
The Many Kinds of Creepware Used for
Interpersonal Attacks

Kevin A. Roundy∗, Paula Bermaimon Mendelberg†, Nicola Dell†, Damon McCoy‡, Daniel Nissani†,
Thomas Ristenpart†, Acar Tamersoy∗

∗NortonLifeLock Research Group †Cornell Tech ‡New York University

Abstract—Technology increasingly facilitates interpersonal at-
tacks such as stalking, abuse, and other forms of harassment.
While prior studies have examined the ecosystem of software
designed for stalking, there exists an unstudied, larger landscape
of apps—what we call creepware—used for interpersonal attacks.
In this paper, we initiate a study of creepware using access to
a dataset detailing the mobile apps installed on over 50 million
Android devices. We develop a new algorithm, CreepRank, that
uses the principle of guilt by association to help surface previously
unknown examples of creepware, which we then characterize
through a combination of quantitative and qualitative methods.
We discovered apps used for harassment, impersonation, fraud,
information theft, concealment, and even apps that purport to
defend victims against such threats. As a result of our work,
the Google Play Store has already removed hundreds of apps
for policy violations. More broadly, our findings and techniques
improve understanding of the creepware ecosystem, and will
inform future efforts that aim to mitigate interpersonal attacks.

I. INTRODUCTION

Technology is increasingly used as a vector for interper-
sonal attacks. One prominent example is in intimate partner
violence (IPV), where victims report abusers utilizing apps for
a range of harms, including text message “bombing” (sending
hundreds or thousands of messages), spoofing phone numbers
to hide the source of harassment, creating fake suggestive
images to hurt a victim’s reputation, and installing spyware
apps on victim devices [1]–[4]. Only the last category has
been studied: Chatterjee et al. [5] performed measurements
on official app stores and the web more broadly to discover
a large number of surveillance apps advertised to, and easily
used by, abusers. However, there has been no exploration of
the broader landscape of software enabling the many other
forms of harassment reported by victims.

This paper describes the first measurement study aimed at
illuminating the broader ecosystem of what we call creepware:
apps whose primary use case is enabling non-expert users to
mount interpersonal attacks. Apps only sometimes used for
harassment (e.g., email or messaging apps) fall outside our
purview. We find that the ecosystem surrounding creepware
also includes apps advertising the ability to defend against
interpersonal attacks, which we study in order to provide a
more holistic understanding of this problem space.

Unfortunately, the prior techniques [5] used to study spy-
ware are not helpful here. They rely on knowledge of spyware-
specific search terms, whereas a priori we do not know what
types of creepware apps people seek out. Instead, we turn to

the principle of guilt by association, which has previously been
used to discover new strains of conventional malware [6]–[8].
The key idea is that software that disproportionately appears
on the same device as known malware is, itself, likely to
be malicious. However, adapting such an approach to the
creepware context requires large amounts of data about app
installations and new algorithms.

We partnered with Norton, a major computer security firm,
to obtain anonymized data about billions of app installations
on 50 million Android devices over several years protected
by Norton Mobile Security.1 We couple this data with a
new algorithm, CreepRank, that, given a set of seed apps
known to be creepware, assigns scores to other apps. At its
core, CreepRank is a graph mining algorithm that computes
scores using maximum a posteriori estimation, which helps
suppress false positives among rare apps (a problem that
similar algorithms face in this context when not using a
skeptical prior, as we shall see). Intuitively, the higher the
CreepRank, the more the app is associated, via co-installation
data, with known creepware.

We applied CreepRank to the Norton dataset using as
seed set the overt spyware surveillance apps identified by
Chatterjee et al. [5]. The resulting ranking helped us discover
a wide variety of potential creepware apps. To make sense
of these results, we manually coded the 1,000 apps with
highest CreepRank. This involved iteratively developing a new
taxonomy of interpersonal attack and defense apps. Coders
used the app title, package name (app ID), description (when
available), and additional metadata, such as installation counts,
to label each app with a code from our taxonomy.

The findings from our manual coding analysis showed that
857 of CreepRank’s top 1,000 apps qualify as creepware,
fulfilling a clear purpose pertaining to interpersonal attack
or defense. Unsurprisingly, given the seed set, surveillance
apps were best represented in the rankings—372 of the top
1,000 apps—many of which were not identified by prior
work. Among these are 107 multifaceted surveillance apps
that affected 172 K Norton customers in 2017 alone. Overall,
CreepRank identified more than a million installs of diverse
creepware apps, including apps that enable spoofing (114 apps,
see an example in Figure 1), harassment (80, including SMS
bombers), hacking tutorials (63), and many more. We also

1We received IRB approval for our study.

1



Fig. 1: The Spoof Text Message app advertises with a video
whose opening lines are: “Don’t like your buddy’s girlfriend?
Well, break them up!” [13].

found apps that aim to defend against interpersonal attacks,
such as anti-surveillance apps and apps that deal with SMS
bombing. Moreover, even the 143 apps surfaced by CreepRank
that did not have a clear attack or defense purpose fit into
interesting trends that yield insights into the inclinations of
creepware users. We further explore CreepRank’s utility by
seeding it with different sets of attack apps, investigating
creepware trends over time, and more.

Our findings suggest that CreepRank is a valuable tool for
understanding the ecosystem of apps used for interpersonal
attack and defense. It is also practically useful. CreepRank-
identified apps now trigger warnings in Norton’s products
and are flagged as potentially dangerous apps when scanning
phones of IPV survivors in the context of Cornell Tech’s
computer security clinic [9], [10]. We also reported 1,095
apps to Google via a responsible disclosure process, and they
removed 813 apps for violating the Google Play store’s terms
and conditions.

In summary, our contributions include the following:
• We introduce CreepRank, an algorithm that leverages the

principle of guilt by association to discover creepware.
We show that it measures creepware effectively: it iden-
tifies 2.8x more creepware among its top 1,000 apps than
random walk with restart [11], [12], another well-known
graph-based algorithm. We use CreepRank to drive the
first measurement study of the creepware ecosystem.

• Using manual coding of 1,000 CreepRank-identified
apps, we discover new classes of creepware and develop
a creepware taxonomy that should be broadly useful.

• We explore use of CreepRank with distinct seed sets,
study trends in creepware over time, and analyze types
of creepware commonly found together on devices.

II. BACKGROUND AND RELATED WORK

Apps used for interpersonal attacks. Our paper contributes
to a small but growing body of work that seeks to understand
the role of technology in interpersonal attacks, such as those
that arise in IPV [1]–[3], technology-facilitated bullying [14],
[15], and other forms of targeted harassment. In particular,
our work builds on research by Chatterjee et al. [5] that first
highlighted the types of apps being used as spyware in IPV.

Their research discovered spyware apps by crawling forums
and app marketplaces for candidate apps, via search terms
typically used to find spyware. They highlight the tricky issue
of dual-use apps, or apps that may have a legitimate purpose
but are often easily re-purposed for abuse.

While we also investigate (previously unknown) spyware
apps used in IPV, our focus is broader. We do not restrict
attention to IPV use cases, but instead consider interpersonal
attacks in general. We also want to understand apps beyond
spyware that enable harassment, SMS-bombing, spoofing (e.g.,
Figure 1), and more. Although prior qualitative work inter-
viewing victims of technology-enabled abuse [1]–[3] indicated
that abusers use some of these categories of apps, no research
has been done to measure or characterize them. We refer to this
broader class of apps as creepware, defined for our purposes
as apps for which a predominant use case is enabling non-
technology-expert users to mount interpersonal attacks.

This explicitly leaves out of scope some classes of apps. We
do not consider apps which are not intended or predominantly
used for interpersonal attacks, such as popular email, text
messaging, and social media apps. While these are often
vectors for abuse, the vast majority of use is benign and
mitigation requires different approaches than for creepware.
We also do not consider some malicious apps that require
more expertise to obtain and use, such as remote access trojans
(RATs) and other malware used by governments or voyeurs,
which have been investigated in prior work [16]–[18].

Potentially unwanted programs (PUPs) [19], [20] are usually
commercially-motivated malware that exploit pay-per-install
services to add “bloatware” to a device for purposes of
financial profit. We did encounter examples of pay-per-install
apps [21] in our study, as discussed in Section VI. Prior
studies have also investigated more malicious types of malware
that directly steal user secrets (e.g., bank details) [22]–[27].
However, PUPs and such malware differ from creepware-type
interpersonal attack apps in that the formers’ authors seek to
have them distributed broadly and indiscriminately, rather than
being deliberately installed by one person to attack another.

Using app installation information. Our approach for dis-
covering creepware apps is based on the principle of guilt
by association (GBA): interpersonal attack and defense apps
are disproportionately installed on the same devices. By
disproportionately, we mean in relation to the likelihood that
these apps are co-installed with other kinds of apps. We were
inspired by Polonium [28] and other systems [6], [7] that use
the GBA principle to identify PC malware. By representing
software installation data as a graph of software files and
computers, Polonium initializes node weights, using domain
knowledge and an extensive set of ground-truth benign and
malicious software, and then applies the belief propagation
(BP) [29] algorithm. BP treats nodes as random variables
with at least two states (e.g., good and bad) and produces the
marginal probability distribution for each node in the graph
over these states. Unfortunately, BP requires labeled data,
making it ill-suited to our single state/class setting in which

2



only a few apps are known to be used for inter-personal attacks
(e.g., because they advertise as such), and for which there is
no obvious way to construct a representative set of benign
apps known to be unusable for such attacks.

Other algorithms may be more suitable for our task, such
as random walk with restart (RWR) [11], [12], which only
requires a small set of ground-truth labels for one class.
Although RWR is an exploratory method, we found it ill-
suited to our task because it assigns high scores to rare apps
that are installed alongside interpersonal attack apps due to
random chance. RWR lacks a way to add a skeptical prior
belief, i.e., to assume that apps are likely innocent until proven
guilty by numerous associations with “guilty” apps. Our need
to incorporate prior beliefs into an exploratory GBA algorithm
led us to design CreepRank, and proves to be its most
important characteristic, as discussed in Section VI. While the
techniques we develop for CreepRank may prove useful for
exploring other classes of apps, we have only investigated its
utility for discovering interpersonal attack and defense apps.

Finally, prior work has also explored what can be learned
from the apps installed on a device [30] or the set of apps
used at least once a month [31], including predicting a device
owner’s demographic information (e.g., gender). We explore
how the combination of creepware (and/or creepware defense)
apps installed on a device might point to user behaviors, such
as credit card fraud or interpersonal abuse (see Section VII-C).

III. DATASET DESCRIPTION AND PROPERTIES

We develop new data-driven approaches for discovering
apps used in interpersonal attack and defense that leverage
datasets consisting of anonymized Android app installations
recorded by NortonLifeLock’s Norton Mobile Security app.
For each device in our datasets, we have a list of <package
name, relative time> tuples reflecting the apps that were
installed on the device. The package name (Android app ID)
used to register apps in the Google Play store (if it has ever
been distributed there) is extracted from each APK file. For
apps exclusively distributed off-store, the app ID need not be
registered, and is therefore not necessarily a unique identifier
for an app. As a result, it is likely that our methods are most
effective for discovering abusive on-store apps, though we
have found that fixed package names are common for off-
store apps and that polymorphic package names are rare in
practice.

The relative time of each app installation is derived from
the time at which it was first scanned by the Norton app. Thus,
the relative time generally has a value close to 0 for all apps
installed prior to Norton’s app and, for subsequently installed
apps, indicates time relative to the installation of the Norton
app. The dataset does not include information on if and when
apps were removed from a device.

We use two different datasets: (1) data gathered from
devices active in calendar year 2017 and (2) data gathered
over a year-long period from May 1, 2018 to May 1, 2019. We
refer to these as the 2017 and 2018/2019 datasets, respectively.
The 2017 dataset includes 27.7 million devices with 10.9

million unique package names that were installed around 4
billion times across the devices (not counting duplicate app
installations and app updates). The 2018/2019 dataset has 22.6
million devices with 7.5 million unique package names that
were installed 1.9 billion times. The datasets are not disjoint,
4.5 million devices appear in both datasets.

We also use a dataset of marketplace data provided by
Norton that was periodically scraped from the Google Play
store over a period of several years. While this dataset is
missing data from some apps, it provides good coverage of
apps that have been retired or forcibly removed from the app
store and its website. For each app, it includes its genre, title,
description, and permissions.

Our data also has limitations. The devices in the dataset
are not necessarily representative of typical users, as by
definition they have Norton’s security app installed and are
therefore security conscious. For example, many IPV victims
face financial challenges [32] (Norton’s security app is not
free) and have limited awareness of digital security [1]. We do
investigate, within the limits of the data, when and (seemingly)
why the Norton app is used in relation to the types of
interpersonal attack apps found on a device (Section VII-D).

In addition, any dataset of this nature includes devices
that do not represent normal use. An example is devices
used by anti-virus (AV) testers and researchers, on which
many malicious apps will appear. To limit the impact of such
abnormalities, we removed from the dataset all devices on
which more than 1,000 apps were installed during the course
of one year, as these seem unlikely to represent real users’
devices. This removed about 18 thousand devices from the
2017 dataset and 9 thousand from the 2018/2019 dataset.

Finally, to make the dataset more manageable, we excluded
the top 1.1% most prevalent apps and then dropped devices
with only one app installation. These apps are likely benign
and are not interesting for our purposes, and would interfere
with the efficacy of our algorithms. This reduced the number
of app installations in the 2017 data from 4 billion to 546
million, for 10.8 million apps on 25 million devices. App
installations in the 2018/2019 dataset dropped from 1.9 billion
to 205 million, for 7.4 million apps on 17 million devices.

IV. USING GUILT BY ASSOCIATION
FOR APP DISCOVERY

We are interested in apps useful for interpersonal attack
and defense. These include apps that are used by one person
to monitor, harass, or otherwise harm another person (attack),
apps used to prevent such attacks (defense), and apps that are
useful for both attack and defense. The first category is what
we refer to as creepware. This paper will surface classes of
interpersonal attack and defense apps that were completely
new to the authors (and, we suspect, many others). We will
see many examples in subsequent sections.

Our hypothesis for discovering such apps is based on the
principle of guilt by association (GBA), which infers that apps
that tend to be installed on devices infected by malicious apps
tend to be malicious themselves. For an initial assessment of

3



Device 1 Device 2

Track a Phone by Number GirlFriend Cell Tracker
Find My Friends System Services (aka mSpy)
Live Mobile Location Tracker Hidden Auto Call Recorder
SMS from PC / Tablet... Sync Family Locator - GPS Tracking
HelloSpy SMS Forwarder

Table I: Surveillance apps co-installed with a known covert
surveillance app (shown in italics), ordered by install time.

the viability of the GBA hypothesis, we searched for apps that
use the keywords “spy” or “track” in their title or package
name on the 35,811 devices infected by one or more of
18 off-store intimate partner surveillance apps identified by
Chatterjee et al. [5]. We found many devices with multiple
surveillance-style apps installed. The titles of surveillance apps
installed on two representative devices are shown in Table I.
This gave us hope that GBA would be useful more broadly.

The GBA hypothesis has two main benefits for identifying
and measuring creepware. First, guilt spreads naturally from
one class of abusive app to another even when they are very
different, spreading even to defensive apps that counter abuse.
Second, GBA necessarily identifies apps that are actually
installed by abusers and/or victims in practice, as it is based
entirely on co-installation data and does not use app properties
or metadata (in contrast to [5]).

We now turn to developing an exploratory graph mining
algorithm that exploits the GBA hypothesis. The algorithm,
CreepRank, takes as input a set of seed apps, an installation
dataset, and outputs a ranking for each app in the dataset.
When seeded with known creepware apps, high-ranking apps
are likely to be associated with interpersonal attack or defense.
This section proceeds by describing seed set selection for
CreepRank, its use of first-order correlations among apps,
its false-positive mitigation scheme, and finally, the method
whereby it captures high-order correlation among apps.

A. Seed Set Selection
Our method is fundamentally a one-class algorithm in that

it measures the relevance between a focused set of seed apps
and all other apps. No other labeled data is required. Our
examination and coding of creepware apps is based on a seed
set of 18 overt surveillance apps identified by Chatterjee et
al. [5] that openly market themselves as usable for intimate
partner surveillance purposes, and which are sold outside
of the Google Play app marketplace because they do not
conform to marketplace rules. In Section VII-B we experiment
with CreepRank’s ability to explore narrower ecosystems by
seeding it with a variety of different seed sets.

B. First-Order Graph Algorithm
We determined that the most direct way to leverage the GBA

principle for mobile apps was to estimate the frequency with
which each app appears on a device that has been infected
with a seed set app. We start by representing installation data
as a graph, in which we represent apps and devices as nodes,
and add edges to represent the installation of apps on devices.

(a) (b)

Fig. 2: Example bipartite graph representations of app instal-
lation data. An edge represents installation of the app on the
device. Seed set nodes are shown in red.

In Figure 2a, for example, app A is a seed set app installed
on Device 0, while app B is installed on Devices 0 and 1, one
of which is infected by a seed set app, while the other is not.

Formally, we model k, the number of infected devices on
which an app appears out of n total devices as a random
variable X drawn from a binomial distribution B(n, p), such
that P (X = k|p) =

(
n
k

)
pk(1 − p)n−k, where p denotes the

probability that the app appears on an infected device. Then,
probability p can be readily estimated from the installation
data using maximum likelihood estimation (MLE), which
yields p = k/n. Thus, the MLE method would estimate the
probability with which an app appears on an infected device
by dividing its observed installations on infected devices by
its total observed installations, which can then be used as a
risk score for the app and to rank all unknown apps.

C. Adding False Positive Suppression

While the MLE method of probability estimation is appeal-
ingly simple, when applied to our data to rank creepware,
it suffers from high false positive (FP) rates. To understand
why, consider apps E and G in Figure 2b. App E appears on
only one device, which is infected by app D, so MLE outputs
pE = 1/1, whereas for app G, which is on 14 infected devices,
it returns pG = 14/20. When we consider that the dataset
contains observations about more than 10 million apps, nearly
all of which are benign, app G is intuitively more suspicious
than the millions of rare apps like app E, whose sole instance
could have appeared on an infected device by random chance.
This intuition was born out in practice; our attempts to apply
the MLE method as a ranking tool yielded low quality rankings
with many irrelevant apps, as described in Section VI-A.

CreepRank therefore uses maximum a posteriori (MAP)
probability estimates, which are similar to MLE’s optimiza-
tion method, except the a posteriori estimates incorporate
the random variable’s prior probability into the maximization
objective. That is, the MAP method incorporates an estimate of
the prior probability that apps appear on infected devices and
applies Bayes’ rule to choose the parameters of the posterior
probability distribution that maximize the probability of the
observed data given knowledge of the prior.

We must therefore estimate the prior probability distribution
with which apps appear on infected devices, which we do by

4



CreepRank

Input: Per-device edge lists of installed apps and list of seed set apps

1: Initialize seed-set apps with app score=1, otherwise app score=0
2: Set each dev score = max(app scores) across connected apps
3: Set each app score = avg(dev score)
4: Normalize app scores
5: If not converged then goto step 2
6: Apply MAP formula to obtain final app scores

Output: Apps ranked in decreasing order of app scores

Fig. 3: The CreepRank algorithm to capture high-order corre-
lations between apps and devices they are co-installed on.

Device Scores Normalized App Scores

Round 0 1 A B C

0 – – 1 0 0
1 1 0 1 0.5 0
2 1 0.5 1 0.75 0.5
3 1 0.3 1 0.65 0.3
4 1 0.342 1 0.671 0.342
5 1 0.331 1 0.666 0.331
6 1 0.334 1 0.667 0.333
7 1 0.333 1 0.667 0.333

Table II: CreepRank applied to the graph of Figure 2a, showing
convergence to 3 significant digits by the 7th iteration.

applying the MLE method from Section IV-B to all apps that
appear on at least 100 devices (we do not include rare apps as
these may produce unreliable MLE values). We then model the
prior probability distribution as a beta distribution Beta(α, β)
that we fit to our MLE values, obtaining α = 1.09 and
β = 186. Our use of a beta distribution to model the prior is
convenient, as the beta distribution is a conjugate prior for the
binomial distribution with which we model our observations,
meaning that the posterior probability distribution is also a
beta distribution, with parameters Beta(α+ k, β + n− k), for
which the MAP estimate of the mode of this distribution is
readily derived as (k + α− 1)/(n+ α+ β − 2).

Note that for our prior of Beta(1.09, 186), the MAP esti-
mates contrast with MLE primarily by adding a large constant
to the denominator of the estimate. Practically, this means that
the MAP estimate assigns small CreepRank values to apps that
are not observed on infected devices in large numbers, but the
effect of the prior diminishes as k and n increase.

D. Capturing High-Order Correlations Among Apps

The final component of CreepRank reduces the algorithm’s
sensitivity to the small seed sets for which it is designed
by enabling it to capture high-order correlations between the
seed set and the broader ecosystem of creepware apps. We
considered alternative high-order graph-based methods, such
as random walk with restart (RWR) [11], [12], which provides
no mechanism to suppress false positives among rare apps,
causing it to include many irrelevant apps.

The steps of our algorithm, CreepRank, are shown in
Figure 3. Iterative application of these steps to the graph
shown in Figure 2a results in the values shown in Table II.
The input to CreepRank is a list of the apps installed on

each device, and a list of seed set apps. From this input, a
bipartite graph between device and app nodes is constructed,
with edges indicating an app’s presence on a particular device.
CreepRank’s first step initializes the seed set apps with score
1 and all other apps with score 0. In Step 2, each device
receives an infection score that is the maximum value of all
apps installed on the device (these scores are binary in the
first iteration). In Step 3, apps are assigned a score based on
the average score of the devices on which the app appears,
and the scores are normalized in Step 4 to ensure that the
sum of the app scores is equal to the sum of all MLE values
obtained by the first-order method described in Section IV-B.
In the absence of normalization, the max function applied in
Step 2 would cause app scores to increase with each iteration
of the algorithm. Any desired convergence criteria can be set
for Step 5. We ran our algorithm for 10 iterations, since by
then the rankings became stable even for graphs of 500 million
edges. For instance, the maximum score delta was .00085 in
the algorithm’s 10th iteration for 2017 data, for a seed set of
18 apps (scores range from 0 to 1).

E. Implementation
Our datasets are quite large. For example, the graph cor-

responding to the 2017 installation dataset consists of 546
million edges, 25 million device nodes, and 10.6 million app
nodes. We therefore implemented CreepRank for use in a
distributed setting. The algorithm required only 77 lines of
code, which consist of 29 Scala commands that make ample
use of Spark. The algorithm ran on 100 Spark worker nodes
on an AWS cluster, each node consisting of a single CPU
core and 10GB of RAM, plus a driver node with 15GB of
RAM. These workers ran on a mix of AWS instances of type
m5.12xlarge (48 cores and 192GB RAM) and r5.4xlarge (16
cores and 128GB RAM). The average execution time, taken
over 10 executions of CreepRank on the 2017 dataset, was 24
minutes, 21 seconds with a standard deviation of 115 seconds.
Writing out the ranking scores of all 10 million apps to a
Hadoop File System takes an additional 90 seconds.

V. CATEGORIZING CREEPWARE

After running CreepRank on 2017 data with a seed set of
18 covert surveillance apps, we wanted to characterize the
categories of apps discovered. To achieve this, we manually
coded 1,000 apps that (1) were highest ranked by the algorithm
and therefore most risky, and (2) had at some point been
available on the Google Play store and for which we could
therefore obtain sufficiently detailed data via Internet searches.
The overarching question we sought to answer was: What cat-
egories of creepware exist beyond interpersonal surveillance
apps, and how prevalent are those categories?

A. Manual Coding Methods
We used a manual coding process to iteratively develop and

refine a codebook of app categories. For each of the 1,000
highest-ranked apps, we presented coders with (1) the app
title and ID, (2) a link to a Google query for a marketplace

5



description of each app, and (3) additional metadata for each
app (e.g., installation counts, permissions, genre, etc.).

Our team consisted of four coders. We began by randomly
choosing a set of 25 apps that all team members coded
independently. The guidelines were to (1) assign each app
one and only one code, and (2) assign codes using a two-level
hierarchy of categories and sub-categories that were developed
in the process of coding (e.g., Surveillance - Location). When
no sub-category was appropriate, apps were assigned the most
relevant top-level category (e.g., Surveillance - Misc).

After independently coding the first round of 25 apps, the
group met to establish consensus and converge on appropriate
code names. The results of the team’s discussion were captured
in a codebook that was refined in subsequent rounds of coding.
We proceeded in this fashion for 4 rounds of 25, 25, 25,
and 35 apps, jointly coding 110 apps. Having found that
the codebook had largely stabilized after two rounds, we
measured inter-coder agreement over the last 60 apps coded
by the whole group. Fleiss’ kappa statistic [33] indicated the
coders’ agreement was 0.77 when assigning apps to high-level
categories, and 0.75 when assigning apps to sub-categories,
indicating substantial agreement in both cases.

The remaining 890 apps were split evenly among the four
coders. We took multiple precautions to ensure that coding
consistency on the remaining apps would be at least as high as
that attained on the 60 apps on which we measured agreement.
Team members assigned a code of “other-discuss” for any
app that did not fit into any category, and tagged all apps
they were uncertain about as “unsure”, providing explanatory
comments about such apps. All apps tagged as “other-discuss”
or “unsure” were reviewed by a second coder. In addition, all
apps that fit into a high-level category and in a miscellaneous
sub-category were reviewed to identify any trends that might
only become apparent once all 1,000 apps had been reviewed.
All coding modifications that resulted from this review process
were discussed by the team to ensure agreement.

B. Results of Manually Coding Apps
Our algorithm captures both first-order correlation between

apps that are highly likely to directly appear on devices on
which our seed set of overt surveillance apps are installed,
as well as apps that indirectly but strongly correlate with the
seed set. The coding process revealed remarkably few apps
that are not part of a clear trend; even among apps that have
no obvious abusive use cases. All apps mentioned by their title
here and elsewhere in the paper are listed under the code to
which they pertain in Appendix C’s Table IX.

The final codebook consisted of 10 high-level categories
(e.g., Surveillance, Harassment, Spoof ) and 50 sub-categories
(e.g., Surveillance - Location, Harassment - Social Media,
and Spoof - SMS). Figure 4 shows apps assigned to sub-
categories, with the legend indicating the counts in parenthesis
for the corresponding high-level categories. The three most
prevalent sub-categories are all part of the Surveillance high-
level category: Surveillance - Social Media, Surveillance -
Location, and Surveillance - Thorough.

The rest of this section summarizes categories that suggest
apps are used to facilitate interpersonal attacks, categories that
suggest apps are used to defend against such attacks, and
categories without an immediate abusive or defensive purpose.
A comprehensive description of every code category, sub-
category, and examples is provided in Appendix C.

Characterizing potentially abusive apps. The largest cate-
gory of potentially abusive apps that we coded was Surveil-
lance, which is unsurprising given that the seed set we selected
consisted of surveillance apps. Apps in this category include
those that (1) both covertly and overtly track someone’s
location, (2) record phone call audio, call metadata and call
logs, (3) forward or snoop on SMS messages, (4) continu-
ously surveil social media accounts (mostly WhatsApp and
Facebook), (5) turn on the phone’s camera and microphone
and forward a stream to a remote device, and (6) apps that
record, stream, and/or take a snapshot of a device’s screen.
Although CreepRank’s discovery of so many surveillance apps
will clearly be useful in terms of warning users about such
apps or recommending that they be blocked from the app store,
the nature of such surveillance apps has also been the focus
of prior work [5] and thus we focus this discussion on other
categories of apps, relegating the details of our surveillance-
app findings to Appendix C.

We found 115 apps that enabled a variety of ways to spoof
information, including faking images, call logs, web content,
SMSs, WhatsApp messages, voice, and more. We coded 41 of
these apps as Spoof - Burner Phone because they support the
ability to make anonymous calls or SMS messages, with many
explicitly advertising as useful for evading call blocking. Even
more concerning and unambiguously malicious are apps that
enable impersonation. Many such apps enable abusers to bait
victims into a compromising response, sometimes allowing
entire conversations of messages to be faked. Developers
recommend their apps for putting words into the mouths
of unsuspecting victims, as in the case of the “Spoof Text
Message” app (see Figure 1), whose YouTube trailer2 says,
“Don’t like you buddy’s girlfriend? Well, break them up! Just
send a fake text message!”. Further scrutiny of SMS spoofing
apps and their malicious use cases is provided in Section
VII-B.

We used Harassment codes to categorize apps that could be
used to harass people in ways other than the mechanisms cap-
tured under surveillance, spoofing, control, and information-
extraction codes (discussed elsewhere). One unexpected and
prevalent type of app in this category were fake surveillance
apps, usually marketed as prank apps, that are typically
designed to be installed on a prankster’s phone and briefly
shown to a victim as the app simulates hacking the victim’s
device or accounts. Anecdotal evidence that fake-surveillance
apps can cause real stress is provided by the following user
review for “Other Number Location Tracker”, which was on
the Google Play store as of June 1, 2019 and subsequently
removed after we reported it to Google:

2https://www.youtube.com/watch?v=3MB1dVpSuRk

6

https://www.youtube.com/watch?v=3MB1dVpSuRk


Call
erI

D
- M

isc

Call
erI

D
- Loc

ati
on

Con
tro

l - Hide
Ico

n

Con
tro

l - Use
Lim

ita
tio

ns

Defe
ns

e - M
isc

Defe
ns

e - Anti
Hara

ssm
en

t

Defe
ns

e - Anti
Surv

eil
lan

ce

Eva
sio

n - Alte
rna

tiv
e Inp

ut

Eva
sio

n - Hidd
en

Con
ten

t

Eva
sio

n - Steg
an

og
rap

hy

Hara
ssm

en
t - M

isc

Hara
ssm

en
t - Auto

mati
on

Hara
ssm

en
t - Bom

be
r

Hara
ssm

en
t - Fak

e Surv
eil

lan
ce

Inf
o Extr

ac
tio

n

Inf
o Extr

ac
tio

n - Dum
p

Inf
o Extr

ac
tio

n - Frau
d

Inf
o Extr

ac
tio

n - Hac
k Too

ls

Inf
o Extr

ac
tio

n - Peo
ple

Sea
rch

Inf
o Extr

ac
tio

n - Sys
tem

Spo
of

- M
isc

Spo
of

- Burn
er

Pho
ne

Spo
of

- Fak
e Call

Spo
of

- Htm
l

Spo
of

- Im
ag

e

Spo
of

- SM
S

Spo
of

- Soc
ial

M
ed

ia

Spo
of

- Sup
pre

ss
Call

erI
D

Spo
of

- Tho
rou

gh

Spo
of

- Voic
e

Surv
eil

lan
ce

- M
isc

Surv
eil

lan
ce

- Call
s

Surv
eil

lan
ce

- Cam
era

Surv
eil

lan
ce

- Loc
ati

on

Surv
eil

lan
ce

- M
icr

op
ho

ne

Surv
eil

lan
ce

- Scre
en

Surv
eil

lan
ce

- SM
S

Surv
eil

lan
ce

- Soc
ial

M
ed

ia

Surv
eil

lan
ce

- Soc
ial

M
ed

ia
Cov

ert

Surv
eil

lan
ce

- Tho
rou

gh

Tuto
ria

l - Hac
kin

g

Tuto
ria

l - Roo
t

Tuto
ria

l - Sett
ing

s

Non
e - M

isc

Non
e - And

roi
d M

od
s Vm

Non
e - Com

mun
ica

tio
n

Non
e - Ind

ex

Non
e - Paid

Ins
tal

ls

Non
e - Tuto

ria
l Dev

elo
pm

en
t

Non
e - Tuto

ria
l M

isc
0

50

100

6

40

9
4 1 3

38

4
9

15

3
11 10

56

3

35

7
11 12

7 4

41

6 5
9

20

8
4

8 10
5

19
15

90

12
5

9

105

23

89

63

6

17

52

23
14

9

27

12
6

N
um

be
r

of
ap

ps
Caller ID (46 / 114 K) Control (13 / 80 K) Defense (42 / 175 K) Evasion (28 / 87 K) Harassment (80 / 62 K)

Info Extraction (75 / 173 K) Spoof (115 / 379 K) Surveillance (372 / 913 K) Tutorial (86 / 205 K) None (143 / 388 K)

Fig. 4: Count of top 1,000 apps in each of the 50 sub-categories of our codebook. Legend shows high-level app categories
and for each, the number of apps in the category and the number of app installations for that category.

“You say this is a joke . . . there is absolutely nothing funny
about me looking up the number of my ex abuser who i
have a restraining order against and it showing me he is
1 block away from my home. So i freak out panicking and
call the cops and show them the location on my phone and
they search the area and cant find him. They come back
. . . and then . . . click on it just to see it is a f*cking joke!!
. . . i hope they get shut down.”

Another concerning set of apps that we coded as Harass-
ment - Bomber enable users to send high volumes of texts,
calls, emails, posts, etc., to a victim. For many of these apps,
such as “Message Bomber -send 5000+ sms”, it is difficult
to envision a non-malicious use case. Section VII-B examines
these apps and the context in which they are used.

We coded 86 apps as relevant tutorials, most of which
provide hacking tips. Manual inspection confirmed that hack-
ing tutorials recommend many of the attack apps that we
coded (see Section VII-B), in addition to generic hacking
tips, hacking term glossaries, and forums. In addition, several
apps either provided tutorials for rooting phones, or actually
rooted them, which is a vital step that enables many of the
interpersonal attack apps we found.

Many of the 74 apps coded as Information Extraction are
similar to surveillance apps in that they extract device and
personal information, but not on an ongoing basis. Instead,
many of these apps perform one-time dumps of content
(e.g., dumping and decrypting WhatsApp databases, extracting
forensic information, hidden or encrypted content caches,
call logs, social media data, location history, deleted SMS
messages, etc). We also found apps that directly provide
hacking tools (e.g., pen-testing apps), as well as a cluster of
apps that seemed most useful for fraud, particularly related

to credit cards, which included card-number revealers, detail
finders, validators, and generators. Two concerning apps are
“Bank Card Validator” and “Credit Card Revealer”, both of
which regularly appear alongside an app that generates fake
ID card images (coded as Spoof - Image).

A few app categories seemed useful for both attackers and
victims. For example, a cluster of apps selectively hide content
or are designed around privacy-focused messaging platforms,
which we coded as Evasion - Hidden-Content. Most of these
apps selectively hide images, WhatsApp content, contacts,
communications, etc. They often appear alongside attack apps
and are possibly used by surveillants to hide their activities
from victims. In many cases these apps either hide their icons
or pose as an unsuspecting app, as in the case of the “Smart
Hide Calculator”. We also discovered general purpose Control
- Hide-Icon apps that hide the presence of other apps (see
Section VII-B for more analysis of these apps).

Finally, we note that the above discussion of attack apps is
intended to describe illustrative categories of attack apps and
examples that came up in our analysis. Appendix C provides
a description of every code sub-category.

Characterizing potentially defensive apps. Our coding re-
vealed clear signs of victims protecting themselves and/or
finding ways to evade restrictions imposed upon them. Al-
though many apps assigned to other categories could plausibly
have utility to both attackers and victims, we only coded apps
under defense sub-categories when they seem to be exclusively
designed to defend against surveillance or other attacks.

The most prevalent category of defense apps we discovered
contained 38 anti-surveillance apps that prevent, block, or
detect surveillance that may be conducted remotely or through
physical proximity. These apps use a wide range of anti-
surveillance mechanisms that includes access control, counter-

7



surveillance of failed login attempts, and shoulder-surfing
defense. For example, “Incoming Call Lock - Protector” is
an access-control app that password protects incoming phone
calls so that they cannot be answered by an attacker. As
another example, “Oops! AppLock” enables access codes that
lock the phone with no UI indications that the phone is locked,
giving the impression that the phone is frozen in an open state.
The unlocking mechanism is sometimes covert and subtle,
such as a specific pattern of key volume presses.

A smaller category of defense apps seems to be primarily
useful for victims experiencing SMS or call bombing, and
remotely triggered alarms. Two such apps provided the ability
to easily and temporarily disable system volume or vibrations
during set times. Finally, “Hidden Apps” is a unique defensive
app that reveals the presence of undesirable apps whose icons
have been hidden, such as covert surveillance apps.

Characterizing apps coded as “None”. Among CreepRank’s
top 1,000 apps are 143 that are indicative of creepware users
and victims but that do not directly relate to attack or defense.
Most of these apps rank towards the bottom of the top 1,000,
with only 2 in the top 200. Among these, 23 apps implement
Android modifications or virtual machines, which appeal to the
hacker community and to anti-virus testers. We also observed
18 tutorial apps, mostly pertaining to Android modification
and development, but also to catching cheating love interests.
14 communication apps provide group chat functionality for
social-media platforms, platforms for local dating, or appear
to promise free burner-phone capabilities.Finally, we found 9
index apps and 27 pay-per-install (PPI) apps, which link to
many apps and incentivize users to install them. The index
apps either directly recommend other apps, or index deals and
coupons offered by other apps. The business model of PPI apps
is to charge app developers who wish to artificially inflate the
install counts of their apps, and then incentivize PPI app users
to install these apps. Among the remaining 52 miscellaneous
apps are several trends including money-making, social media,
dating, and accessibility.

VI. UNDERSTANDING CREEPRANK’S EFFICACY

The prior section highlights the wide variety of interper-
sonal attack and (in a few cases) defense apps identified
by CreepRank’s exploratory algorithm. We now discuss in
more detail why CreepRank was able to find these apps by
examining two questions: (1) Does CreepRank outperform
alternative algorithms such Random Walk with Restart and
the MLE-based or first-order MAP approach (described in
Section IV)? and (2) Why did some irrelevant apps show
up in CreepRank’s results? In subsequent sections we further
highlight CreepRank’s efficacy by using it to facilitate a deeper
measurement study of the creepware ecosystem.

A. CreepRank versus Alternative Algorithms
CreepRank is a single-class semi-supervised exploratory

algorithm based on the principle of GBA. It differs from
most malware analysis algorithms in that it does not use any
descriptive features that would constrain the nature of the

Call
er

ID

Con
tro

l

Defe
ns

e

Eva
sio

n

Hara
ssm

en
t

Inf
o Extr

ac
tio

n
Spo

of

Surv
eil

lan
ce

Tuto
ria

l
Non

e
0

200

400

600

800

N
um

be
r

of
ap

ps

CRNMAP
CR1MAP
CRNMLE
RWR

Fig. 5: Category counts for CreepRank (CRNMAP), RWR,
and CreepRank variants CR1MAP and CRNMLE.

creepware apps it discovers. We compare CreepRank to Ran-
dom Walk with Restart (RWR) [11], [12], another exploratory
GBA algorithm that is applicable to our setting due to its use
of a single class of labeled examples. The two main elements
of CreepRank are its MAP estimates based on a data-driven
prior belief about the scarcity of creepware apps (CRNMAP),
and its ability to measure nth-order correlations between app
installations. To understand which of these contributes most to
CreepRank, we compare to an iterative version of CreepRank
that uses maximum likelihood estimation (CRNMLE) and to a
first-order correlation using maximum a posteriori probability
estimation (CR1MAP) (see Section IV-C).

For the purposes of comparing these algorithms, we treat the
apps coded under None categories as false positives, and all
other apps as true positive creepware. We measure algorithmic
quality based on the percentage of creepware apps in each
algorithm’s top 1,000 rankings. Two authors coded the top
1,000 apps produced by each algorithm, discussing possible
changes to the codebook as they went, but ultimately finding
that all trends were already captured by our existing codebook
(Section V). Our coders achieved high inter-rater reliability
over creepware categories with Cohen’s kappa equal to 0.87.

A histogram of app categories in the top 1,000 results of
each algorithm is shown in Figure 5. CRNMLE and RWR have
the most None apps in their top 1,000. On the 2017 data, the
top 1,000 produced by CR1MAP and CRNMAP differ by only
67 apps, yet 25 of CR1MAP’s 67 are None apps, compared
to only 5 of CRNMAP’s. This suggests that for large datasets
such as ours, running CreepRank iteratively until convergence
yields a modest improvement in the rankings.

More important to CreepRank is the use of MAP estimation,
as seen in the comparison between CRNMLE and CRNMAP.
CRNMLE gave high scores to many rare apps that co-occur
with creepware due to random chance, resulting in 857 None
apps in its top 1,000 rankings, 853 of which were observed
fewer than 10 times. While RWR performs moderately better
than CRNMLE, it too is insufficiently skeptical of rare apps,
resulting in 693 None apps in its top 1,000 rankings.

To see if different algorithms detected qualitatively different
creepware, we examined the 307 creepware apps detected

8



by RWR, of which 223 are not in CRNMAP’s top 1,000.
These FN’s were typical creepware apps that fit cleanly within
existing code categories, among which were 62 defensive
anti-surveillance apps, 2x more detections than any other
app type found by RWR. Meanwhile, CRNMLE detected
143 creepware apps, of which 122 were FN’s for CRNMAP.
These too were typical creepware apps, but of low prevalence.
Recall that our MAP estimate deliberately sacrifices its ability
to detect rare creepware apps so as to avoid CRNMLE’s
propensity for FP detections, which seems sensible given that
rare apps affect fewer people than prevalent apps.

B. Analysis of False Positives
CreepRank’s top 1,000 apps include 143 non-creepware

apps that we categorized as None. We identified three causes
for their appearance in CreepRank’s top 1,000 rankings. First,
the presence of None apps that are routinely co-installed with
creepware to which they bear similarities is more or less
unavoidable. For example, 18 apps were tutorials on tech and
software development, which were often installed alongside
hacking and creepware-focused tutorials. Another 14 other
communication apps either bear similarities to burner-phone
apps or provide private communications services. Among
miscellaneous apps, 26 are similar to existing creepware apps,
while the other 26 are more random, whose presence is
explained by other reasons.

Second, 27 pay-per-install (PPI) and 9 index apps act as
hubs [34] in the app store and would therefore be highly
ranked by nearly any graph-propagation algorithm. To assess
their impact on the rankings, we dropped all devices with any
of the 27 PPI apps and re-ran CreepRank. The result was that
47 apps (and the 27 PPI apps) dropped from the rankings, 23 of
which were None apps. Eight of the dropped None apps were
money-making apps similar to PPI apps, and we conjecture
that other dropped apps were advertising through PPI apps.

Finally, 23 apps create VMs or modify/emulate Android,
which impact the rankings by introducing devices used for AV-
testing and other atypical purposes. Through experiments de-
scribed in Section VII-D, we found that eliminating 8 Android-
mod apps indicative of AV-testing results in the disappearance
of 15 additional None - Android Mods VM apps and other
None apps. We also experimented with eliminating both PPI
and AV-test apps prior to running CreepRank. This drops both
FP None apps and TP creepware from the top 1,000, 64% of
which are creepware. These lost TP’s are replaced by apps that
are 85% creepware, which would have improved the rankings
while making them more representative of normal devices.

VII. MAKING SENSE OF THE CREEPWARE ECOSYSTEM

The investigations described thus far uncovered a larger
than expected ecosystem of creepware apps that includes many
varieties of abuse apps of which we were previously unaware.
Here we perform a sequence of small analyses to try to
better understand this ecosystem. First, we use the context in
which apps are installed to infer the most probable creepware-
relevant use of apps whose intent was ambiguous or unclear

(Section VII-A). Next, we seed CreepRank with various seed
sets to examine the extent and character of interesting sub-
categories of the creepware ecosystem (Section VII-B). We
contrast profiles of attacker and victim devices in Section
VII-C, and conclude this section with an investigation into
the role that Norton’s security app seems to play with respect
to creepware (Section VII-D). Finally, we look for changes in
creepware trends over time by analyzing a more recent year
of data, in Section VII-E.

A. Potential Use Cases of Creepware
While coding, we hypothesized about how various types

of creepware might be used. Although we have no data that
directly measures usage, app installation patterns yield circum-
stantial evidence about how people might intend to use an app.
For each category of creepware apps, we examined the context
in which individual apps pertaining to the category appear. To
this end, for each pair of creepware apps a and b that we coded,
we calculated the pointwise mutual information (PMI) [35]
measure, which represents the amount of information that the
existence of app a has on the appearance of app b on the same
device. More precisely, pmi(a; b) = log p(a,b)

p(a)p(b) where p is the
probability function. For apps in each category and those that
were not confidently coded, we examined the apps that had
the highest PMI values with respect to that app. To remove
noise we excluded PMI values for apps that co-occurred once.

There were several instances in which our initial hypotheses
about the purposes of individual apps were shown to be
incorrect. In some instances, coders had envisioned a malicious
use for an app that was not observed in practice. More often,
we discovered unsuspected malicious uses. We now describe
several examples of apps that we either re-categorized as a
result of their PMI scores (these are correctly reflected in
Figure 4) or that confirmed our hypotheses (see Appendix B
for additional PMI data and Table IX for details of these apps):

The “Lodefast Check Cashing App” allows users to cash
checks without visiting a bank. It has high PMI values with
the “Card Details Finder”, “Bin Checker”, and “Bank Card
Validator” apps, indicating that the app is likely used for fraud
by some users despite good intentions by its developers.

“SMS Retaliator” seems useful for both attack and defense.
We initially coded it as an anti-harassment tool because of
its SMS blocking features, but PMI values indicate that it is
typically used alongside message-bombing and attack apps.
We saw no signs of it appearing alongside victim-side apps.

The “Unseen - No Last Seen” app is the most prevalent app
for covert access to social media. This app co-occurs primarily
with other covert access apps, but also with fake surveillance
apps, suggesting that it is sometimes used by attackers.

The “Edit Website” app is one of several that enable users to
make temporary website edits that persist until the browser is
refreshed. This app provides a WYSIWIG editor for websites
and is routinely installed alongside with users of spoofing,
surveillance, and fake surveillance apps. Its description states
that “The obvious use of this application would be to prank
friends by changing headlines of news articles or paragraphs.”

9



Apps with similar functionality that advertise for web devel-
opment seem not to be used for attacks.

Finally, correlation data shows that many apps that purport
to be intended for child online safety have highest PMI with
apps that are unambiguously intended for intimate partner
surveillance. It is unsurprising that the “Family Locator for
Android” app appears alongside abuse apps, as its previous ti-
tle was “GirlFriend Cell Tracker.” “Cell Tracker”, on the other
hand, is the most prevalent app with thorough surveillance
capabilities in the top 1,000 list and its marketing focuses
on child safety. Although it does seem likely to be used in
this way, it also correlates strongly with “Cheating Spouse”,
“Where the hell are you?”, and “Boyfriend Tracker Free,” none
of which seem indicative of use on a child’s phone.

B. Finding More Creepware with Alternate Seed Sets
CreepRank can also be used to surface other classes of

apps. We now describe how we further explored the creepware
ecosystem by running CreepRank with different app seed sets.

Seeding with Harassment - Bomber Apps. We selected the 7
bombing apps that had been most confidently coded as being
entirely designed for harassment. We ran CreepRank using
these apps as the seed set and coded the top 50 results (see
Table IIIa). We discovered 15 more bomber apps in the top
50. We found 26 more bombers in the top 1,000 by examining
the 49 apps with the following search terms in their title or
app ID: SMS, bomb, dial, blast, spam, empty, blank.

Users that install bomber apps are also likely to install apps
that auto-like or auto-comment on social media, presumably
to bomb and harass. Interestingly, nearly all auto-liking apps
do not appear to deliver on their promise, self-identifying as
“pranks”, with the notable exception of “404liker”, which is
often installed alongside malware. We found that several apps
coded under Evasion - Steganography, because they could
help abusers evade censoring, are typically co-installed with
bombers. These apps create huge strings of text or emojis
out of short messages or images that are sent repeatedly by
bombers to amplify the impact of their attacks. These bombing
attacks would be costly for victims that do not have unlimited
SMS messaging. Other apps in the top 50 are in unrelated
creepware categories, except perhaps for “SMS-encryption”,
which might be used for large string generation.

Seeding with Spoof SMS apps. To better understand how
SMS Spoofing apps are used, we seeded CreepRank with 18
Spoof - SMS apps and coded their intent and that of the top
50 apps (see Table IIIb). Among these 68 apps, we found 32
that enable impersonation. Pernicious use of these apps, such
as to damage a victim’s relationships, is directly suggested
in marketing materials for some of these apps (see Figure 1).
Such apps could also be used to elicit compromising responses
from intimate partners that are suspected of infidelity, similar
to the attack suggested by the tutorial app in Figure 6b. Of
particular interest are eight impersonation apps that enable
entire conversations to be falsified, which seem to be mostly
about constructing false evidence, such as the “Sending Fake

SMS app”, which markets itself to unfaithful intimate partners
for falsifying alibis. Several others are intended for installation
on a victim’s phone, where mimicked SMS, Facebook, or
WhatsApp notifications sent by the abuser can cause the
victim to open the spoofing app thinking that they have
received a genuine message from whomever the abuser chose
to impersonate. These apps have clear parallels to phishing
attacks but are under-studied.

PMI values indicate that the 15 anonymity-focused apps are
used by abusers more than victims, possibly to send anony-
mous messages that are difficult to block. “SMS Receive”
and similar apps enable users to receive messages at shared
anonymized numbers, such as for 2-factor authentication no-
tifications, and in conjunction with apps that provide burner-
phone and temporary email services. Rounding out the top 50
are 19 attack apps (mostly surveillance) and 2 defensive apps.

Seeding with Control-Hide Icon apps. Table IIIc shows
the top 50 results when we seed CreepRank with nine icon-
hiding apps. The top 50 includes 12 app-hiders, three of which
camouflage other apps by changing their icons or metadata,
while the rest hide app icons from the user interface. Several
apps hide their own icons, while others camouflage themselves
by posing as a calculator, currency exchanger, or flashlight.
Three of the hidden apps can only be opened by calling a
fake phone number, while most other hidden-content apps
require some sort of passcode. Users of app-hiders frequently
install apps that hide content, many of which provide dual
public and secret channels for content and/or communication.
Also noteworthy is “Hidden Apps”, a defensive app that
reveals the presence of hidden apps. The top 50 contained 9
additional defensive apps that provide access control for some
combination of the device itself, its apps, and incoming phone
calls. Eight other attack apps round out the top 50 results.

Hacking Tutorials. For further confirmation of our hypotheses
about how creepware apps are used, we turned to hacking
tutorial apps. We installed the hacking tutorials that were
prominent in CreepRank’s results or had high PMI scores with
abusive apps. We now describe three such tutorials.

“SpyBoy” was notable for its high PMI scores with at-
tack apps across many categories. It confirmed many of our
hypotheses by describing interpersonal attacks that cover a
remarkably large fraction of the creepware categories we
identified, including: email, HTML, SMS, and caller spoofing,
use of hack tools, remote control of devices, secret settings for
attack and defense, steganography, imposing WiFi use limita-
tions on other devices, and several categories of surveillance.

“Top Spy Apps” gives a ranked list of interpersonal surveil-
lance apps in general, and intimate partner surveillance apps
in particular (see Figure 6a). Each app has a page where it is
described and extolled for it’s best spying features.

“Cheating spouse tracker” includes vivid descriptions of
how to entrap a cheating spouse, recommending specific
surveillance apps (see Figure 6b).

10



Count Code

15 Bomber
14 Auto-Liking
10 Evasion-Steganograpy

6 Info Extraction
1 SMS Encryption
1 Harassment
1 Spoof
1 Surveillance

(a) Seed set of 7 Bomber apps

Count Code

13 (+11 seed set) Impersonate Sender
5 (+3 seed set) Impersonate Conversation

11 (+4 seed set) Anonymity
13 Surveillance and Dumping

4 Fake Surveillance
2 Spoof - Call Logs
1 SMS Blacklist
1 Evasion - Hidden Content

(b) Seed set of 18 SMS Spoofing apps

Count Code

20 Hidden Content
12 Hide Apps
9 Access Control
6 Surveillance
1 Hidden App Finder
1 Info Extraction
1 Fake Surveillance

(c) Seed set of 9 App Hiders

Table III: Coding results of the top 50 apps produced by CreepRank on 2017 install data when seeded with apps of different
categories. In the case of SMS spoofing apps, we re-coded the apps to capture their nuanced functionality.

(a) (b)

Fig. 6: (a) “Top Spy Apps” lists spyware apps and their uses
for interpersonal surveillance. (b) “Cheating spouse tracker”
includes guides recommending specific surveillance apps.

Y = Harassment – Bombers Y = Surveillance – Location

App Category X ∆XY App Category X ∆XY

Evasion – Steganography 5.79 CallerID – Location 1.52
Harassment – Automation 5.59 Harassment – Fake Surveillance 1.27
Spoof – HTML 3.19 Surveillance – Thorough 0.62
Spoof – Misc 2.71 Surveillance – SMS 0.38
Defense – Anti-harassment 2.59 Defense – Misc 0.17

Surveillance – Calls -0.11 None – Android Mods VM -0.63
Surveillance – Camera -0.13 Evasion – Steganography -0.63
CallerID – Misc -0.15 Harassment – Misc -0.68
Surveillance – Location -0.58 Tutorial – Root -0.75
CallerID – Location -0.60 Spoof – Misc -0.75

Table IV: Relative difference ∆XY between probabilities that
a device has an app from category X given that it has an app
from category Y = Harassment – Bombers or Y = Surveillance
– Location vs. it has an app from category X .

C. Characterizing Devices via Creepware

To better understand the nature of devices with creepware
installed, we analyze correlations between different categories
of apps co-installed on devices. For example, we hypothesize
that certain apps are typically installed on devices being used

by an abuser, while other apps are primarily installed on
victim devices. Let Y be a category of apps conjectured to be
indicative of a device’s role. We focus on Y being Harassment
– Bombers (likely installed on the device of abusers) or
Surveillance – Location apps (likely installed on the device
of a victim). The tables in Table IV show the five highest and
lowest app categories X for the two Y categories, where the
ranking for category X is calculated as the relative difference
∆XY = (Pr(X|Y ) − Pr(X))/Pr(X) where Pr(X) is the
probability of observing at least one app with category X on
a device, and Pr(X|Y ) is the probability of observing at least
one app with category X on a device given that the device
has at least one app with category Y .

As can be seen, harassment apps tend to be installed on the
same device as other harassment apps: the top four apps for Y
being Harassment – Bombers are all categories of apps useful
for sending harassing messages. For Y being Surveillance –
Location the situation is almost exactly reversed, with the top
four app categories being spyware related. This suggests that,
in some cases, it may be possible to characterize devices as
attacker-owned or victim-owned based on the types of apps
installed. Whether such predictions can be made accurate or
useful remains an open question.

D. Role of the Norton Mobile Security App
By obtaining our dataset from a security vendor, we only

have data from devices on which the vendor’s app is installed.
We wanted to investigate if the Norton app was most often
used preventatively or for post-infection cleanup. We iden-
tified 172 K devices on which the Norton app was installed
alongside one or more of the 107 thorough surveillance apps
we identified (including apps in CreepRank’s seed set). We
then dropped about 8 K potentially anomalous devices that had
more than 1 K apps installed in any one year. In 22 K of the
remaining 164 K devices, the Norton app was installed after
a surveillance app, suggesting post-infection cleanup. For the
rest of the devices, the security app was installed before the
surveillance app, suggesting it is being used preventatively.

This leads us to ask why an attacker would install a security
app on their device? A possible reason is that attackers are
frequently engaging in risky behaviors, such as installing ques-
tionable or off-store apps and rooting devices. Thus, they may
use the security app to guard against possible compromise.

11



No Device Filtering AV Device Filtering

Count Code Count Code

19 Malware 4 Malware
1 Not Found 3 Not Found

11 Surveillance
1 Spoof Social Media
1 Anti-Surveillance

Table V: Coding of top 20 apps for which we lacked market-
place data, with and without AV-test device filtering

AV-Testing Devices and Offstore Apps: To identify devices
used in AV-testing, we examined apps coded as None - Android
Mods / VM that may be used for AV testing. Seven of these
apps (e.g., apps that emulate Linux or Chromium or enable
software development) seemed unlikely to be installed on
typical user devices. We also noticed that the Appium Mobile
App Automation toolkit [36] often appeared on devices with
malware and other Android-modification apps, which suggests
its use in AV testing. Thus, we added Appium to the other
seven AV-testing apps, removed devices containing any of
these eight apps from the data, and re-ran CreepRank. The ef-
fects on the overall rankings of apps that appeared in Norton’s
marketplace data were modest, except for a few additional
Android-modification apps that dropped precipitously in the
rankings, likely because they were also used in testing.

We expected that filtering out AV-test devices would have
a large impact on CreepRank’s rankings of malware apps.
To analyze this, we compared the top 20 ranked apps, both
with and without filtering, for which Norton did not have
marketplace data (see Table V). We found that filtering devices
with apps indicative of AV testing has a dramatic impact on
the rankings, with no overlapping apps between its top 20
list and the unfiltered top 20 list. The unfiltered top 20 list
consists primarily of malware apps on devices where Appium
automation apps appear. By contrast, CreepRank’s top 20 list
for filtered devices consists of apps that appear to have existed
on the Google Play store at one time, but probably only briefly,
as few of the sites that scrape the Google Play store have
records of these apps. Most were surveillance apps, a few
were malware, and there was one defense and one spoofing
app. We could not find any useful information about 3 apps.

E. Creepware over Time

We now examine how creepware evolves over time by
running CreepRank on the 2018/19 dataset (spanning May 1st
2018 to May 1st 2019) and comparing the results to the 2017
dataset. As noted above, CreepRank tends to perform better
as the number of devices infected by its seed set increases.
However, the 18 surveillance apps used as the original seed
set on the 2017 data had declined in popularity by 2018/19. To
compensate, we added another 32 thorough surveillance apps
that CreepRank identified in the 2017 data, selecting apps that
were prevalent in 2018/19. This resulted in a seed set of 50
apps installed on 32,719 devices in 2018/19, compared to 18
apps installed on 35,811 devices in 2017.

Category Counts Largest Sub-Category Change

Category 2017 2018/19 Sub-Category 2017 2018/19 ∆

CallerID 46 11 Location 40 11 29
Control 13 1 Hide Icon 9 0 9
Defense 42 58 Anti-Surveil 38 51 13
Evasion 28 16 Steganography 15 0 15
Harassment 80 39 Fake-Surveil 56 24 32
Info extraction 75 164 Hack-Tools 11 70 59
Spoof 115 54 Burner-Phone 41 15 26
Surveillance 372 445 Social-Media 105 179 74
Tutorial 86 72 Hacking 63 44 19
None 143 140 Pay-Per-Install 27 1 26

Table VI: Count of app categories in CreepRank’s top 1,000
for 2017 and 2018/19 data and, within each category, the sub-
category with the greatest change (growth in bold).

We ran CreepRank on the 2018/19 data and following the
same procedures as before, three authors coded the 2018/19
top 1,000 ranked apps. We then reviewed the top 1,000
to identify trends and determine if any new categories of
creepware had emerged, but found that the existing codebook
covered all common cases. Many 2017 apps fell out of use
in 2018/19 and the two top 1,000 lists overlap by only 110
apps, suggesting there are significant changes to the creepware
ecosystem over time.

Table VI shows the total number of apps in each category
across 2017 and 2018/19, as well as, for each category, the
sub-category with the largest change between the time periods.
From the table, it is clear that the privacy of creepware victims
is still under assault. The information extraction category more
than doubled, with hacking tools the largest area of growth.
The number of surveillance apps also grew substantially, with
increases in social media, microphone, SMS, and thorough
surveillance apps more than making up for a nearly 50% drop
in location surveillance apps. Interestingly, we did not find
many new spoofing apps, although 21 apps from the 2017
data were still active and among the most popular apps, by
installation count, in 2018/19.

On a more positive note, although the number of social
media surveillance apps grew in 2018/19, our analysis of
these new spying apps suggests that new security precautions
by WhatsApp in particular have curtailed access to message
content, leaving these apps to report on usage statistics and
little else. We also noticed an increase in the fraction of
surveillance apps that are recommended for child safety use
relative to intimate partner surveillance, which could indicate
a change in how developers are advertising their surveillance
apps, perhaps in response to Google’s policy and enforcement
changes as a consequence of recent studies [5].

VIII. DISCUSSION

Practical impact. The analyses described in previous sections
suggest that CreepRank is a valuable tool for discovering and
making sense of a broad range of apps used in interpersonal
attacks and, to a lesser extent, defense. These findings have
already proven practically useful. Thus far, Norton has begun
to scan and warn customers about CreepRank-identified apps
that were verified as creepware by our manual coding. These

12



apps are also now flagged as potentially dangerous by the
IPV Spyware Discovery tool, which is used in Cornell Tech’s
computer security clinic for IPV survivors [9], [10].

We also went through a responsible disclosure process with
Google to report 1,095 apps we discovered that may have
been on the Google Play store in violation of their policies.
Google Play provides policies designed to prevent abusive
apps like creepware. Its Potentially Harmful Applications
policy [37] focuses mostly on malware prevention. More
related is the “Privacy, Security, and Deception” portion of
Google’s Developer Policy Center [38], whose sub-policies
on “Device and Network Abuse”, “Malicious Behavior”, and
“Deceptive Behavior” contain many rules that prohibit creep-
ware functionality. Particularly prohibited are spoofing and
fake-surveillance apps that “attempt to deceive users or enable
dishonest behavior”; fraud-based fake-ID apps that “generate
or facilitate the generation of ID cards”; hacking tools and
tutorials that “facilitate or provide instructions on how to
hack services, software or hardware, or circumvent security
protections”; and surveillance and commercial spyware apps.
The policy also states that “Any claim that an app is a
‘prank’, ‘for entertainment purposes’ (or other synonym) does
not exempt an app from application of our policies.” Google
ultimately determined that 813 of the 1,095 creepware apps we
reported violate their policies, and those have been removed.

The creepware problem moving forward. CreepRank en-
abled the first measurement study of the broad creepware
ecosystem, and this measurement study has, in turn, already
had positive practical impact by surfacing a large set of verified
creepware. Our results suggest that creepware is a widespread
problem and this raises a number of tricky questions about
how to mitigate their harms moving forward.

Keeping creepware out of app stores will be challenging.
New apps tend to rise in the place of removed apps, and
developers attempt to obfuscate their app’s purpose in order to
evade policy enforcement. For example, recent bombing apps
use the term “text repeater” and avoid direct references to
bombing. While this may make these apps harder for attackers
to find, it also makes it harder to enforce policy at scale.

A next step would be to create and deploy a system capable
of detecting creepware in a (semi-)automated fashion. Creep-
Rank provides a starting point and could be used as a first step
to identify candidate creepware apps, manually verify them to
generate labeled training data, and then use this data to train
machine learning classifiers to detect surveillance, spoofing,
harassment, and other pernicious app categories. Further work
is needed to develop and evaluate such an approach, including
gauging how often one would need to update CreepRank’s
output, how many labeled apps are needed, what types of
features are effective to use, and more.

A particular challenge facing such an approach would
be dealing with data poisoning attacks, in which attackers
attempt to evade detection by, for example, gaming an app’s
CreepRank. This is related to the challenge of detecting
emulated testing and research devices, since such emulation

could be used to inject malicious co-installation patterns. As
discussed in Section VII-D, we observed in our dataset some
devices that could fall into this category. While we do not
believe these affected our measurement study results thus
far, should CreepRank or similar approaches be put to use
moving forward, we may have to contend with deployment
of malicious emulation or research devices that pollute data.
Ancillary measures such as the detection of cloned devices
may help, and we leave exploring these issues to future work.

Even with good detection capabilities, deploying detection
tools raises a host of questions. In addition to screening of app
stores, we would like to directly integrate creepware detection
into a commercially available anti-virus software. But making
creepware detection actionable for users remains a challenge.
Much of the creepware we discovered are harassment apps
that are installed on abuser devices, and issuing creepware
notifications to abusers may not be useful. Whether and how
one can craft messaging to deter interpersonal attackers are
important questions for future work.

For creepware that is installed on a victim’s device, ques-
tions remain regarding how and when to notify them. For
instance, if the AV notifies the user immediately (as done
currently), an abuser with physical access to the device might
dismiss or ignore the warnings and disable the detection
software. But if the detection software attempts to wait until
it is more certain that the original owner has possession of
the device, there are still issues of victim safety. For instance,
removal of creepware could result in escalation of interper-
sonal attacks to physical violence in cases of IPV. This threat
might be mitigated by designing notifications that attempt to
take safety planning into consideration, which would require
additional exploration.

IX. CONCLUSION

We explored the landscape of apps that are likely to be
used in interpersonal attacks, called creepware. We created
CreepRank, an exploratory algorithm based on the principle
of guilt by association, and ran it on a dataset of billions of
app installations. We discovered and explored many categories
of apps that enable surveillance, harassment, impersonation,
information theft, concealment, and more. Our methods and
analysis of creepware are useful for app stores and anti-virus
vendors seeking to improve safety for mobile device users.

ACKNOWLEDGEMENTS

The authors would like to thank our shepherd Emily Stark
and the anonymous reviewers of our study for their feedback
and suggestions to improve the quality of our manuscript.
We acknowledge funding support under NSF award numbers
1717062, 1916096, 1916126, and gifts from Google.

REFERENCES

[1] D. Freed, J. Palmer, D. Minchala, K. Levy, T. Ristenpart, and N. Dell,
“Digital technologies and intimate partner violence: A qualitative anal-
ysis with multiple stakeholders,” PACM: Human-Computer Interaction:
Computer-Supported Cooperative Work and Social Computing (CSCW),
vol. 1, no. 2, p. Article 46, 2017.

13



[2] ——, “A Stalker’s Paradise: How Intimate Partner Abusers Exploit
Technology,” in Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI). New York, NY, USA: ACM,
2018, pp. 667:1–667:13.

[3] T. Matthews, K. O’Leary, A. Turner, M. Sleeper, J. P. Woelfer, M. Shel-
ton, C. Manthorne, E. F. Churchill, and S. Consolvo, “Stories from
survivors: Privacy & security practices when coping with intimate part-
ner abuse,” in 2017 CHI Conference on Human Factors in Computing
Systems (CHI), 2017, pp. 2189–2201.

[4] N. Sambasivan, A. Batool, N. Ahmed, T. Matthews, K. Thomas, L. S.
Gaytan-Lugo, D. Nemer, E. Bursztein, E. F. Churchill, and S. Consolvo,
““They Don’t Leave Us Alone Anywhere We Go”: Gender and Digital
Abuse in South Asia,” in CHI Conference on Human Factors in
Computing Systems (CHI), 2019.

[5] R. Chatterjee, P. Doerfler, H. Orgad, S. Havron, J. Palmer, D. Freed,
K. Levy, N. Dell, D. McCoy, and T. Ristenpart, “The spyware used in
intimate partner violence,” in IEEE Symposium on Security and Privacy
(S&P), 2018, pp. 441–458.

[6] Y. Ye, T. Li, S. Zhu, W. Zhuang, E. Tas, U. Gupta, and M. Abdulhayoglu,
“Combining file content and file relations for cloud based malware
detection,” in International Conference on Knowledge Discovery and
Data Mining (KDD), 2011, pp. 222–230.

[7] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitraş, “The
dropper effect: Insights into malware distribution with downloader graph
analytics,” in Conference on Computer and Communications Security
(CCS), 2015, pp. 1118–1129.

[8] A. Tamersoy, K. A. Roundy, and D. H. Chau, “Guilt by association: large
scale malware detection by mining file-relation graphs,” in International
Conference on Knowledge Discovery and Data Mining (KDD), 2014,
pp. 1524–1533.

[9] S. Havron, D. Freed, R. Chatterjee, D. McCoy, N. Dell, and T. Ris-
tenpart, “Clinical computer security for victims of intimate partner
violence,” in USENIX Security Symposium, 2019, pp. 105–122.

[10] D. Freed, S. Havron, E. Tseng, A. Gallardo, R. Chatterjee, T. Ristenpart,
and N. Dell, ““Is my phone hacked?” Analyzing clinical computer
security interventions with survivors of intimate partner violence,”
PACM: Human-Computer Interaction: Computer-Supported Cooperative
Work and Social Computing (CSCW), vol. 3, pp. 202:1–202:24, 2019.

[11] L. Grady, “Random walks for image segmentation,” IEEE Transactions
on Pattern Analysis & Machine Intelligence, no. 11, pp. 1768–1783,
2006.

[12] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu, “Automatic mul-
timedia cross-modal correlation discovery,” in International Conference
on Knowledge Discovery and Data Mining (KDD), 2004, pp. 653–658.

[13] SpoofBox, “Spoof text message trailer,” https://www.spoofbox.com/en/
preview/spoof-text, 2019, online; accessed 18 Nov 2019.

[14] N. E. Willard, Cyberbullying and cyberthreats: Responding to the
challenge of online social aggression, threats, and distress. Research
press, 2007.

[15] P. K. Smith, J. Mahdavi, M. Carvalho, S. Fisher, S. Russell, and
N. Tippett, “Cyberbullying: Its nature and impact in secondary school
pupils,” Journal of child psychology and psychiatry, vol. 49, no. 4, pp.
376–385, 2008.

[16] B. Farinholt, M. Rezaeirad, P. Pearce, H. Dharmdasani, H. Yin,
S. Le Blond, D. McCoy, and K. Levchenko, “To catch a ratter:
Monitoring the behavior of amateur DarkComet RAT operators in the
wild,” in IEEE Symposium on Security and Privacy (S&P), 2017, pp.
770–787.

[17] S. Le Blond, A. Uritesc, C. Gilbert, Z. L. Chua, P. Saxena, and E. Kirda,
“A Look at Targeted Attacks Through the Lens of an NGO,” in USENIX
Security Symposium, 2014, pp. 543–558.

[18] W. R. Marczak, J. Scott-Railton, M. Marquis-Boire, and V. Paxson,
“When governments hack opponents: A look at actors and technology,”
in USENIX Security Symposium, 2014, pp. 511–525.

[19] P. Kotzias, L. Bilge, and J. Caballero, “Measuring PUP prevalence and
PUP distribution through pay-per-install services.” in USENIX Security
Symposium, 2016, pp. 739–756.

[20] K. Thomas, J. A. E. Crespo, R. Rasti, J. M. Picod, C. Phillips, M.-
A. Decoste, C. Sharp, F. Tirelo, A. Tofigh, M.-A. Courteau, M.-A.
Courteau, L. Ballard, R. Shield, N. Jagpal, M. A. Rajab, P. Mavromma-
tis, N. Provos, E. Bursztein, and D. McCoy, “Investigating commercial
pay-per-install and the distribution of unwanted software.” in USENIX
Security Symposium, 2016, pp. 721–739.

[21] Y. Hu, H. Wang, L. Li, Y. Guo, G. Xu, and R. He, “Want to
earn a few extra bucks? a first look at money-making apps,” in
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2019, pp. 332–343.

[22] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey
of mobile malware in the wild,” in ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices (SPSM), 2011, pp. 3–14.

[23] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “DREBIN: Effective and explainable detection of android
malware in your pocket.” in Network and Distributed Systems Security
Symposium (NDSS), 2014, pp. 23–26.

[24] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: Android malware char-
acterization and detection using deep learning,” Tsinghua Science and
Technology, vol. 21, no. 1, pp. 114–123, 2016.

[25] M. Hatada and T. Mori, “Detecting and classifying Android PUAs by
similarity of DNS queries,” in IEEE Annual Computer Software and
Applications Conference (COMPSAC), vol. 2, July 2017, pp. 590–595.

[26] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming
information-stealing smartphone applications (on Android),” in Trust and
Trustworthy Computing (TRUST), 2011, pp. 93–107.

[27] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining API-level features
for robust malware detection in Android,” in International conference on
security and privacy in communication systems (SecureComm), 2013,
pp. 86–103.

[28] D. H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, , and C. Faloutsos,
“Polonium: Tera-scale graph mining and inference for malware detec-
tion,” in SIAM International Conference on Data Mining (SDM), 2011.

[29] J. Yoo, S. Jo, and U. Kang, “Supervised belief propagation: Scalable
supervised inference on attributed networks,” in 2017 IEEE International
Conference on Data Mining (ICDM), 2017, pp. 595–604.

[30] S. Seneviratne, A. Seneviratne, P. Mohapatra, and A. Mahanti, “Your
installed apps reveal your gender and more!” SIGMOBILE Mobile
Computing Communications Review (SIGMOBILE), vol. 18, no. 3,
pp. 55–61, Jan. 2015. [Online]. Available: http://doi.acm.org/10.1145/
2721896.2721908

[31] E. Malmi and I. Weber, “You are what apps you use: Demographic
prediction based on user’s apps,” in International Conference on Web
and Social Media (ICWSM), 2016, pp. 635–638.

[32] M. J. Breiding, M. C. Black, and G. W. Ryan, “Prevalence and risk
factors of intimate partner violence in eighteen U.S. states/territories,
2005,” American Journal of Preventative Medicine, vol. 34, no. 2, pp.
112–118, 2008.

[33] J. L. Fleiss, “Measuring nominal scale agreement among many raters,”
Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[34] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
Journal of the ACM, vol. 46, no. 5, pp. 604–632, Sep 1999.

[35] K. Ward Church and P. Hanks, “Word association norms, mutual infor-
mation, and lexicography,” Computational Linguistics, vol. 16, no. 1,
pp. 22–29, 1990.

[36] N. Verma, Mobile Test Automation With Appium. Packt Publishing,
2017.

[37] “Google play protect - potentially harmful application (PHAs)
categories,” https://developers.google.com/android/play-protect/
phacategories, online; accessed 18 Nov 2019.

[38] “Google play store - developer policy center,” https://play.google.com/
about/developer-content-policy/, online; accessed 18 Nov 2019.

APPENDIX

A. Seed Set Apps
Table VII shows the 18 covert surveillance apps that we used

as the seed set for running CreepRank on 2017 Norton app
installation data. These apps were identified by Chatterjee et
al. [5] as covert surveillance apps that are primarily distributed
outside of Android app stores such as Google Play.

B. Examples of PMI Analyses
In Section VII-A we provide examples of apps whose

primary use case was unclear during coding, and for which the
Pointwise Mutual Information (PMI) metric gave us valuable
insights into the context in which these apps are most often

14

https://www.spoofbox.com/en/preview/spoof-text
https://www.spoofbox.com/en/preview/spoof-text
http://doi.acm.org/10.1145/2721896.2721908
http://doi.acm.org/10.1145/2721896.2721908
https://developers.google.com/android/play-protect/phacategories
https://developers.google.com/android/play-protect/phacategories
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/


Title Package Name

System Service com.android.system
Wi-Fi Settings com.wifiset.service
Data Backup com.spy2mobile.light
Sync Service com.android.core.monitor.debug
System Service com.mxspy
Backup com.spappm mondow.alarm
SystemTask! com.spytoapp.system
System Service com.guest
System Services com.topspy.system
UPreferences com.android.preference.voice
Secure Service com.safesecureservice
Mobile Spy com.gpssettings.src.v65
System Service com.ispyoo
Update service sys.framework
com.android.devicelogs com.android.system.devicelogs
Internet Service com.sec.android.internet.service.ik
System Services com.hellospy.system
System Update Service com.ws.sc

Table VII: Seed set of surveillance apps used by CreepRank
on 2017 app installation data [5].

used in practice. Here we provide more details in Table VIII
which lists, for the five apps described in that section, the ten
apps with the highest corresponding PMI scores. To remove
noise from the PMI rankings, we exclude PMI values for apps
that co-occurred with with the target app only once.

C. Description of Codebook

This appendix describes the codes developed during analysis
of the top 1,000 apps produced by CreepRank on 2017 data.
All counts provided here are in reference to the CreepRank
2017 top 1,000 apps. Further coding of 2018/2019 data did
not require modifications to the codebook.

Caller ID - Misc: 6 apps provide caller ID functionality that
did not fit into other sub-categories. These apps often enable
call blocking or claim to reveal private phone numbers.

Caller ID - Location: 40 apps bundle caller-id functionality
with location tracking of placed calls, usually claiming cell-
tower information as the source of location information (when
the source is specified at all). Many of these apps claim to be
able to use cell tower information to determine the location
of incoming calls. Co-occurrence data suggests these apps are
used by attackers and victims alike.

Control – Hide Icon: 9 apps hide the icons of other apps
from the home screen or app launcher screen (usually both),
rendering their presence sufficiently covert as to be unlikely
to be noticed and removed.

Control – Use Limitations: 4 apps enable the user to
interrupt the internet access of other devices on the WiFi
network, typically by staging ARP-spoofing network attacks.
The “NetCut” app is one of many such apps.

Defense – Misc: “Hidden Apps” is the sole miscellaneous
defense app among the 2017 top 1,000 apps. It is a hidden
app-icon revealer used to counter Control - Hide Icon apps.

Defense – Anti Harassment: We found 3 apps that appear
to be used to mitigate call and SMS bombing. These apps
are frequently co-installed with other bombing-defense apps,
such as apps with caller-id and caller blacklisting functionality.
Two of these apps facilitate muting the device’s system volume

and/or vibration alerts during set times or for a period of time,
while another app blacklists SMS senders.

Defense – Anti Surveillance: 38 apps counter surveillance
attempts through a variety of means, including access con-
trol for incoming phone calls and individual apps, counter-
surveillance, and shoulder-surfing defense. Specific examples
are provided in Section V-B.

Evasion – Alternative Input: 4 apps provide accessibility-
focused mechanisms for enabling user input, such as control
of a mouse-style pointer based on the tracking of face or
eye movement. These apps are routinely installed alongside
surveillance apps that monitor the device and enable it to be
controlled remotely.

Evasion – Hidden Content: Most apps in this category
selectively hide content including images, WhatsApp content,
contacts, and communications. We found 9 apps when coding
2017 data, and many more when seeding CreepRank with
Control - Hide Icon apps. Many of these apps either hide
their icons or pose as an unsuspecting app, as in the case of
the “Smart Hide Calculator”. We also found several messaging
platform apps designed specifically for secrecy, both through
heavy use of encryption and ephemeral messaging.

Evasion – Steganography: A few apps, such as “Pixel-
knot”, use steganography to hide messages in images such
that a human would not perceive them, suggesting a desire for
secrecy. However, most of the apps we found created messages
that can be interpreted by humans but not readily interpreted
by machines, such as emojifying apps and apps that convert
words to images or ASCII art. We were surprised to find that
most of these were being used by attackers, possibly to avoid
censorship on social media platforms.

As discussed in Section VII-B, there are several apps that
we coded initially as steganography apps that actually seem to
be used to amplify the effect of SMS bombing attacks. These
apps create ASCII art or do image-to-text conversion, creating
huge strings that are sent over and over by bombing apps.

Harassment – Automation: 11 apps automate social media
activity, such as auto-reply, schedule-based message senders,
auto-commenting, and chatbots. These apps show varying
degrees of malicious intent, typically correlating most strongly
with social media surveillance apps, bombing apps, or mal-
ware. Most of these apps focus on WhatsApp.

Harassment – Bomber: 10 apps are designed to send high
volumes of texts, calls, emails, social media posts, etc., though
a few instead send messages that are so large as to cause a
serious nuisance or cost to the victim. These apps seem to
have a short shelf life on app stores, but new apps rise to take
their place. Recent apps of this ilk are more likely to refer to
themselves as “text repeaters” than as “bombers.”

Harassment – Fake Surveillance: The most prevalent
harassment apps are the 56 apps that scare victims by giving
them a false impression that they are being surveilled. Most
of these self-described “prank” apps can be installed on the
abuser’s device and shown briefly to the victim while the app
simulates hacking of the victim’s device or accounts.

Information Extraction – Misc: 3 apps did not fit into sub-

15



Cell Tracker Call Spoofer Lodefast Check Cashing App SMS Retaliator Unseen No Last Seen

Mobile Phone Tracker Fake Call (1) Card Details Finder AirMon No Last Seen or Read
Cell Phone Tracker Tutorial Spoof Call Bin Checker Droidbug Pentesting Forensic FREE Private Read for FB Messenger
Mobile Phone Tracked Phone Gangster Coupon Bank Card Validator PirateBox SpyGo For Whatsa Prank
TangTracker e-Safety App Spoof my Phone Free People Search Peek You Manual Hacker Gold Invisible Chat for Facebook
Free Cell Phone Tracker Spoof Caller Credit Card Revealer Bugtroid Pentesting FREE Unseen: no seen marks
Cheating Spouse Untraceable Calls Credit Card Validator with CVV Bugtroid Pentesting PRO Last seen online hider for whatsapp
Cell Phone Tracker Number Spoof SMSPhone Free People Search Public Records IPConfig Blue tick
Mobile Tracker Phone Id Faker CallLog & SMS Tracker HTTP Tools hack and pirate face prank
GuestSpy: Mobile Tracker Spoof SMS Sender SpyFly Wicap. Sniffer Demo ROOT WhatsOn for Whatsapp
Where the hell are you? Fake Call (2) AWS Code Viewer Super Download - Booster WhatsSpy VIP! PRANK

Table VIII: For five example apps, we show the top 10 apps that co-occur at least twice, in order of descending PMI scores.

categories, including two with decryption functionality and
one that captures extended screenshots of content.

Information Extraction – Dump: 32 apps perform large-
scale dumps of a broad variety of content, which include
WhatsApp database decryptors and dumpers, extractors of
forensic information, call logs, social media contacts, location
history, deleted content, hidden or encrypted content, etc.

Information Extraction – Fraud: We found 6 apps with
use cases that pertain to fraud, such as credit card num-
ber revealers, details finders, validators, and generators. Two
examples are the “Bank Card Validator” and the “Credit
Card Revealer” app. Apps that generate fake ID card images
routinely appear alongside credit card revealing apps, which
strengthens the hypothesis that they the card revealers are used
for fraud. The “Lodefast Check Cashing App” enables the
cashing of checks without visiting a bank, and we re-classified
it under fraud when PMI values revealed that it is usually
installed alongside fraud apps in our dataset (see Table VIII).

Information Extraction – Hack Tools: 11 apps provide
hacking tools, three of which focus on extracting passwords,
while one looks passwords up in public data breach repos-
itories. The remainder enable sniffing of wireless network
traffic or provide pen-testing and attack functionality. There
was a noticeable increase in the number of hacking apps
in 2018/2019 data, among which sniffing apps were very
prevalent.

Information Extraction – People Search: 12 apps look
up personal details pertaining to individuals. Searches may
be keyed off of phone number, names, email addresses, etc,
frequently providing extensive personal information. The most
unique app in this category is “BaeList”, which advertises as
a tool to catch cheaters by alerting its users if a suspected
cheater’s phone number has been searched for by another user.

Information Extraction – System: 7 apps extract Android
system details, such as IP address, IMEI, and SIM cards. The
purposes of such apps are usually left unspecified, but they
are useful for Control - Use Limitations apps and for network-
based surveillance tools.

None – Misc: 124 apps have no discernible utility for an
attacker or victim. Most of these apps fit cleanly into sub-
categories described below. Of the 55 apps that do not fit
into sub-categories, around half are false positives introduced
by Pay-Per-Install apps, AV-testing (some of these apps are
used extensively as benign examples), and cloned devices. In a

few cases, app titles suggest malicious functionality that is not
delivered, such as the deceptively named “Spy Mobile” app.
The remainder of these apps correlate strongly with malicious
creepware, and the presence of some apps, such as the “Blue
Whale Game,” is alarming, as it issues a series of self-harm
challenges and culminates in a suicide challenge.

None – Android and OS Mods: 21 apps modify or
extend Android, such as emulating the Chromium OS, adding
windowing support, etc. It is evident from the number of
hacking-related apps and tutorials in the data that the hacker
community makes ample use of creepware, and co-occurrence
data suggests such users are likely to root their devices and
experiment with OS modification. Also contributing to the
presence of these apps are significant numbers of AV-testing
and researcher devices, as discussed in Section VII-D.

None – Communication: 13 apps provide communica-
tion functionality, such as extending WhatsApp with group
messaging capabilities, providing free SMS or phone calls,
or enabling walkie-talkie functionality. Many of these apps
advertise as ways to meet local singles.

None – Index: The primary purpose of 9 apps is to provide
indices of items on sale or of money-making opportunities.
The former primarily index online deals, though many indi-
rectly encourage the installation of additional apps.

None – Pay Per Install (PPI): 27 apps incentivize users to
install other apps on their devices, primarily by offering pay-
ments or free calling services. App developers that advertise
through PPI apps are able to artificially increase the installation
counts of their apps and receive fake favorable reviews.

None – Tutorial Misc: 11 tutorial apps did not fit into a
strong trend, including apps that teach skills useful for hacking
but that do not mention hacking explicitly (e.g., DOS CMD
commands). Those that seem most benign use the word “hack”
in their titles, which may have led to their being downloaded
under false expectations.

None – Tutorial Development: 6 apps focus on app de-
velopment, half of which provide the ability for non-technical
users to create their own apps (e.g., by providing templates).

Spoofing – Misc: 4 apps that provide spoofing functionality
do not fit cleanly into prominent sub-categories of spoofing
apps: two that enable email spoofing, and two that spoof the
device’s MAC address.

Spoof – Burner Phone: 41 apps provide the ability to
place anonymous calls or SMS messages, with many explicitly
advertising for use in evading call blocking. These apps can be

16



used both by abusers who intend to harass and by surveillance
victims seeking to evade surveillance. These apps function as
“burner phones” in that they provide phone numbers that can
be used once and then discarded.

Spoof – Fake Call: 6 apps provide the ability to fake
incoming calls or call logs, enabling users to spoof both the
source phone number and caller-id. Fake incoming calls are
often advertised as useful for getting out of “sticky situations”,
but other abusive purposes can be readily imagined.

Spoof – HTML: 5 apps enable the browser’s rendered
content to be altered, including changing the targets of HTML
tags, which could be used to phish a victim.

Spoof – Image: 9 apps modify or create false images or
videos, including face-swapping tools that can be used for
impersonation attacks or for revenge porn [4]. Two apps enable
images to be shared on WhatsApp for which the thumbnail
provided by the app differs from the underlying image. Two
others generate fake ID card images.

Spoof – SMS: 20 apps mask the true sender of SMS
messages. Unlike burner-phone apps, the intent of many SMS
spoofing apps is to pose as another individual. Many allow
entire chains of text messages to be faked.

Spoof – Social Media: We found social media spoofing
apps that impersonating senders and construct fake message
chains. 7 of the 8 apps in this category spoof WhatsApp
messages, while the 8th spoofs Facebook Messenger.

Spoof – Suppress Caller ID: 4 apps allow senders to fake
or block caller ID information on the device where the app is
installed. Most apps enable selective disabling or spoofing of
caller ID on a per-call or per-sender basis.

Spoof – Thorough: 8 apps spoof in multiple ways. Most
common were apps that combine burner-phone functionality
with the ability to spoof caller-ID and voice spoofing. One app
bundles fake email and SMS functionality.

Spoof – Voice: 10 apps use voice modification to mask
identity or make a voice sound scary. Many of these are
playful, but they do appear regularly alongside abusive apps.

Surveillance – Misc: Surveillance apps were the largest
category in our data. While most surveillance apps fit cleanly
into sub-categories, four apps were not part of any trend. These
include two key-loggers, one app that is a viewer for keylogger
installed on a PC, and one that logs touch input patterns.

Surveillance – Calls: These apps provide ongoing access to
call histories or continual or selective on-demand recordings of
phone calls without the victim’s consent. 13 of the 18 apps in
this category enable call-recording, with all but one claiming
the ability to perform covert automated recording of calls. The
remaining five provide ongoing access to call logs.

Surveillance – Camera: 15 apps turn on the camera and
microphone, typically forwarding a stream to a remote device.
Roughly half are marketed for covert use. Others re-purpose
devices as security cameras or baby monitors, although PMI
data suggests that many of these are also used for covert
surveillance.

Surveillance – Location: 90 apps track location and little
else, though location tracking is also offered by most thorough

surveillance apps, making it the most common type of surveil-
lance overall. Some of these apps are not covert and seem to
be for child safety or business use cases, but most of the apps
surfaced by CreepRank explicitly state, or strongly hint, that
they are designed for covert tracking.

Surveillance – Microphone: 11 apps record the device’s
microphone, often to remotely turn on the microphone on a
victim’s device. Four apps use the microphone to enhance
hearing, with titles like “Ear Agent: Super Hearing.” While
many of these apps market themselves for people with hearing
disabilities, most encourage spying.

Surveillance – Screen: 5 apps allow the device’s screen to
be recorded, streamed, or snapshotted as their main purpose.

Surveillance – SMS: 9 apps focus exclusively on forward-
ing or snooping on SMS messages.

Surveillance – Social Media: Fully 105 apps enable con-
tinuous surveillance of social media accounts. Most prevalent
are apps that enable access to multiple WhatsApp accounts
on a single device, which can be used for benign purposes.
However, malicious use of such apps is apparent in co-
installation data and some of the apps themselves, as with
“Clone Whatsweb Pro” which prompts, “Enter WhatsApp
Victim’s Device.” Another group of apps provides users with
digests of who viewed their social media profile.

Surveillance – Social Media Covert: 26 apps explicitly
market their ability to surveil social media accounts covertly,
such as by turning off indicators that abusers are logged into
victim accounts and reading their WhatsApp messages.

Surveillance – Thorough: 90 apps provide multiple means
of surveillance. App descriptions are often generic explana-
tions of the app’s capabilities without reference to illegal use
cases, though in deference to app store policies or public
pressure, some have since renamed themselves, as in the case
of “GirlFriend Cell Tracker”, which is now known as “Family
Locator for Android.” Suggested uses are most often anti-theft
and parental supervision, but some mention remote control of a
device or explicit “Spy”, “Family”, and “GirlFriend” tracking.

Tutorial – Hacking: 61 apps are hacking tutorials and
provide device-hacking advice, tips, news, glossaries, and
forums. “Spyboy” is both the most popular and most likely
to be on devices with apps that appear to have abusive intent.

Tutorial – Rooting: 6 apps teach users how to root a device
or actually do so. One such app, the “Kingo ROOT” app, is
the 4th most prevalent app in the top 1,000, and is 5 times as
prevalent as the other 5 rooting apps put together.

Tutorial – Settings: 16 apps provide guides and tools
for changing Android “Secret Codes”. These apps correlate
strongly with hacking-focused tutorials.

17



Category Sub-Category Title Package name

CallerID Misc Hello — Caller ID & Blocking com.facebook.phone
Location Mobile Number Call Tracker com.bhimaapps.mobilenumbertraker

Control Use-Limitations NetCut com.arcai.netcut
Hide-Icon Hide App-Hide Application Icon com.thinkyeah.apphider

Defense Misc Hidden Apps soo.project.findhidden
Anti-Harassment Sms Retaliator com.openwave.smsretaliator
Anti-Surveillance Oops! Applock com.keybotivated.applock

Incoming Call Lock - Protector com.freesmartapps.incoming.call.lock.manager

Evasion Alternative-Input EVA Facial Mouse com.crea si.eviacam.service
Hidden-Content Smart Hide Calculator com.ids.smartcalculator
Steganography PixelKnot: Hidden Messages info.guardianproject.pixelknot

Harassment Misc Blue Whale Game us.bluewhalegame.free
Automation AutoResponder for WhatsApp NEW tkstudio.autoresponderforwa
Bomber Message Bomber -send 5000+ sms com.logicup.messagebomber

SMS Retaliator com.openwave.smsretaliator
Fake-Surveillance Other Number Location Tracker com.trackyapps.other number location tracker

SpyGo For Whatsa Prank com.spygo.espiagowhatsa
WhatsSpy VIP! PRANK com.adm.whatsspyvipprank

Info-Extraction Misc Decrypto info.valky.decryptor
Dump Inkwire Screen Share + Assist com.koushikdutta.inkwire
Fraud Lodefast Check Cashing App com.lodestar.checkcashing.lodestar

Bank Card Validator com.ndquangr.cardreader
Credit Card Revealer com.stb.cch
Card Details Finder carddata.carddatafinder.com.carddatafinder

Hack-Tools Droidbug Pentesting & Forensic FREE com.droidbugfree.es
People-Search BaeList com.baelist.www
System Mobile Sim and Location apptrends.mobile sim and location info

None Misc Spy Mobile it.linergy.spymobilewifi
Android-Mods-VM Never Uninstall Apps - SpaceUp com.spaceup
Communication WhatsFriend for Whatsapp com.bondrr.whatappfriends.chat
Index FileChef-OpenDirectory Finder com.zqlabs.filechef
Pay-Per-Install Qbucks com.company.qbucks
Tutorial-Development Master Android net.androidsquad.androidmaster
Tutorial-Misc Mobile Software Flashing Vol—2 com.wMobileSoftwareCrackBoxall 4969181

Spoof Misc Fake Mailer: Send and Receive Fake Email gq.fakemailer.fakemailer
Burner-Phone SMS Receive com.smsreceive
Fake-Call Fake Call caller.phone.id.fakecall
HTML Edit Website web.dassem.websiteprank
Image Splitvid — Split Video Camera com.niltava.javana.split
SMS Sending Fake SMS br.com.ideatech.smsfakepro

Spoof Text Message com.spoofbox.spooftext
Fake Text Message com.neurondigital.FakeTextMessage

Social-Media Fake Chat Conversations f.industries.fakemessages
Suppress-CallerID Caller id changer Sim another.caller.id.changer
Thorough Fake Call fakecall.fake.call.yo
Voice FunCall voice changer in call com.rami bar.fun call

Surveillance Misc Hackers Keylogger hack.hackit.pankaj.keyboardlisten
Calls Hidden Call Recorder com.mrecorder.callrecorder
Camera IP Webcam com.pas.webcam
Location Track a Phone by Number com.androidaplicativos.phonetrackerbynumber

Cheating Spouse Tracker spouse sms.tracker app
Find My Friends info.com.dev.hkmobile.chatonline
Where the hell are you? com.where.the.hell.are.you
Boyfriend Tracker Free com.androidaplicativos.boyfriendtracker

Microphone Ear Agent: Super Hearing com.microphone.earspy
Screen Screen Recorder No Root eng.example.hatiboy.gpcapture
SMS SMS Forwarder cz.psencik.smsforwarder
Social-Media Clone WhatsWeb Pro clone.whatsapp.pro
Social-Media-Covert Unseen - No Last Seen com.tda.unseen
Thorough GirlFriend Cell Tracker com.omrup.cell.tracker

Cell Tracker es.cell.tracker.kids
Family Locator for Android com.omrup.cell.tracker
Top Spy Apps com.topgpapps.l
Spy Mail com.countmyapp.com.spymail
Spy sms call controler com.dspark.phone.modefind
Control By SMS smartmob.com.controller
GirlFriend Cell Tracker com.omrup.cell.tracker

Tutorial Hacking spyboy info.androidhive.spyboy
Cheating Spouse com.eclipseboy.CheatingSpouse
Cheating spouse tracker catching.cheating.spouse

Root Kingo ROOT com.kingoapp.apk
Settings Phone Secret Codes com.neetu.ussdstrings

Table IX: For each category and sub-category of the codebook, we list all apps referenced in this work, or where no app
pertaining to a category was referenced, we cite the app that was most prevalent in the 2017 data.

18


	Introduction
	Background and Related Work
	Dataset Description and Properties
	Using Guilt by Association for App Discovery
	Seed Set Selection
	First-Order Graph Algorithm
	Adding False Positive Suppression
	Capturing High-Order Correlations Among Apps
	Implementation

	Categorizing Creepware
	Manual Coding Methods
	Results of Manually Coding Apps

	Understanding CreepRank's Efficacy
	CreepRank versus Alternative Algorithms
	Analysis of False Positives

	Making Sense of the Creepware Ecosystem
	Potential Use Cases of Creepware
	Finding More Creepware with Alternate Seed Sets
	Characterizing Devices via Creepware
	Role of the Norton Mobile Security App
	Creepware over Time

	Discussion
	Conclusion
	References
	Appendix
	Seed Set Apps
	Examples of PMI Analyses
	Description of Codebook


