassett, W. Enck, and T. Xie. A Study of
Grayware on Google Play. In IEEE Security and Privacy Workshops,
2016.

[17] Android. Provision devices. https://developers.google.com/android/
work/play/emm-api/prov-devices.

[18] Android. Package installer, 2020. https://developer.android.com/
reference/android/content/pm/PackageInstaller.

[19] Appsgeyser. https://appsgeyser.com/.
[20] Avira. Potentially unwanted applications. https://www.avira.com/en/

potentially-unwanted-applications.
[21] D. Barrera, D. McCarney, J. Clark, and P. C. Van Oorschot. Baton:

Certificate Agility for Android’s Decentralized Signing Infrastructure.
In ACM Conference on Security and Privacy in Wireless & Mobile
Networks, 2014.

[22] N. Buchka and M. Kuzin. Attack on zygote: a new twist in the evolution
of mobile threats, March 2016. https://securelist.com/attack-on-zygote-
a-new-twist-in-the-evolution-of-mobile-threats/74032/.

[23] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measuring Pay-
per-Install: The Commoditization of Malware Distribution. In USENIX
Security Symposium, 2011.

[24] B. Carbunar and R. Potharaju. A longitudinal study of the google app
market. In IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, 2015.

[25] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, and
P. Liu. Finding unknown malice in 10 seconds: Mass vetting for new
threats at the google-play scale. In USENIX Security Symposium, 2015.

[26] J. Crussell, C. Gibler, and H. Chen. Attack of the clones: Detecting
cloned applications on android markets. In European Symposium on
Research in Computer Security, 2012.

[27] E. Cunningham. Making it safer to get apps on android o, Au-
gust 2017. https://android-developers.googleblog.com/2017/08/making-
it-safer-to-get-apps-on-android-o.html.

[28] K.-M. Cutler. Baidu Agrees To Buy Chinese Android
App Distributor 91 Wireless For $1.9B, July 2013. https:
//techcrunch.com/2013/07/15/baidu-agrees-to-buy-chinese-android-
app-distributor-91-wireless-for-1-9b/.

[29] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C. A. Gunter. Free
for all! assessing user data exposure to advertising libraries on android.
In Network and Distributed Systems Security Symposium, 2016.

[30] F. Dong, H. Wang, L. Li, Y. Guo, T. F. Bissyandé, T. Liu, G. Xu, and
J. Klein. Frauddroid: Automated ad fraud detection for android apps.
In ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2018.

[31] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A survey of
mobile malware in the wild. In ACM Workshop on Security and Privacy
in Smartphones and Mobile Devices, 2011.

[32] A. P. Felt, K. Greenwood, and D. Wagner. The Effectiveness of
Application Permissions. In USENIX Conference on Web Application
Development, 2011.

[33] J. Gamba, M. Rashed, A. Razaghpanah, J. Tapiador, and N. Vallina-
Rodriguez. An analysis of pre-installed android software. In IEEE
Symposium on Security and Privacy, 2020.

[34] S. Gatlan. Trojan Dropper Malware Found in Android App With 100M
Downloads, August 2019. https://www.bleepingcomputer.com/news/
security/trojan-dropper-malware-found-in-android-app-with-100m-
downloads/.

[35] A. Geniola, M. Antikainen, and T. Aura. A Large-Scale Analysis of
Download Portals and Freeware Installers. In Nordic Conference on
Secure IT Systems, 2017.

[36] I. Golovin and A. Kivva. An advertising dropper in Google Play, August
2019. https://securelist.com/dropper-in-google-play/92496/.

[37] Google. Unwanted software policy. https://www.google.com/about/
unwanted-software-policy.html.

[38] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich,
K. Levchenko, P. Mavrommatis, D. McCoy, A. Nappa, A. Pitsillidis,
et al. Manufacturing compromise: the emergence of exploit-as-a-service.
In ACM Conference on Computer and Communications Security, 2012.

[39] A. Hazum, F. He, I. Marom, B. Melnykov, and A. Polkovnichenko.
Agent Smith: A New Species of Mobile Malware, July 2019.
https://research.checkpoint.com/2019/agent-smith-a-new-species-of-
mobile-malware/.

[40] A. Holst. Mobile operating systems’ market share worldwide
from January 2012 to December 2019, January 2020.
https://www.statista.com/statistics/272698/global-market-share-held-
by-mobile-operating-systems-since-2009/.

[41] IronSource. https://www.ironsrc.com/.
[42] IronSource Aura. https://company.ironsrc.com/enterprise-solutions/.
[43] T. Kerns. There are now more than 2.5 billion active Android devices,

May 2019. https://www.androidpolice.com/2019/05/07/there-are-now-
more-than-2-5-billion-active-android-devices/.

[44] A. Kivva. Everyone sees not what they want to see, June 2016. https:
//security.googleblog.com/2019/06/pha-family-highlights-triada.html.

[45] P. Kotzias, L. Bilge, and J. Caballero. Measuring PUP Prevalence and
PUP Distribution through Pay-Per-Install Services. In USENIX Security
Symposium, 2016.

[46] P. Kotzias, L. Bilge, P.-A. Vervier, and J. Caballero. Mind your
Own Business: A Longitudinal Study of Threats and Vulnerabilities in
Enterprises. In Network and Distributed Systems Security Symposium,
2019.

[47] P. Kotzias, S. Matic, R. Rivera, and J. Caballero. Certified PUP: Abuse
in Authenticode Code Signing. In ACM Conference on Computer and
Communication Security, 2015.

[48] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. Van Der Veen, and C. Platzer. Andrubis–1,000,000 apps later: A
view on current android malware behaviors. In International Workshop
on Building Analysis Datasets and Gathering Experience Returns for
Security, 2014.

[49] M. Luo, P. Laperdrix, N. Honarmand, and N. Nikiforakis. Time does not
heal all wounds: A longitudinal analysis of security-mechanism support
in mobile browsers. In NDSS, 2019.

[50] MalwareBytes. How to avoid potentially unwanted programs, Febru-
ary 2016. https://blog.malwarebytes.com/101/2016/02/how-to-avoid-
potentially-unwanted-programs/.

[51] P. McDaniel. Bloatware comes to the smartphone. IEEE Security &
Privacy, 10(4):85–87, 2012.



[52] Microsoft. How microsoft identifies malware and potentially unwanted
applications, March 2020. https://docs.microsoft.com/en-us/windows/
security/threat-protection/intelligence/criteria.

[53] Y. Y. Ng, H. Zhou, Z. Ji, H. Luo, and Y. Dong. Which android app
store can be trusted in china? In IEEE Annual Computer Software and
Applications Conference, 2014.

[54] Norton. What is grayware?, August 2015. https://uk.norton.com/norton-
blog/2015/08/what is grayware.html.

[55] M. Oltrogge, E. Derr, C. Stransky, Y. Acar, S. Fahl, C. Rossow,
G. Pellegrino, S. Bugiel, and M. Backes. The Rise of the Citizen
Developer: Assessing the Security Impact of Online App Generators.
In IEEE Symposium on Security and Privacy, 2018.

[56] A. Orozco. Trojan looks to “Wrob” Android users, October
2013. https://blog.malwarebytes.com/cybercrime/2013/10/trojan-looks-
to-wrob-android-users/.

[57] T. Petsas, A. Papadogiannakis, M. Polychronakis, E. P. Markatos, and
T. Karagiannis. Measurement, modeling, and analysis of the mobile app
ecosystem. ACM Transactions on Modeling and Performance Evaluation
of Computing Systems (TOMPECS), 2(2):1–33, 2017.

[58] N. Provos, P. Mavrommatis, M. Rajab, and F. Monrose. All your iframes
point to us. 2008.

[59] M. Z. Rafique, T. Van Goethem, W. Joosen, C. Huygens, and N. Niki-
forakis. It’s free for a reason: Exploring the ecosystem of free
live streaming services. In Network and Distributed System Security
Symposium, 2016.

[60] R. Rivera, P. Kotzias, A. Sudhodanan, and J. Caballero. Costly freeware:
a systematic analysis of abuse in download portals. IET Information
Security, 13(1):27–35, 2019.

[61] K. A. Roundy, P. B. Mendelberg, N. Dell, D. McCoy, D. Nissani,
T. Ristenpart, and A. Tamersoy. The many kinds of creepware used
for interpersonal attacks. In IEEE Symposium on Security and Privacy,
2020.

[62] Seattlecloud. https://seattleclouds.com/.
[63] M. Sebastian, R. Rivera, P. Kotzias, and J. Caballero. Avclass: A tool

for massive malware labeling. In Research in Attacks, Intrusions, and
Defenses, 2016.

[64] S. Sebastián and J. Caballero. Towards Attribution in Mobile Markets:
Identifying Developer Account Polymorphism. In ACM Conference on
Computer and Communication Security, 2020.

[65] S. Shekhar, M. Dietz, and D. S. Wallach. Adsplit: Separating smartphone
advertising from applications. In USENIX Security Symposium, 2012.

[66] S. Shen. Setting the Record Straight on Moplus SDK and the Wormhole
Vulnerability, November 2015. https://blog.trendmicro.com/trendlabs-
security-intelligence/setting-the-record-straight-on-moplus-sdk-and-
the-wormhole-vulnerability/.

[67] Y. Shen, N. Evans, and A. Benameur. Insights into rooted and non-
rooted android mobile devices with behavior analytics. In Annual ACM
Symposium on Applied Computing, 2016.

[68] S. Son, D. Kim, and V. Shmatikov. What mobile ads know about mobile
users. In Network and Distributed Systems Security, 2016.

[69] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen. Investigating
user privacy in android ad libraries. In Workshop on Mobile Security
Technologies, volume 10, 2012.

[70] G. Suarez-Tangil and G. Stringhini. Eight years of rider measurement
in the android malware ecosystem: Evolution and lessons learned, 2018.

[71] C. Tang, S. Chen, L. Fan, L. Xu, Y. Liu, Z. Tang, and L. Dou. A
large-scale empirical study on industrial fake apps. In IEEE/ACM In-
ternational Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP), 2019.

[72] V. F. Taylor and I. Martinovic. To Update or not to Update: Insights from
a Two-Year Study of Android App Evolution. In ACM Asia Conference
on Computer and Communications Security, 2017.

[73] K. Thomas, J. A. E. Crespo, R. Rastil, J.-M. Picodi, L. Ballard, M. A.
Rajab, N. Provos, E. Bursztein, and D. Mccoy. Investigating Commercial
Pay-Per-Install and the Distribution of Unwanted Software. In USENIX
Security Symposium, 2016.

[74] N. Viennot, E. Garcia, and J. Nieh. A measurement study of google
play. In ACM International Conference on Measurement and Modeling
of Computer Systems, 2014.

[75] VirusTotal. http://www.virustotal.com/.
[76] H. Wang, H. Li, L. Li, Y. Guo, and G. Xu. Why are Android Apps

Removed from Google Play? A Large-Scale Empirical Study. In
IEEE/ACM International Conference on Mining Software Repositories,
2018.

Fig. 3: Unwanted APKs per device, for devices with at least
one encounter. The distribution is cut at x=100.

[77] H. Wang, Z. Liu, J. Liang, N. Vallina-Rodriguez, Y. Guo, L. Li,
J. Tapiador, J. Cao, and G. Xu. Beyond google play: A large-
scale comparative study of chinese android app markets. In Internet
Measurement Conference, 2018.

[78] Wordpress2apk. https://wp2apk.com/index.php.
[79] T.-F. Yen, V. Heorhiadi, A. Oprea, M. K. Reiter, and A. Juels. An

Epidemiological Study of Malware Encounters in a Large Enterprise.
In ACM Conference on Computer and Communications Security, 2014.

[80] M. Zheng, M. Sun, and J. C. Lui. Droidray: a security evaluation system
for customized android firmwares. In ACM Symposium on Information,
Computer and Communications Security, 2014.

[81] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting repackaged
smartphone applications in third-party android marketplaces. In ACM
Conference on Data and Application Security and Privacy, 2012.

[82] Y. Zhou and X. Jiang. Dissecting android malware: Characterization
and evolution. In IEEE Symposium on Security and Privacy, 2012.

[83] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of
my market: detecting malicious apps in official and alternative android
markets. In Network and Distributed Systems Security Symposium, 2012.

[84] S. Zhu, J. Shi, L. Yang, B. Qin, Z. Zhang, L. Song, and G. Wang.
Measuring and Modeling the Label Dynamics of Online Anti-Malware
Engines. In USENIX Security Symposium, 2020.

APPENDIX

Figure 3 shows the distribution of unwanted APKs per
device, for devices with at least one encounter. The median is
2.0, the average 5.0, and the standard deviation 1497.0. The
y-axis is logarithmic and the x-axis s cut at x=100.

Table XI shows the summary of app distribution for all 1.7B
installation events for which we could identify an installation
vector, independent of the availability of parent information
(i.e., installer hash and installer signer). The changes in the
VDR column, compared to Table VII, shows minimal changes.
The largest change is in the VDR value of the alternative
markets that increases by 0.7% and the unclassified apps vector
by 0.7%. The rest are increased at most by 0.3%.



TABLE XI: Summary of app distribution including installation events without parent signer information.

Installs Installer Children
Vector All Unw. Pkg. Pkg. Sig. VDR RVDR
Playstore 92.1% 75.9% 2 2.3M 1.5M 0.6% 1.0
Alt-market 2.7% 8.0% 88 208K 125K 3.9% 6.5
Backup 0.6% 1.2% 31 595K 397K 0.9% 1.5
Pkginstaller 1.0% 11.6% 11 527K 332K 2.1% 3.5
Bloatware 0.3% 1.8% 38 3K 1.7K 1.3% 2.1
PPI 0.3% 0.2% 20 2K 1.7K 0.3% 0.5
Fileshare <0.1% <0.1% 13 10K 8.7K 1.2% 2.0
Themes <0.1% <0.1% 2 1.3K 16 0.1% 0.1
Browser <0.1% 0.1% 40 9.8K 6.9K 3.6% 6.0
MDM <0.1% <0.1% 7 789 506 0.3% 0.5
Filemanager <0.1% <0.1% 32 19K 14K 2.3% 3.8
IM <0.1% <0.1% 10 2K 1.2K 2.8% 4.6
Other <0.1% 0.2% 127 16K 10.7K 3.5% 5.8
Unclassified 3.0% 0.9% 79K 283K 109.5K 0.8% 1.3
All 100.0% 100.0% 79K 2.8M 1.8M 1.7% 2.8


