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ABSTRACT
Web pages have evolved into very complex dynamic applications,

which are often very opaque and difficult for non-experts to un-

derstand. At the same time, security researchers push for more

transparent web applications, which can help users in taking impor-

tant security-related decisions about which information to disclose,

which link to visit, and which online service to trust.

In this paper, we look at one of the most simple but also most

representative aspects that captures the struggle between these

opposite demands: a mouse click. In particular, we present the first

comprehensive study of the possible security and privacy implica-

tions that clicks can have from a user perspective, analyzing the

disconnect that exists between what is shown to users and what

actually happens after. We started by identifying and classifying

possible problems. We then implemented a crawler that performed

nearly 2.5M clicks looking for signs of misbehavior. We analyzed all

the interactions created as a result of those clicks, and discovered

that the vast majority of domains are putting users at risk by either

obscuring the real target of links or by not providing sufficient

information for users to make an informed decision. We conclude

the paper by proposing a set of countermeasures.
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1 INTRODUCTION
Despite its current complexity, the World Wide Web is still, at its

core, an interconnected network of hypertextual content. Over the

years, static pages have been largely replaced by dynamic, stateful,
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web applications. However, links and other clickable elements still

play a fundamental role in driving the interaction with users: it is

by clicking on links that most users navigate from one website to

another, and it is by clicking on menus, buttons, and other elements

of the DOM that they interact with a page and trigger functions.

Unfortunately, browsing the web also introduces important se-

curity risks. In fact, it is through malicious and compromised web

pages that many computers are infected with malware, and cre-

dentials and other personal information are regularly stolen from

million of users [23, 42]. On top of these criminal activities, on-

line tracking, as performed by advertisement companies and other

large corporations, is one of the main privacy concerns for our

society [13, 50]. This translates into the fact that users need to

be extremely careful when visiting webpages. For instance, it is

very common to warn users not to click on suspicious links, and to

always verify the different indicators provided by their browsers

to alert about potentially dangerous targets. In 2015 Egelman and

Peer [12] compiled a list of the most common computer security

advises, and used this information to derive a Security Behavior

Intentions Scale (SeBIS). One of the 16 final questions selected by

the authors to assess the users security behavior is “When browsing
websites, I frequently mouseover links to see where they go, before
clicking them”. In particular, this factor is one of the only five se-

lected to measure whether users are able to identify environmental

security cues. Moreover, in a later user study by Zhang-Kennedy et

al. [70] the authors found that more than half of their participants

always/often check the links’ URL before clicking on them. Even

though this same security tip has been repeated countless times, no

one to date measured to which extent this is possible – as bad web

design practices can make this step impossible for users to perform.

In this paper, we look closely at this problem, and we measure

how widespread are these bad practices, and whether they are

becoming the norm rather than the exception. Most of the work

performed to date on clicking behavior has focused on the server

side, i.e., on how an application can identify if a click was actually

made by a real user, and not by an automated machine or a script

(the so-called “click fraud”) [32, 41]. This is an important problem,

especially in the context of the advertising pay-per-click (PPC)

pricing model, but it is only a piece of a much larger picture. To

fill this gap, our study looks at the click ecosystem from the user

perspective, with a focus on the different security and privacy

threats to which a user may be exposed.

We present an extensive analysis that sheds light on the most

common click-related techniques used (intentionally or not) by web

https://doi.org/10.1145/3366423.3380124
https://doi.org/10.1145/3366423.3380124


developers. Despite the fact that one may expect bad practices to be

more common in dubious web sites (such as those associated with

free streaming [43] or porn [64]), our experiments show that their

adoption is nearly identical in highly accessed webpages listed in

Alexa [1]. Around 80% of the domains we tested adopt some form

of misleading technique that would prevent users from making

informed decisions on whether they want or not to click on a given

link. Moreover, around 70% of the domains exposed users to unex-

pected man-in-the-middle threats, 20% of which were completely

undetectable by a user even after the click was performed. Even

worse, 10-to-20% of the time a link pointing to a low-risk website

resulted in a visit to a site categorized as highly dangerous.

2 TOWARDS A CLICK “CONTRACT”
Today, there are no direct guidelines that completely define what

is the acceptable behavior when a user clicks on an element of

a web page. However, there are a number of important assump-

tions, which users and web developers often take for granted, that

characterize such expected behavior. In order to formalize a click
contract, we propose a number of rules that are based on previous

web recommendations/standards and user experience handbooks.

Based on its definition [67], “the href attribute in each source
anchor specifies the address of the destination anchor with a URI”.
Therefore, websites should follow theWorldWideWeb Consortium

(W3C) description, and use href to indicate the destination of the

link. The Same-document References [65] then describes the case

in which the URI reference is empty, and states that “the target of
that reference is defined to be within the same entity”. Additionally,
elements are identifiable as clickable [34] “Used, e.g., when hovering
over links. Typically an image of a hand”, so if a retrieval actions is

performed after clicking some element not marked as clickable [20,

66], they would be not using the defined method for it.

When designing and browsing websites, it is essential that they

follow general user experience guidelines in order to make them us-

able and secure. In the specific case of clicks, we want to empathize

the concept of dependability [54, 55], which indicates “Does the user
feel in control of the interaction? Can he or she predict the system’s
behavior?”. More concretely, recent user-driven studies using this

methodology [25, 30] define it as cases in which a link “redirects the
page to the right place and website and not redirecting to other web-
sites”. Based on this concept, secure channels could be ambiguous

for users based on current indicators (e.g., green padlock) [36], they

describe cases in which “the connection has not been intercepted”,
and therefore should not be used when an intermediate website

in a chain of redirections is unencrypted. We also extended this

concept to consider user tracking and third-party trust, as users

want to be aware of unexpected situations of this nature [31, 63],

and even current regulations are pushing in that direction[14, 24].

We can summarize these points, which form what we call the

click contract, around two main concepts: What You See Is What

You Get (WYSIWYG), and Trust in the Endpoints. It is important to

indicate, that according to our definition, we do not consider back-

ground third-party content/requests (e.g., AJAX communications)

a bad practice, as it is the base for many client/server interactions,

and does not play a role in deceiving the user. We formalize our

click contract in the following:

What You See Is What You Get:
(1) When a user clicks on a link whose target URL is displayed

by the browser at the bottom of the screen, she expects

to navigate to that same destination. In case redirections

happen afterwards as a consequence of the click, the user

expects to remain within the same domain of the displayed

URL, or the website she is on at the moment of clicking.

(2) If an object is clickable, but the browser does not show any

domain at the bottom of the webpage, a user expects the

click to generate some action within the current website and

not to navigate to a different domain.

(3) The user does not expect any external navigation to take

place when she clicks on a non-clickable element of the page

(such as a simple text paragraph).

(4) When the user clicks an HTTPS link, she expects that the

communication towards the target URL will be encrypted.

Trust in the Endpoints:
(5) If a user on a website A clicks on a link to a domain B, she

does not expect any other domain, apart from A and B (or

those included by them), to execute code in her browser.

(6) If cookies are created in the process that follows a click, the

user only expects cookies from the domain she clicked, or

from any of the third party domains included by it.

(7) If a new tab is opened by the browser after the user clicks

on a link, the new tab should not be able to interact with the

other tabs already open in the browser.

In the rest of the paper, we present a comprehensive measure-

ment of how widespread are violations of these seven points in

the Web. We will also identify and discuss potential security and

privacy threats to which a user may be exposed due to the poor

usability of websites that do not follow these practices.

3 REAL-WORLD EXAMPLES
In this section, we present two real examples of websites that suffer

from some of the bad practices related to the click contract. These
cases can help to better understand what website owners are doing,

and what the potential consequences for the end users are. These

examples were automatically discovered during our experiments,

as we will describe in more details in Section 4.

The first case we want to discuss is the website of a prestigious

university, that contains a page with a form to join the mailing

list of one of its organizations. When a user clicks the submit but-

ton (which has no href), the page redirects to a different website
owned by a company related to tracking services, and then this

new website redirects back (thought JavaScript) to the original page.

This final page is exactly the same as the one were the user clicked,

but with a “thank you” message on the top. The expected behavior

in this case would have been that clicking on the submit button

generated a POST request, and that a JavaScript listener was used to

write the acknowledgment message. Instead, the user is redirected

to an external company that executes JavaScript code without any

control from the original website. We checked what this intermedi-

ate website did, and it created a long lasting identifier that would

be accessible as a third-party cookie. Even if the user tried to avoid



unexpected identifiers choosing “Only Accept third-party cookies:

From visited” in the browser [35], the identifier created in this case

would still be accessible, as the user actually visited the website

(even if she was unaware of the hidden redirection).

The second example is from a website offering betting discounts

and tips. When the user clicks on a discount (with an href pointing
to a subdomain of the website), she is redirected first to that URL,

then to a subdomain of an external betting company, and finally

to the promotional discount on the website of that same company.

Both the second and third redirections are deceiving, as they result

in the user visiting other third-party sites without her consent. But

the main problem is in the second redirection. In fact, while the

original href is HTTPS and the final website is also served over

HTTPS, the intermediate subdomain access occurs over HTTP.

Even worse, the intermediate connection is completely invisible

for the user and therefore it is very difficult to detect this middle

insecure transition. As the original website, the link clicked by the

user, and the final destination use HTTPS connections, a visitor

may erroneously believe that the entire chain was secure as well.

Instead, the user is subject to a possible man-in-the-middle attack

due to that intermediate HTTP connection. Moreover, she is also

subject to a possible eavesdropper that can read all information

sent on plain text. While analyzing this example for our case study,

we realized that the user can even have her credit card indirectly

compromised. In fact, the betting company does not create its lo-

gin cookies with the secure attribute, and since the intermediate

subdomain is HTTP, all those cookies are sent unencrypted. There-

fore, a malicious actor could later reuse these cookies to access

the account, which is linked to a credit card, and possibly use it to

withdraw money from it.

4 DATA COLLECTION
To capture a view of the global click ecosystem, we gathered a dataset

that includes top ranked domains (according to the Alexa domains

list [1]) as well as domains belonging to more dubious categories,

such as those offering the download or streaming of illegal content,

or those serving adult and pornographic material. Our hypothesis

is that popular websites would be less deceptive with their click-

related behavior, while websites associated to one of those gray

categories, can be more unpredictable and would tend to introduce

more risks for the end users. For example, previous studies that ana-

lyzed the security of free streaming webpages [43] observed various

situations where multiple overlays were used, superimposed on

each other in the website, in order to generate unintentional clicks

for certain links. Another recent study published in 2016 [64] found

that many pornographic websites were redirecting users through

JavaScript instead of using href, making it difficult to infer the

final destination of the link by looking at its URL. Because of these

preliminary findings, we conducted experiments to verify whether

these poor practices are more prevalent in these classes of websites

with respect to the rest of the Web.

4.1 Domains Selection
We started by populating our gray list performing a number of dif-

ferent queries, focusing on illegal content (either video streaming

of software download) and pornographic pages, and using the auto-

complete feature offered by search engines (e.g., “game of thrones
season 7 free download” ). In particular, we performed five different

queries for each of the following eight categories: series, movies,

music, games, software, TV, sport events, and adult content. To in-

crease the coverage of our domain retrieval phase, we executed each

query in four different search engines (Google, Bing, DuckDuckGO,

and Yandex) and we stored the first 100 links returned.

Moreover, to avoid incurring into very popular websites, we

filtered this preliminary list of collected domains by removing those

that also belonged to the Alexa Top 1k category, and we performed

a manual sanity-check to verify that the resulting domains indeed

belonged to the categories depicted above. This resulted into a gray

dataset containing 6,075 unique domains.

We then randomly selected the same number of domains from

the Alexa’s Top 10k, Top 100k and Top 1M lists (2,025 each). By com-

bining both the Alexa domains and the gray domains, we obtained

a final dataset of 12,150 unique domains for our experiments.

4.2 Analysis Tool
We implemented our click analysis tool using a custom crawler

based on the well-known web browser Chrome. The crawler re-

ceives as input the main URL of a website, loads the corresponding

page, and then recursively visits three randomly selected pages up

to a distance of three clicks from the home URL. This results in

the analysis of 13 pages per website, mimicking a configuration

previously used by other researchers in similar studies [49].

It is important to remark that we consider to be “clickable” all

elements that have the cursor property set to pointer. As defined
by Mozilla [34]: “The element can be interacted with by clicking on
it”. Some elements have it by default, such as anchor links with

href, others need to have it explicitly indicated, or inherit it from

their parent element. While it is possible for elements to react

to a click even without setting a different cursor, this is per-se

already a deceiving behavior. In fact, a user may decide to click on

some text to select it, and she would not expect this to trigger her

browser to navigate to another page. Therefore, we considered this

phenomenon in Section 5, where we measure how many websites

adopt this technique to capture unintended user clicks.

On each visited page, our crawler performed 21 different clicks.

The first is executed over a randomly selected seemingly non-

clickable element, with the goal of identifying websites that contain

an invisible layer that intercept the user’s clicks. To avoid the im-

pact of such invisible layers in the rest of the tests, polluting the

click analysis, we maintained the same session between every con-

secutive click on the same page.

The tool then dynamically computes the appearance of all click-

able objects according to styles defined both in the CSS stylesheets

and in the style tags embedded within the HTML. It then uses this

information to rank each link according to its computed visualiza-

tion size and performs one click on each of the ten largest elements.

Finally, it concludes the analysis by randomly clicking on ten other

clickable objects. In total, this process results in up to 273 clicks

for each website (21 per page). In order to avoid mis-classifying

websites according to their advertisements, or incurring in a possi-

ble click fraud, we instructed our crawler not to click on elements



directly linked to advertisement companies, as indicated by the list

used by Mozilla Firefox [38].

The crawler captures and records on a separate log file the entire

behavior both during and after a click is performed. This informa-

tion is retrieved by using the Chrome debugging protocol, which

allows developers to instrument the browser [8]. To evade the detec-

tion of our automated browsing, we implemented the most recent

methods discussed in similar studies [11, 52, 53]. Our instrumen-

tation is divided in multiple groups (e.g., DOM and Network) that

support different commands and events. Following this procedure,

our tool is able to performmouse click events natively, and precisely

detect all the possible situations it can create. For instance, we can

detect when a new tab is created through the targetCreated event
or retrieve created coookies using the getCookies function.

There is a clear trade-off between the accuracy of the results

and the scalability of the measurement process. As a result, it is

possible that some of the websites for which we did not discover

any anomalous behavior were actually performing them, but only

on a small subset of their links. We will discuss in more details the

coverage of our measurement in Section 6 and the consequences

for the precision of our results in Section 8.

4.3 General Stats
Our crawler performed a total of 2,331,239 distinct clicks in 117,826

pages belonging to 10,903 different web sites – 5,455 of which

belonged to the Alexa top-ranked domains and 5,448 of which be-

longed to the gray domains, showing a balanced dataset between

the two main categories. 1,247 web sites could not be analyzed

because they were offline, replying with empty document, or with-

out any clickable element. Since not every domain has 13 different

pages with at least 21 clickable elements each, the final number of

clicks is slightly smaller than the result obtained by multiplying the

individual factors. Additionally, as some advertisements may not

include a domain in the href in order to hide their nature, we used

the corresponding accesses generated after the click to detect these

cases. We removed a total of 42,663 clicks following this process.

We believe our dataset is sufficient for this specific analysis, in

particular given the widespread adoption of the threats.

It is interesting to observe that, on average, for each website

our analysis covered 28.32% of all clickable elements. From all the

clicked objects, 72.33% had an href attribute that displayed to the

user a target URL location associated to the element. The remaining

27.07% did not indicate this information, suggesting that the target

resided in the same domain of the currently accessed webpage.

Interestingly, only 42.19% of the links with an href and 45.39% of

those without used the secure transfer protocol (HTTPS).

5 FINDINGS
There are many security and privacy implications involved when

a user clicks on an element in a webpage. In this paper, we focus

on a particular aspect of those risks, namely the fact that the user

has enough information to take an informed decision on whether

or not she wants to proceed with her action. For instance, if a user

clicks a link with a href attribute pointing to an HTTP webpage

as destination, she consciously accepts the risk of receiving data

in the clear over the network. However, things are different when

Figure 1: Percentage of domains misleading users.

Table 1: Occurrences of webpages misleading users.

Type Total Targeting
Occurrences Different Domains

Invisible Layer 19,696 54.33%

Fake href attributes 138,860 31.14%

Fake local clicks 123,959 100.00%

TOTAL 282,515 63.00%

the same user clicks on a link with a href attribute pointing to

an HTTPS URL but the web application decides instead to issue

the request over the HTTP protocol. The final result remains the

same (in term of communication over a cleartext channel), but

in the second scenario the user had no information to take an

informed decision, and was deceived into believing her data would

be transmitted over a secure channel.

In this section, we present threats that the users could not pre-

dict before clicking, as they are much more dangerous and difficult

to detect even for experienced users with a security background,

due to the lack of information required to perform any preventive

actions. All the results shown in this section are calculated from

aggregated data from both datasets used in this work. After per-

forming various statistical tests, we found that both datasets share

the same properties regarding click implication occurrences. We

will explain and discuss these statistical tests in Section 6.

While the issues discussed in this paper can lead to actual security

risks, as we will discuss in more details in Section 7, it is important

to remark that our goal is mainly to measure the disconnect that

exists between the information that links present to the users and

the actions associated to their clicks. This difference completely

undermines one of the most common and repeated security advice:

to look at the URL before clicking on a link [12, 61, 70].

5.1 Misleading Targets
One of the most important aspects for the user when performing

any type of click in a webpage, is trust. Trust implies that when the

webpage explicitly mentions the target URL, this is indeed where

the browser will navigate to [66, 67]. Even though many users take

this trust for granted, webpages do not always follow this rule and

often mislead users into performing actions that are different from



the intended ones. In our study, we have detected three different

types of misleading clicks:

• Invisible Layer: The user clicks some non-clickable object of

the webpage (e.g., some random text or image), despite the fact

that there should not be any expected result, this triggers a

webpage redirection or the opening of a new tab.

• Fake href Attributes: The user wants to click on a given

element, such as a simple <a> tag, and the user’s expectation is

that the browser will go to the website indicated by the link (as

specified in the href attribute). However, the user is redirected

to a different website, not related to the expected one.

• Fake Local Clicks: The user clicks on a clickable object in a

webpage that does not explicitly indicate a target URL. As a

result, the user expects the destination to be in the same domain

of the current website [65]. However, the user is redirected to a

completely unrelated domain without any prior notice.

Results. As shown in Figure 1, roughly 20% of the websites con-

tained an invisible layer that captured the user’s clicks. Moreover,

more than 10% of all websites are redirecting the user to a com-

pletely different domain in this case. If we check the global numbers

(Table 1), we can see that more than half of all the redirections/new

tab opens using this technique were performed to a different do-

main. Our data shows that this is a very widespread problem and

that in the majority of the cases the target URL is not even located

on the same domain.

Figure 1 also shows that the vast majority of websites (nearly

80%) mislead users by reporting incorrect href attributes on some

of their links. Even worse, in over 45% of the cases those links

pointed to completely different domains from those reported in the

displayed URL. Finally, fake local clicks are also quite common on

the web with 65% of the websites we tested (Figure 1) adopting

this technique. Interestingly, the total number of occurrences is the

same as the fake href attributes, showing a similar global trend

between both techniques (Table 1).

To sum up, misleading targets are worryingly popular among all

types of websites. In fact, despite the common intuition that this

type of techniques would be prevalently used in gray webpages for

aggressive advertisement reasons, our results show that most of

these bad practices are equally common in both datasets.

5.2 Users Redirection
Even when a click initially behaves as expected, it is still possible

for the user to be redirected to different pages without her consent.

Of course, redirections are very common on the Web and can be

used for perfectly legitimate reasons. Moreover, if a web page a.com
contains a link to b.com, which will eventually redirect to another

domain, the owner of a.com has no control over this behavior.

Nevertheless, we decided to measure and report how prevalent

this behavior is because, from a user point of view (pointed out

in user experience guidelines [54, 55]), it still results in hiding the

final target of a click. Ignoring internal (i.e., to the same website)

redirections, we can classify the remaining redirections in:

• Different Domain: This family includes all the redirections

to domains different from the one that the user was expecting

to visit when performing the click [25, 30]. For example, if the

Figure 2: Percentage of domains redirecting users.

Table 2: Occurrences of webpages redirecting users.

Type Total HTTP(S) Code
Occurrences

Different Domain 525,975 68.68% 31.32%

Hidden Domain 42,558 31.31% 68.69%

TOTAL 568,533 65.88% 34.12%

user clicks a link on a.com pointing to b.com, any redirection
involving any of the two domains is considered legitimate.

This is the case in which b.com uses a redirection to point

to another URL in the same website. However, if the users

clicks on a link to b.com and ends up visiting c.com, this can
potentially be deceiving.

• Hidden Domain: This is a more severe variation of the sce-

nario described above. In this case, the user clicks on a link

pointing to b, which temporarily redirects to c, which then

in turn immediately redirects back to b – thus introducing a

third domain in the redirection chain that the user would not

even be aware of (as the browser would likely not show this

intermediate step).

On top of these two classes, there is another orthogonal classifica-

tion related to the specific method used to perform the redirection.

On the one hand, we have the HTTP(S) redirection, where the

request can for example include the Set-Cookie header to create

different cookies in the user’s browser for that specific domain. The

HTTP code employed in these redirection is 30X, where the last
number specifies the reason for the redirections (e.g., 302 is used
to notify that the requested resource has been Moved Temporarily).
On the other hand, we have code-based redirections that do not

happen by means of an HTTP request, but by code being executed

on the webpage, once it is parsed and loaded by the browser. The

problem in this type of redirection is that the domains involved

can execute JavaScript code without any control of the original or

expected website (e.g., creating tracking identifiers). They rely on

HTML refresh using a meta element with the http-equiv parame-

ter, directly with JavaScript using window.location, or any other

equivalent method. Even if header-based redirecting parties could

change themselves to a code-based redirection, we checked how

many are actually getting these privileged rights.



Independently from the method used to redirect the browser, for

our study, we are particularly interested in how transparent it is to

the user which domains have been visited during the transition, in

particular in the case of multiple consecutive redirections.

Results. As shown in Figure 2, 80% of all domains performHTTP(S)

redirections pointing to completely different domains with respect

to the ones expected by the users. Regarding code redirections to

different domains, an impressive 35% of them use this technique.

This is particularly worrying because of the aforementioned se-

curity problems, which may result in possible uncontrolled code

executions or cookies. The user was never notified that she was

going to give these rights to those domains. According to the global

occurrence data presented in Table 2, the percentages follow a sim-

ilar trend, with a majority of domains redirecting through HTTP(S)

and a not negligible one third of domains allowing code execution.

More worryingly, around 15% of the analyzed domains stealthily

allows other domains to gain uncontrolled cookie or code execu-

tion rights, by including them in the middle of redirections chains

that end in the correct domain. Nearly 10% of them actually allow

intermediate hidden domains to execute code without any control.

Checking the total occurrence numbers (see Table 2), this percent-

age is much bigger, with nearly 70% of the websites allowing hidden

domains to execute their own code. The problem here is very se-

rious, as all hidden domains (not detectable for the user) that are

using code redirections can execute JavaScript without any control

from the original or expected website, allowing them to execute

anything they want in the user’s browser (e.g., tracking and profil-

ing the user) The user was never informed that she was going to

give these rights to those domains.

5.3 Insecure Communication
Man-in-the-middle attacks that can violate the user’s privacy, steal

credentials, and even inject/modify the data in transit are a seri-

ous threat to web users [6, 68]. When a user visits a website over

HTTP, she implicitly accepts the fact that her traffic would not be

protected against eavesdropping. However, when a user clicks on

a link that displays an HTTPS URL, she expects to send her data

over a protected channel [36, 54, 55]. Unfortunately, in reality we

found that this behavior is not the rule. In particular, we identified

three main scenarios in which this requirement is not met:

• Insecure Access: This is the basic case in which the user

clicks an element pointing to an HTTPS URL but eventually

the browser (either from the beginning, or because of a redi-

rection) drops the secure channel and ends up visiting a page

over an insecure HTTP connection.

• HiddenHTTPConnection: In this very subtle scenario, the
user initially clicks on an HTTPS URL, and eventually lands

on a website served over HTTPS. Everything may therefore

seems normal, but unfortunately there were intermediate

HTTP webpages (invisible to the user) visited by the browser

before reaching the final destination. In other words, the two

endpoints are secure but the entire communication was not –

without the user being aware of it.

• Unexpected Mixed Content: By default, over a secure con-

nection, browsers block what is generally known as active

Figure 3: Percentage of domains creating man-in-the-
middle threats.

Table 3: Occurrences of webpages creating MitM threats.

Type Total Unique
Occurrences Domains

Insecure Access 185,984 23,570

* Different Domain 129,710 9,256

Hidden HTTP Connection 43,773 7,292

* Different Domain 39,903 2,484

Unexpected Mixed Content 279,550 22,322

* Different Domain 194,019 17,093

TOTAL 465,534 45,892

mixed content, i.e., elements served over HTTP that can di-

rectly interact with the content of the page. However, other el-

ements such as images and video files (i.e., passive mixed con-

tent) are allowed [10, 37]. This opens the door to possible se-

curity and privacy attacks that use passive mixed content. For

instance, an element loaded via HTTP can be modified to a 401

Unauthorized response that includes a WWW-Authenticate
header asking for a confirmation of their credentials (which

will be sent directly to the attacker) [46]. It is important to

stress the fact that we are not analyzing the problems of mixed

content in general [7], but the occurrence of this threat related

to clicks. Following our usual guidelines, we only measure

mixed content loaded in webpages from domains that are

different from those that the user was aware of contacting.

Results: Figure 3 shows that approximately 40% of all the domains

we tested contained at least one link in which they insecurely

redirected users over an HTTP connection when they explicitly

specified HTTPS in the destination URL. To make thing worse

(see Figure 3), a non-negligible 20% of these insecure redirections

happen in the middle of theoretically secure connections, making

it impossible for the end-user to detect this dangerous behavior.

Overall (see Table 3), 23,570 unique domains were involved (sum

of unique domains per accessed domain), and 30.94% of them were

related to intermediate undetectable insecure HTTP connections.

Regarding the non-informed mixed content fetched from third-

party websites, we measured that around 45% of all domains have

at least one in their redirection chains (see Figure 3). In fact, only 5%

of the domains include mixed content only from the same domain



Table 4: Occurrences of webpages opening new tabs.

Type Total
Occurrences

Link (_blank) 239,628

JavaScript (window.open) 613,457

TOTAL 853,085

* Protected 1,324

— the one that is expected and accepted by the user. This shows

that more than half of the domains indirectly put their users in

jeopardy not by performing an insecure redirections, but by load-

ing external content over an insecure channel. Furthermore, if we

count the unique domains that suffer from this problem, from a

total of 22,322 different domain, a remarkable 76.57% belong to com-

pletely different domains of those expected by the user (as shown

in Table 3).

5.4 Phishing-related Threats
While phishing attacks are usually associated with spam or scam

campaigns, it is also possible for users to encounter a phishing

website when surfing theWeb. In this section, we explore howmany

websites are jeopardizing their visitors through their poor links

hygiene. In fact, when a website opens a new browser tab or a new

window, this new page obtains a reference to the original website

that has triggered its opening through the window.opener object.
To prevent the new site to tamper with the content of its parent,

modern browsers are equipped with blocking capabilities through

specific cross-origin actions derived from the well-known same-

origin policy. However, it is still possible for the new tab to redirect

the original opener website using the window.opener.location
object, thus bypassing this protection [39].

In this way, from a newly opened tab, a miscreant is capable

of detecting the domain of the opening website (by checking the

HTTP referer header), and then redirecting the user to a phishing

website of that same domain (maybe adopting some typosquatting

techniques [33, 60] to make it harder for the user to notice the

replacement), and finally even closing the new tab. For example, a

user on Facebook can click a link to an external website that could

act perfectly benign except from replacing the Facebook page itself

with a fake copy that may be used to phish users into disclosing

personal information or login credentials. This makes the scheme

very difficult to detect even for an expert user. This type of attack

is popularly called as “tabnabbing” [40, 45].

A simple solution exists to protect against this type of attacks:

when a website includes links to external resources, it can spec-

ify rel="noopener noreferrer" to prevent the new page from

accessing the parent URL [5, 19]. Equivalently, when a new tab is

opened via JavaScript, by opening an about:blank tab, setting the

new window’s opener to null, and then redirecting it would solve

the problem. However, still today many webpages do not adopt any

protection methods when opening new tabs, exposing themselves

and their visitors to these phishing attacks.

Results. During our experiments, a stunning 90% of the websites

contained links that opened new tabs as a result of a click. Overall,

this accounted for 853,085 new tabs. As reported in Table 4, the

majority of them (71.91%) were opened by using JavaScript code.

Although this behavior is extremely widespread, we found that

only 2% of the examined domains employed prevention techniques

to secure their users from potential phishing attacks. For all links

(see Table 4), the number is even smaller with only 1,324 protected

links out of more than 850K visited ones.

In summary, these results show that nearly all of the new tabs

opened are completely unprotected from possible phishing attacks.

Moreover, opening new tabs is an very common action that most

webpages do at some point.

5.5 User Tracking
One of the biggest concern nowadays regarding web privacy is web

tracking, which consists in the ability to obtain or infer the users’

browsing history, or to identify the same user across multiple dif-

ferent accesses. The first and still most common method to perform

web tracking is based on cookies. In its most basic form, when a

user visits a website a.com, she acknowledges that several cookies
can be created and stored in her computer. These cookies can be set

from the website she is visiting (a.com) or from a third-party do-

main (e.g., z.com) that may be also present on other websites (e.g.,

b.com, and c.com). This allows z.com to follow the user activity

if she also visits these webpages. While Libert recently found [27]

that in most cases the main domain does not notify the user about

those third-party cookies, in this paper we take an optimistic posi-

tion and we consider those cases as benign. What we are instead

interested in measuring is the fact that the user is not even aware

of new cookies generated [31, 36, 63], in the following cases:

• Undesired Cookies: If a user clicks on a link to a.com, she
does not expect any other cookie besides the ones created by

a.com and its direct third parties. Thereby, we will consider

as undesired any cookie that does not follow this simple rule.

For example, imagine that the previous click redirects you to

b.com and later, though JavaScript, to c.com. All cookies set
by b.com, c.com, and their respective third parties would be

considered as undesired cookies.

• Undesired HTTP Cookies: In several cases, the problem is

bigger than just having a large number of undesired cookies

created in the browser. Sometimes, these cookies besides being

undesired, they are also insecure, even if the user clicked a link

directing to a secure webpage. For instance, a miscreant can

perform a man-in-the-middle attack, and steal those cookies

or even modify them to allow for future attacks or perform

tracking of this user.

• First-Party Bypass: Browsers started introducing a new op-

tion to control the type of cookies they accept [2, 35]: accept

cookies from the domain the user is currently visiting, but

only allows third-party cookies from webpages previously vis-

ited by the user. Nevertheless, the current click ecosystemmay

undermines this option, as the user ends up unintentionally
visiting many domains – which will therefore be whitelisted,



Figure 4: Percentage of domains creating tracking threats.

Table 5: Occurrences of webpages creating tracking threats.

Type Total Unique
Occurrences Domains

Undesired Cookies 1,924,371 188,992

* Different Domain 1,241,806 165,735

Undesired HTTP Cookies 80,494 19,338

* Different Domain 73,171 18,175

First-Party Bypass 500,073 104,075

TOTAL 2,504,938 312,405

and allowed to set cookies. WebKit implemented a specific de-

tection for these cases [62], but others browsers do not make

any direct mention to this unwanted situation.

Results. In our experiments we did not count the number of cook-

ies, but the number of domains that created undesired cookies. For

example, if b.com created 5 undesired cookies and c.com 3 unde-
sired cookies, we would report 2 (b.com and c.com) in our statistics

(see Table 5). Moreover, unique domains are counted as the sum of

unique domains per accessed domains.

The overwhelming number of domains (around 95%) created

undesired cookies (see Figure 4). Globally, 64.53% of all occurrences

were created by different domains, making a total of 188,992 unique

domains. Analyzing the specific case of insecure undesired HTTP

cookies, the number are much lower, but still concerning, due to the

security and privacy problems they incur. 30% of domains created

these type on dangerous undesired cookies, and our data shows

that 90.90% of all the occurrences were performed by different

domains (18,175 unique ones). Finally, we found 500,073 occurrences

of unexpected domains becoming first-party webpages (104,075

unique), and thereby bypassing the newest cookie control policy

implemented in browsers. Figure 4 shows that 87% of the websites

(both in the Alexa and Gray categories), once visited by a user, as

a side effect result in at least one new domain being added to the

whitelist. As these domains were not visible to the user at any point

in time before the click (and often even after), the user is completely

unaware that they are considered “visited webpages” from now on.

6 STATISTICAL ANALYSIS
In Section 5, we analyzed (i) the percentage of websites that suffer

from each problem we discussed in this paper, and (ii) the number

and type of these occurrences. We now present the results of a

number of statistical tests that show that both the Alexa and the

gray domains categories follow similar trends in these practices.

For this specific case, conducting a Chi-Square test is the most ap-

propriate approach, as the variables under study are categorical, and

we want to check if the outcome frequencies follow a specific distri-

bution. Following this method, we tested the null hypothesis that

that the variables are independent. This way, we can compute the

probability that the observed differences between the two groups

are due to chance (statistical significance). If the corresponding

p-value is larger than the alpha level 0.05, any observed difference

is assumed to be explained by sampling variability. We found that

many of the threats we presented have some statistical differences

between the two groups. Nevertheless, with a very large sample

size, a statistical test will often return a significant difference. Since

reporting only these values is insufficient to fully understand the

obtained results, we additionally calculated the effect size (Cramer’s
V ) to check whether the difference is large enough to be relevant.

In statistics, the effect size is a quantitative measure of the magni-

tude of a phenomenon, used to indicate the standardized difference

between two means (the value should be greater than 0.15 in order

to obtain an appreciable difference). Even if the difference is statis-

tically significant in some cases, the effect size is virtually zero in

all of them. This indicates that the actual differences are not large

or consistent enough to be considered important, which confirms

our statement that both groups follow similar trends.

7 THREAT RISKS
In a recent user study about security beliefs and protective behav-

iors byWash and Rader [61], one of the questions was “Being careful
with what you click on while browsing the Internet makes it much
more difficult to catch a virus.” In this section we check whether

this this is the case by investigating the actual risks associated to

the threats we measured.

In order to obtain this information, we used the risk level calcu-

lator for secure web gateways offered by Symantec [58, 59]. The

service uses cloud-based artificial intelligence engines to categorize

websites by using different indicators, such as historical informa-

tion, characteristics of the websites, or features extracted from the

server’s behavior. Websites are classified in five risk groups, namely:

• Low: Consistently well-behaved.

• Moderately Low: Established history of normal behavior.

• Moderate: Not established history of normal behavior but

neither evidence of suspicious behavior.

• Moderately High: Suspicious behavior (including spam,

scam, etc.) or possibly malicious.

• High: Solid evidence of maliciousness.

It is important to remark that we did not analyze the websites

in our dataset, but the websites the user was expecting to visit and

the ones she accessed unintentionally because of the click threats

presented in this paper. We then compared the risk level of the

website that the user was expecting (e.g., b.com, low risk) with the

website the user actually ended up accessing (e.g., c.com, high risk).

Based on this, we computed two different factors, one indicating an

increase in the threat risk, and another indicating an increase from



Table 6: A comparison between Alexa and gray websites according the increase in risk generated by the user click. The p-value
is always lower than 0.05, indicating statistical significance for all values in this table.

Alexa Websites Gray Websites Effect Size
Click Implication Type Increase Low to High Increase Low to High Increase Low to High

Invisible Layer 43.07% 16.84% 58.49% 25.36% 0.440 0.429
Fake href Attributes 41.17% 5.42% 55.63% 18.92% 0.229 0.268
Fake Local Clicks 22.44% 4.55% 26.24% 8.41% 0.062 0.098

Redirecting 42.73% 9.85% 53.10% 23.42% 0.145 0.222
Hidden Domain 9.73% 0.63% 12.56% 3.05% 0.106 0.137

Insecure Access 66.01% 9.06% 74.74% 20.84% 0.141 0.203
Hidden HTTP Connection 35.79% 4.65% 47.90% 17.48% 0.188 0.258
Unexp. Mixed Content 41.99% 6.07% 39.94% 11.19% 0.051 0.117

Undesired Cookies 64.92% 15.18% 67.40% 29.86% 0.042 0.232
Undesired HTTP cookies 68.08% 12.89% 70.32% 25.95% 0.041 0.216
First-Party Bypass 50.10% 11.01% 59.84% 25.13% 0.141 0.231

the ‘green’ part of the spectrum, to the ‘red’ part. The percentages

shown in Table 6 are the percentage of websites in each category

that suffered from at least one case of the implications.

Overall, the consequences of the results of this test are very

serious. For instance, fake href or redirections associated to a low-

to-high risk transitions (which capture the cases in which a user

clicks on a link considered safe by security products but ends up

instead on a website flagged as malicious) account for 5-10% of the

cases in the Alexa category and up to 19-23% in the gray group. In

total, we detected that around half of the websites that have poor

click hygiene actually increased the risk of the users because of

these poor practices, and in 8.74% (for the Alexa set) and 19.33%

(for the gray set) of the cases, the risk associated with the affected

URLs went from “low” to “high”.

Moreover, we statistically checked if the differences found be-

tween Alexa and gray websites for this factors were significant. We

followed the same procedure as in the previous case, using Chi-
Square and Cramer’s V (see Section 6 for more details). In this case,

all test showed a statistical significance. Moreover, the effect size

scores are also considerably larger (often surpassing 0.15), show-

ing that there is a clear difference between the two groups. These

figures also show another important message. In fact, while we

discovered that popular websites are no less deceptive than web-

sites serving porn or illegal content, when these poor practices are

present in the second group they are more often associated to a

drastic increase in the risk for the users.

8 DISCUSSION
There are two main possible explanations for each of the different

threats presented in this paper: (i) the flaws were deliberately in-

troduced by the developers, or (ii) they were just the unintended

consequence of poor practices or coding mistakes. While it may be

difficult to know for sure, we believe that most cases fall into the

second category. To clarify this statement, we are going to analyze

the case studies presented in Section 3 from this perspective.

The case in which a form on the website of a prestigious uni-

versity redirects to a external website without prior notice is the

perfect example. It looks like the web developers wanted to collect

some statistics of who was joining the mailing list, but instead of

including the code themselves, they decided to rely on an external

tracking company. This company might have asked the develop-

ers to include few lines of code in their website, probably without

explaining the possible consequences of that action. As a result,

there was probably no malicious intent, and the entire example is

probably the result of a mistake by the site developers.

In our second example, the website used an intermediate sub-

domain in order track who was clicking on the offered discounts,

probably without realizing that by doing that, the user could not

tell anymore the final destination of her clicks. This is already per

se a poor practice, but the problem goes one step further due to the

hidden HTTP redirection. This is bad for two reasons. On the one

hand, the website where the user is clicking should have checked if

the redirection could be secured or not. On the other hand, the final

betting website should either set its core cookies with the secure
attribute, or implement HTTP Strict Transport Security (HSTS) to

avoid this undesired intermediate insecure communications.

While plausible, the previous explanations are completely ficti-

tious. In fact, it is impossible to know if the web developers were

aware of the threats created and proceeded anyway, or if they did

not realize the consequences of their actions. Because of this, as we

will explain in more details in Section 9, we believe it is important

to provide a service that web developers can use to analyze their

own websites to detect the presence of poor practices.

8.1 Precision
Following the click analysis structure presented in Section 4, we

performed nearly 2.5M different clicks. If we calculate the percent-

age of clicks we made comparing to all the possible clicks in each

domain and compute the mean, we obtain 28.32% – which means

than in average we clicked one third of the clickable elements in the

pages we visited. We also calculated the percentages of clicks per

domain that were affected by the various problems we identified

in Section 5 and computed the values corresponding to different

quartiles (e.g., Q3 and Q4) to obtain a general overview.

With the data relative to the quartiles and the percentage of total

clicks performed, we can statistically estimate the probability of



detecting at least one case of every dangerous category with the

amount of clicks we performed in a given website. In fact, we can

model a website as an urn containing links of two categories: those

affected by a given problem X and those that are not. Since we can

estimate the percentage of the two types of links based on the data

we collected, and we know that for a certain website we randomly

visit (i.e., extract from the urn) a certain number of elements over

the total number contained in the urn, we can estimate the odds of

picking at least one link affected by the problem [4]. We repeated

this computation for all the types of problems discussed in the paper.

In average, the probability of misclassifying a website just because

we did not test the right link varied from 0% (for tracking-related

threats) to 4.7% in the case of insecure communications. These val-

ues show that when a website suffers from a poor behavior related

to its links, this often affects a large percentage of its elements,

thus making our sampling rate of testing one out of three links

appropriate to estimate the presence of the different problems.

9 COUNTERMEASURES
In our measurement, we identified several bad practices on how

click-related events are managed by existing websites. Even if some

of them may have been deliberately introduced by the developers

(e.g., to avoid recent cookie-control policies), we believe that the

main cause for these problems is a lack of awareness, a lack of

clear guidelines, and a poor understanding of the risks that these

problems can introduce.

We hope that this paper can raise awareness about the wide-

spread adoption of misleading links and potentially dangerous

click-related behaviors. To make our work more usable for end

users and developers alike, we decided to implement our checks in

a proof-of-concept service that can test a given web page and gen-

erate a report describing the bad practices identified in its clickable

elements. We believe that such a tool can be useful for end-users

interested in validating suspicious websites before visiting them,

and in particular for web application developers to discover how

they could improve both the usability and the security of their web-

site. Moreover, on top of testing an existing site, our online service

also provides a list of guidelines to help developers avoid common

mistakes and adhere to the click contract described in Section 2.

As we cannot expect all web pages to follow the click contract, it

is important to introduce a second line of defense to protect the

end-users. We implemented a browser extension that could prevent

these dangerous side effects.

A proof-of-concept demo of the service, guidelines and extension

are publicly accesible at https://clickbehavior.github.io.

10 RELATEDWORK
Researchers have looked at different ways users are misled into

performing actions they did not originally intend to perform [9]. For

instance, researches from Google analyzed the distribution of fake

anti-virus products on the Web [44]. More specific to user clicks,

Fratantonio et al. [17] proposed an attack where users are fooled

into clicking certain elements while actually clicking on others,

Many other works analyzed the specific case of clickjacking [3, 22,

48], where a malicious website tricks the user into clicking on an

element of a completely different website by stacking the sites and

making the top site invisible.

Redirections are often used for legitimate purposes (e.g., to

redirect users from a temporarily moved website), but other times

are abused by attacker for malicious reasons. For example, Lu et

al. [28] were able to classify different search poisoning campaigns

by checking their redirection chains. Stringhini et al. [57] proposed

a similar idea to detect malicious webpages. Our work differs in

many ways from these approaches, as we check what the possible

risks a user may suffer because of obfuscated redirection chains.

The problem of possibleman-in-the-middle attacks have been
extensively analyzed in the Web. Chang et al. [6] screened the

integrity and consistency of secure redirections that happen when

accessing the main page and login page of domains listed in Alexa.

Later, researchers from Google, Cisco, and Mozilla measured the

adoption of HTTPS on the web [15]. They conclude that globally

most of the browsing activity is secure. Regarding mixed content,

Chen et al. [7] investigated the dangers of this type of insecure

content. None of the aforementioned studies analyzed how this

security and privacy problems is related to the click ecosystem.

Phishing attacks have often been associated to spam emails [16,

21]. Therefore, the majority of the effort to stop this kind of prac-

tices was in the early detection of malicious emails [71], or on

the detection of phishing pages on the Web [18, 29, 69]. However,

we are not aware of any study that tries to identify how common

are phishing threats created by insecurely opening new tabs. Our

works shows that nearly all the targets opened, either via HTML

or directly through JavaScript, suffer from this problem. Even if

defenses exist for both cases, they are very rarely implemented.

User tracking is an increasingly growing concern that has at-

tracted a considerable amount of attention from researchers and

end users [47, 51]. Lerner et al. [26] studied the evolution of tracking

over the last 20 years, showing an impressive growth in adoption

and complexity. More recently, Sivakorn et al. [56] studied the case

of HTTP cookies and the corresponding exposure of private infor-

mation. On the other hand, we analyzed the concept of undesired

cookies that are the consequence of user clicks, and we measured

how many of those are insecure.

11 CONCLUSIONS
Using the mouse to click on links and other interactive elements

represents the core interaction model of the Web. In this work,

we perform the first measurement of click-related behaviors and

their associated consequences. We first identified different types

of undesired actions that may be triggered when a user clicks on,

in principle, harmless elements. In order to assess how widespread

these behaviors are on the Internet, we then implemented a crawler,

which we used to perform nearly 2.5M clicks on different types of

domains of various popularity. Our results show that these dan-

gerous situations are extremely common in all types of domains,

making a huge number of users vulnerable to many different possi-

ble attacks. Moreover, we offer different possible countermeasures.
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