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ABSTRACT

Machine learning models are vulnerable to adversarial in-
puts that induce seemingly unjustifiable errors. As automated
classifiers are increasingly used in industrial control systems
and machinery, these adversarial errors could grow to be a
serious problem. Despite numerous studies over the past few
years, the field of adversarial ML is still considered alchemy,
with no practical unbroken defenses demonstrated to date,
leaving PHM practitioners with few meaningful ways of ad-
dressing the problem. We introduce turbidity detection as a
practical superset of the adversarial input detection problem,
coping with adversarial campaigns rather than statistically
invisible one-offs. This perspective is coupled with ROC-
theoretic design guidance that prescribes an inexpensive do-
main adaptation layer at the output of a deep learning model
during an attack campaign. The result aims to approximate
the Bayes optimal mitigation that ameliorates the detection
models degraded health. A proactively reactive type of prog-
nostics is achieved via Monte Carlo simulation of various ad-
versarial campaign scenarios, by sampling from the models
own turbidity distribution to quickly deploy the correct miti-
gation during a real-world campaign.

1. INTRODUCTION

A machine learning application often begins with a dataset
of examples and the task is to find a classification model
that will turn inputs into class-label predictions, while pre-
serving some sense of minimum expected error. The learn-
ing problem is often unrealizable, so no perfect model ex-
ists that will have 0 generalization error (Shalev-Shwartz &
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Ben-David, 2014). But less obviously, it is often possi-
ble to deterministically find input examples that force the
model to misclassify (Szegedy et al., 2014). Machine learn-
ing (ML) models can be subjected to adversarially crafted
small perturbations that purposely induce these errors, and
they can seem unjustified or surprising to a human observer
(e.g., a digital image of a school bus mistaken for a bird).
As automated ML-based classifiers pervade across applica-
tions in transportation, medicine, finance, and cybersecurity,
adversarial errors could grow to be a very serious problem.
The danger is particularly acute in industrial control systems
(ICS), industrial Internet of Things (IIoT), automation equip-
ment, and factory robotics, where malfunctions can be life-
threatening (e.g., steel mill furnace explosions, power grid
crashes, etc.). Unfortunately, ICS attacks are on the rise, with
increased vectors for malicious party access to critical infras-
tructure (National Cybersecurity and Communications Inte-
gration Center, 2017). Detection of attacks to cyberphysical
systems (Yan et al., 2018), particularly as it relates to adver-
sarial ML, is a growing area of concern that has been under-
served in PHM literature.

Despite vigorous study over the past few years (see review
in (Gilmer, Adams, Goodfellow, Andersen, & Dahl, 2018)),
the field of adversarial ML is considered by researchers to
be at a nascent stage (Evans, 2018), with no practical un-
broken defenses demonstrated to date (attacks succeed with
p > .25) (Carlini & Wagner, 2017a), and still talks of an
“arms race” between attackers and defenders (Goodfellow,
McDaniel, & Papernot, 2018). This leaves PHM practition-
ers with few meaningful ways of addressing the problem. We
have identified a fundamental flaw in the current interpreta-
tion of adversarial defenses, and offer an alternative practical
reformulation of the problem that copes with population-level
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campaign mitigation as opposed to individual input, case-by-
case protection.

The defense side of adversarial ML has tried to answer a
blend of two questions: (a) How to robustify a model (make
it harder for an attacker to fool)? This has led to adver-
sarial training, defensive distillation, feature squeezing, ar-
chitecture modification, and minimax optimization (Madry,
Makelov, Schmidt, Tsipras, & Vladu, 2017); and (b) What
can be measured about adversarial inputs that is different
from regular ones? This has led to input validators and ad-
versarial detectors (Goodfellow et al., 2018). Generative ad-
versarial networks (GANs) can synthesize adversarial exam-
ples which can then be used to retrain the classifier, however,
this only helps insofar as it gets a classifier closer to Bayes
optimality (it can also make things worse). By omissions in
the current discourse, these methods have created the illu-
sion that we could one day prebake a solution at training time
that will protect a model against one-or-few-off adversarial
inputs at deployment time. Our work suggests that the latter
goal comes at a disproportionate price in expected error. Intu-
itively, if there was a way to accurately detect error-inducing
inputs at runtime, then that same detector would have been
used to augment or improve the training to begin with.

In the following sections, we will introduce turbidity detec-
tion as a different, ROC-centric way of thinking about adver-
sarial example detection that fixes current widespread misin-
terpretations and leads to a practical mitigation. Our theory
yields 3 previously unreported results: (i) unqualified use of
an adversarial detector inverts ROC (harms); (ii) adversarial
campaign pinches down ROC (harms); and (iii) conditions
exist where the ROC can be repaired to at least a gracefully
degraded state during the campaign. We propose a method-
ology for putting that into practice and show experimental re-
sults using image (digit recognition) and IIoT security (mal-
ware detection) data.

2. TURBIDITY DETECTION THEORY

Our first aim is to show that the unqualified use of an adver-
sarial detector has deleterious effect on ROC. To that end, we
will start in a seemingly restrictive setting: 1-dimensional in-
put, uniform distribution over –10 to 10, binary output from
binomial discrete-choice theory with logistic noise, equiprob-
able classes, and Bayes decision rule. However, our main re-
sults (ROC inversion, pinching, and repair) will not critically
depend on these specific choices, retaining clarity of illustra-
tion without loss of generality.

Instead of asking where adversarial examples are “hiding”
in high-dimensional input space, we focus on scalar deci-
sion score output axis (preactivation/logit or post-activation/
pseudo-probability), where model-processed samples have to
end up anyway, and where any decision confusion actually
occurs. Fig. 1 shows a deep neural network taking input array

through convolutional and nonlinear activation layers, then
dense layers reducing the output to a scalar decision score
s (here logit). Consider a data-generating process (DGP)
such that ground-truth bipolar labels y ∈ {−1,+1} come
from adding the score to a Logistic(0, 1) symmetric noise
ξ (whose scale and bias control class separability and class
imbalance respectively), and taking sign:

y = sign(s+ ξ) .

The symmetry of the noise about its 0 mean implies our DGP
emits equiprobable labels: P (0) = P (1) = 0.5. In order to
output a monotonic and correctly calibrated posterior prob-
ability P (1|s), what the last-layer activation of the deep net
“wants to be” is the CDF of the discrete-choice noise:

P (y = 1|s) =
∞∫
0

pξ(s
′ − s)ds′

=
∞∫
−s
pξ(s

′)ds′ = 1−
−s∫
−∞

pξ(s
′)ds′

= 1− CDFξ(−s) = CDFξ(s) .

The logistic-distributed noise has logistic sigmoid CDF,
agreeing with an output neuron (here with µ = 0, c = 1):

ξ ∼ Logistic(µ, c) ⇒ CDFξ(s) =
1

1 + e
−
(
s−µ
c

) = σ
(
s−µ
c

)
.

The Bayes-optimal decision rule (one yielding least probabil-
ity of misclassification in our DGP) corresponds to the homo-
geneous halfspace (here semiaxis) obtained by thresholding
the above posterior probability at 0.5, or directly threshold-
ing the preactivation score:

ŷ = sign(s) . (4)

Now we derive the ROC for this ideal detector in its regu-
lar environment. From Bayes theorem, the 0 (“clean”)-vs-1
(“mal”) class-conditionals of the score are

p(s|0) = Fξ(−s)U(s;−10, 10)/0.5 ,
p(s|1) = Fξ(s)U(s;−10, 10)/0.5 ,

(see Fig. 2(a)) where F (·) denotes CDF from now on,
U(s;−10, 10) = [10 ≤ s ≤ 10]/20 is the uniform PDF, and
that last Iverson bracket [·] means indicator function: valued
1 when the event s-within-the-interval is true and 0 other-
wise. In our 1D mathematical reference figures, the score is
directly equal to the input: s = x (while in higher dimen-
sions, it will be an inner product where coordinates can be
explanatory variables, features, previous neural layers, etc.).
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Figure 1. Deep neural network from input to scalar decision score s with discrete-choice true label y.

The marginal of scores is the uniform PDF (Fig. 2(b)), while
the malicious class-posterior is (Fig. 2(c)):

P (1|s) =
p(s|1) · 12

p(s|0) · 12 + p(s|1) · 12
= Fξ(s) . (6)

Finally, monotonicity of the class-1 posterior allows us to ob-
tain the ROC from a single sweep on the s-axis, yielding the
parametric curve (Fig. 2(d)):

(FPr, TPr) = (1− F0(s), 1− F1(s)) , (7)

where

F0(s) =

s∫
−∞

p(s′|0)ds′ , F1(s) =

s∫
−∞

p(s′|1)ds′ .

2.1. Clarity and Turbidity Distributions

Unless classes are 100% separable in a generalization-
preserving way relative to the DGP (input features, label
noise, and their statistical relation), every model, including
the Bayes-optimal one, experiences difficulty whenever it
makes the wrong class prediction. We say that samples

that confuse the model, i.e., FPs and FNs, are turbid from
the model’s point of view, whereas all the other correctly-
classified TNs and TPs are clear. We can think of every
model that tackles the original 0-vs-1 problem as having an
inherent dual problem: separating clear-vs-turbid (denoted
e-vs-d as mnemonic for “easy”-vs-“difficult”), for which
a different detector can be built. Since the model’s con-
fusion depends on its output threshold, by default we peg
the associated turbidity detection concept to the maximum
balanced-accuracy/Youden index threshold in the original
detector (ROC operating point closest to upper-left corner).

Next we present the clarity and turbidity distributions for a
DGP where there is 50-50% proportion of clear vs turbid
samples (something that we will characterize as a toxic envi-
ronment compared to the regular one where mistakes should
be rare), and 50-50% proportion of clean vs mal within each.
Obtain each conditional as a mixture of the truncated class-0
plus the truncated class-1 PDFs. For example, the left half of
turbidity p(s|d) consists of the left tail of p(s|1) (= FNs) nor-
malized by the area under it up to 0 (= F1(0)), while the right
half has the right tail of p(s|0) (= FPs) normalized by the area
under it from 0 onward (= 1−F0(0) = F1(0) = .0693). The
mixture of these 2 densities then gives the Laplace inflexed
arch shape (purple in Fig. 2(e)) and is in fact the same as a
truncated Laplace distribution:
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Figure 2. Top: Class-conditionals, marginal, posterior, and ROC of 0-vs-1 detector in regular environment. Bottom: Class-
conditionals, marginal, posterior, and ROC of corresponding e-vs-d detector.

p(s|e) =
1
2p(s|0)[s<0]+

1
2p(s|1)[s≥0]

F0(0)
,

p(s|d) =
1
2p(s|0)[s≥0]+

1
2p(s|1)[s<0]

F1(0)
.

(9)

Obtain the marginal of scores from the equiprobable mixture
of the clear and turbid distributions (or from total probability
theorem; Fig. 2(f)), and the turbidity class-posterior as (Fig.
2(g)):

P (d|s) =
p(s|d) · 12

p(s|e) · 12 + p(s|d) · 12
. (10)

Note that this symmetric reverse-ogee arch is nonmonotonic.
This implies that the theoretical ROC curve can no longer be
obtained simply by sweeping a single threshold over the s do-
main; doing so would result in a suboptimal improper curve
(under diagonal chance line). The most general method is
to sweep a descending threshold on the vertical axis of the
class-posterior, nonlinearly solve/root-find all critical s val-
ues where posterior intersects the threshold, then calculate
area under class-conditionals over s regions so as to obtain
the pair (FPr, TPr). In effect, the ROC curve computation
becomes multibranched, with number of connected segments
dependent on number of intersections encountered during the
sweep. Fig. 2(h) shows the exact ROC, using either the multi-
branched algorithm just described or an alternative mono-
tonic version afforded by symmetry in this case. Luckily,
when data scientists compute an empirical ROC (i.e., from
a data sample), they automatically obtain a Monte Carlo es-

timate, so theoretical complications like the nonmonotonicity
above are never encountered. However, the scores should be
presented as the possibly nonmonotonic posteriors instead of
as preactivations.

2.2. Relation to Adversarial Detection

The widely accepted oracle definition of adversarial exam-
ples (Evans, 2018) states that: (i) they are created with in-
tent to deceive, (ii) they start from a seed example of say
class A, correctly seen as class A by the model, and (iii) af-
ter perturbation they still behave like class A according to
the oracle/ground-truth, yet they are now incorrectly seen as
class B by the model. However, the goal of adversarial exam-
ple detection (accurately determining at runtime whether an
input is adversarial) has been widely misconstrued, leading to
overfitting and/or invalidly-dichotomized detectors. If we in-
sist we can detect a particular set of adversarial samples, then
that same detector is bound to fail on a freshly created one
operating in a regular environment. It will work if operated
in a toxic environment, but then for a whole different reason
as we’ll see below.

A typical adversarial detection experiment starts from a
dataset of regular samples, takes each instance in the dataset
as a seed to which a transformation (e.g., from CleverHans
library (Papernot et al., 2016)) is applied in order to cre-
ate an adversarial counterpart, and then sees if the “regular-
vs-adversarial” examples are discernible in some way (e.g.,
by showing differences in distributions or by building adver-
sarial detectors and measuring their above-chance discrim-
ination). By definition, all adversarial examples are tur-
bid. Further, they can exist with “high model confidence”
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(with P (0|x) or P (1|x) near 1). But exactly the same is
true of natural, unforced errors. All regular FPs and FNs are
turbid, and while most are associated with low confidence
(P (0|x) = P (1|x) = 0.5) near model’s decision bound-
ary, high-confidence ones also arise. They happen as pre-
dicted even by the 1D DGP, just less frequently, consistent
with the tapered-but-still-nonzero tails of the turbidity distri-
bution. Thus, regular and adversarial samples can share the
same domain.

We don’t believe human intent is a distinguishing feature that
can be measured either—a view hinted in (Carlini & Wag-
ner, 2017a)—anymore than telling if the person who made the
samples was left-handed from looking at the numerical input
coordinates. So what is it in the standard adversarial detec-
tion experiment that is being detected? Answer: the observed
difference between regular and adversarial conditions stems
from the fact that all adversarial samples are turbid/difficult
by definition, whereas in the regular environment turbid sam-
ples are rare. Turbid tends to concentrate while regular ≈
clear spreads, thus second moments separate. A scientific an-
imation clarifying this point can be seen in (Echauz, 2019).

These issues can be fixed by moving from a fortuitous
“regular-vs-adversarial” dichotomy to the principled “clear-
vs-turbid,” and by not blurring the line between detector and
its intended deployment environment (Gilmer et al., 2018).
Dropping intent and seed-of-origin out of the adversarial
character makes the problem realistic and applicable to cam-
paign mitigation.

2.3. ROC Inversion

We now show that a realistic adversarial (i.e., e-vs-d) detec-
tor cannot actionably help 0-vs-1 decision-making in a regu-
lar environment as it leads to ROC inversion. In the spirit of
reductio ad absurdum, let the theoretical 1D adversarial de-
tector A(x) in Figs. 2(g,h), Eq. (10) augment the probabilis-
tic 0-vs-1 detector D(x) in Figs. 2(c,d), Eq. (6). Given any
input x′ at test time, if A(x′) is accurately declaring that x′

is adversarial then we would want to contradict the decision
from D(x′). From the point of view of A(x), the Bayes trig-
ger to declare adversariness is A(x) > 0.5, which is equiva-
lent to checking if input magnitude is within a critical cutoff:
|x| < 2.597 (also equal to the crossover points in Fig. 2(e)).
The augmented detector becomes

ŷ = sign(x)sign(|x| − 2.597) ,

and the augmented-system posterior probability is:

Paug(1|x) = Fξ(x)[|x| > 2.597] + Fξ(−x)[|x| ≤ 2.597] .

(Any function that reverses the D(x) decision within that in-

terval will work.) Fig. 3(a) shows this nonmonotonic pos-
terior. Fig. 3(b) shows the exact ROC using multibranched
algorithm. The original accuracy of F0(0)P (0) + (1 −
F1(0))P (1) = 0.93 goes down to 0.79. The original detec-
tor was already optimal for its intended regular environment,
and overriding its decisions only makes it worse. Thus, pro-
tection against one-off adversarial examples is a misguided
design goal.

Figure 3. Posterior and ROC of the augmented original +
turbidity detector leading to ROC inversion.

2.4. ROC Pinch-Down

We now show that operating the original 0-vs-1 detector in
a toxic environment leads to an ROC pinch-down. Under
adversarial campaign, class-conditionals can display abnor-
mal concentrations around the original decision score thresh-
old, a single crossover (as in Fig. 2(a)) can become mul-
tiple, class-posterior can turn nonmonotonic, and errors be-
come frequent, making model performance plummet. Con-
tinuing with the balanced proportions of 50-50% e-vs-d and
50%-50% 0-vs-1 of Section 2.1, the class-conditional likeli-
hoods that the original detector now has to confront are (Fig.
4(a)):

ptoxic(x|0) = pe(x)[x ≥ 0] + pd(x)[x < 0] ,
ptoxic(x|1) = pe(x)[x < 0] + pd(x)[x ≥ 0] ,

where pe and pd are the conditionals in Eq. 9.

Figure 4. Class-conditionals in toxic environment leading to
ROC pinch-down.

The marginal of inputs is identical to Fig. 2(f), just composed
differently from the average of the above toxic conditionals.
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The posterior (not shown) is the same one in Fig. 2(c) since
the model remained naively unchanged during this toxic cam-
paign. The exact ROC (Fig. 4(b)) can be obtained here from
the monotonic sweep form in Eq. 7, except with F0,toxic and
F1,toxic. So while augmenting the detector during normal op-
eration was harmful, ignoring the problem during abnormal
operation is also potentially worse. Thus, protection against
adversarial campaigns (not one-offs) is needed.

2.4.1. Asymmetric Toxic Environments

At the 1:1 ratio of e-vs-d samples under both 0 and 1 classes,
the characteristic ROC seagull (Fig. 4(b)) has curve pinned
at the chance line (50% accuracy). However, at other ra-
tios of turbidity proportions under each class, conditionals
become asymmetric and the pinch point moves somewhere
else. Class-0 e:d ratio controls the horizontal axis (FPr),
while class-1 e:d ratio independently controls the vertical axis
(TPr = 1− FNr). This means that if adversarial campaign
actors could not only add samples but also subtract from the
environment seen by the model, they would be able to place
the pinch-down point anywhere on the ROC plane! But they
would have to be oracles themselves, for example, to force
the model to be always wrong in the future would pin oper-
ating point at the bottom-right corner (something we cant do
ourselves with imperfect knowledge). Fig. 5 shows a toxic
formulation where class-0 samples are regular (i.e., no ad-
versarial FPs), with their natural F0(0) : F1(0) proportion
of clear to turbid, whereas class-1 samples have an unnatural
37.5%-62.5% proportion.

Figure 5. Class-conditionals in asymmetric toxic environ-
ment, moving ROC pinch-down somewhere else.

2.5. Mitigation/Repair of the Degraded ROC

In its intended regular environment, the original model can
adapt to changes in maliciousness imbalance (0-vs-1 preva-
lences) by simply sliding its operating point along the intact,
class prevalence-agnostic ROC curve. However, in the adver-
sarially toxic environment it is no longer enough to simply
adjust a threshold to match the environment; a fundamentally
different detection problem must be solved. In order to “un-
pinch” the ROC to the best available shape given the adver-
sarial campaign, we should obey the new posterior:

Ptoxic(1|x) =
ptoxic(x|1)P (1)

ptoxic(x|0)P (0) + ptoxic(x|1)P (1)
. (15)

This will typically be nonmonotonic (Fig. 6(a)). The exactly
repaired ROC is obtained from the multibranched algorithm
as shown in Fig. 6(b).

Figure 6. New posterior and mitigated/repaired ROC.

The new optimal maximum-a-posteriori Bayes classifier im-
plements decision reversals relative to the original one.
Reversals occur only within the decision score intervals
where the new heights of 0-vs-1 conditional likelihoods have
swapped their dominance, due to the new concentration of
turbid/difficult samples in the environment. Thus, the miti-
gated detector is gracefully (rather than catastrophically) de-
graded, restoring acceptable error rates and adaptability to
maliciousness imbalance.

2.5.1. When Repair Isn’t Possible

In some cases it isn’t really possible to “unpinch” the ROC
because the curve morphs into a seamless one with no dent
(as if in Fig. 5(b) the pinched point fused into the left
branch), e.g., with ratio of e-vs-d samples still at 1:1 but
with malicious class prevalences falling outside of the inter-
val F1(0) < P (1) < F0(0). The curve is still depressed
compared to the original regular one due to 50% of samples
being turbid, and only detection threshold remains as a poten-
tial adjustment.

We have also uncovered adversarial covariate shift as an-
other condition where ROC repair isn’t possible. This
would make score class-conditionals and marginal more tur-
bid while keeping the posterior intact. For example

ptoxic(x|0) = (1− Fξ(s)) · (0.5p(x|e) + 0.5p(x|d)) /0.5 ,
ptoxic(x|1) = Fξ(s) · (0.5p(x|e) + 0.5p(x|d)) /0.5 .

The reader can verify that the posterior P (1|x) is exactly re-
covered as Fξ(x), the CDF of the label noise (also true for
other imbalanced 0-vs-1 priors). However, it seems unrealis-
tic that an adversary could shape the conditionals in this fash-
ion as it would require omnipotent control of the environment
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beyond merely adding adversarial samples to the regular one
seen by the model.

2.6. Generalization to Suboptimal Models and Higher Di-
mensions

We have systematically charted an atlas documenting how the
above 1D reference theory is impacted when the model is sub-
optimal instead of Bayes-optimal (via mistuned bias and/or
misaligned weights), and in higher-dimensional input space,
where the decision score s is taken to be the preactivation
x>w, i.e., the (possibly augmented) dot product at the out-
put layer of a probabilistic binary classifier. Due to space
restrictions, we only mention that all ROC inversion, pinch-
down, and mitigation repair results remain qualitatively iden-
tical. The score is still 1D; the only difference is that with
independent components of x, all distributions become win-
dowed/tapered, and ROCs get “dumber”/shallower from the
CLT centrality effect of marginal p(x), which makes samples
appear close to decision boundary more frequently. Injecting
correlation structure in components of x also weakens separa-
bility, but the main ROC results hold. Further, nothing above
prevents decision scores from being computed by non-neural
network models. Thus, the described campaign effects and
mitigation apply to any decision-making component that ex-
poses its scores to attackers, including ensembles of decision
trees widely prevalent in industrial settings.

3. PREEMPTIVE DOMAIN ADAPTATION

The theoretical results in the previous section can be put
into PHM practice by monitoring estimates of the decision
score class-conditional distributions in order to declare if and
when an adversarial campaign is in effect, repair the degraded
ROC during campaign, restore the original model after cam-
paign subsides, and improve readiness for future attacks via
simulation. Assume a well-trained classifier has been de-
ployed in its originally-intended threat environment where er-
rors are rare (e.g., > 95% hit at < 0.1% FP rates). A health
management methodology can track 0-vs-1 conditional score
histograms (and optionally error rates), from which class-
conditionals curves are kernel-density estimated (KDE) as
smooth functions. This still requires ground-truth label esti-
mates; in cybersecurity they are obtained after some lag rang-
ing from sub-seconds (with access to cloud-based reputation,
etc.) to days (offline endpoints with sporadic live updates,
air-gapped IIoT devices, etc.). There is also a way to detect
without ground truth, by introspectively looking at whether
too many decision scores are falling in a low-confidence in-
terval, but this is bypassed if attackers actively inject only
high-confidence samples.

Under adversarial campaign, class-conditionals may develop
multimodality, with multiple crossover points that misfit the
original decision rules, making model performance plummet

for some period of time. This condition can be declared
from observation of empirical ROC pinch-down or abnor-
mally large error rates. (In the low-confidence campaign
case, the model can track its own decision scores falling in
an interval near decision threshold at higher-than-historical
rates, suggesting adversarial manipulation since it would be
rare to see that in the regular environment.) At that time, an
equiprobable class-posterior function implementing Eq. (15)
is transmitted to the endpoint model to be used as a post-
transformation layer of the original decision scores. The out-
put of this function can then be thresholded to obtain a desired
mitigated ROC operating point. In effect, this is an inex-
pensive statistical domain adaptation that reverses decisions
where it makes sense to do so. The same logic can be applied
in reverse to restore the original model when campaign has
subsided.

The methodology above is still 100% reactive defense. Our
investigation suggests that a 100% proactive defense (where
the model is hardened at training time against all future one-
off adversarial samples in the regular environment) is mathe-
matically impossible. Thus, prognostics in the usual sense of
predicting remaining life until failure, to do something about
it before it occurs, is outside the scope of our work. However,
we introduce a proactively reactive compromise. It precom-
putes the optimal response to each of several plausible adver-
sarial attack scenarios, via Monte Carlo simulation drawing
from the model’s own turbidity distribution, and stores that
information as a look-up table to quickly deploy the correct
mitigation during a real-world campaign. A final health main-
tenance modality is to put the decision modification layer into
effect continuously/ prophylactically without waiting to de-
tect that a campaign has begun (in which case the last layer
calculation automatically yields simply an identity function).
This way, as machine operating conditions change even grad-
ually, the method is already there to mitigate possibly harmful
effects while any persistent shifting is investigated.

4. EXPERIMENTS WITH REAL-WORLD DATA

This section verifies the main ROC inversion, pinching, and
repair results using real-world data with corresponding at-
tacks against a deep neural network classifier in two appli-
cation areas: digit recognition and IIoT malware detection.

4.1. Digit Recognition

The standard MNIST benchmark dataset was used, contain-
ing 60,000 grayscale 28×28px images of handwritten digits.
The deep convolutional neural network trained in (Dhaliwal
& Shintre, 2018), whose first layers are visualized in Fig. 1,
achieved over 99% accuracy on a holdout split of the data. A
stratified random sample of 2400 images was taken to equally
represent all digits. We adversarially generated 2400 FPs
and 2400 FNs using the Carlini-Wagner algorithm (Carlini
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Figure 7. Regular not-1 vs 1 conditional histograms and balanced turbidity histogram from adversarial FPs & FNs.

& Wagner, 2017b). The 10-class problem was dichotomized
into classes ‘not-1’ vs ‘1’ by unfolding the preactivation de-
cision scores as

s =
1

2
(s1 −max{s0, s2, s3, s4, s5, s6, s7, s8, s9} ,

where s1 is the preactivation score at the neuron for class ‘1’
(2nd indicator in softmax layer). That leaves 2160 regular in-
stances of class ‘not-1’ and 240 of ‘1’—a class-prior imbal-
ance of 9:1. Fig. 7 shows the pdf-normalized regular condi-
tional histograms (top) and the turbidity distribution from the
adversarial FNs and FPs (bottom; additionally color-coded by
not-1 vs 1 classes). As predicted by the theory, the latter dis-
tribution has a Laplace-like inflex concentration around the
score decision-crossing point (cf. purple in Fig. 2(e)). For
clarity, it is shown with balanced not-1s vs 1s within the tur-
bid condition; the regular environment would have 9 times
more FPs than FNs while toxic ones can be manipulated. In
this potentially overfit ”99%” accuracy case, we cannot dis-
play an empirical turbidity distribution with only the natural
FPs and FNs because there were only 2 and 0 cases, respec-
tively.

Aided by 2160 of the adversarially discovered FPs and 240
of the FNs to mimic the natural 9:1 class lopsidedness in the
regular environment, we estimated decision-reversal interval
as [–1.6,1.6] (graphically from intersection of empirical con-
ditional histograms, much like green vs purple curves in Fig.
2(e)), and generated the empirical ROC over the 2400 regular

Figure 8. KDE-smoothed class conditionals and correspond-
ing equiprobable posterior for use in repair.

samples. Fig. 9(b) inset confirms that the resulting ROC is
inverted. It appears to be small harm but there is actually al-
most an order-of-magnitude larger FP rate; this difference is
critical in the field.

The two class-conditional PDFs were estimated using Gaus-
sian kernel and bandwidth B. This is equivalent to fitting
a Gaussian mixture distribution where means equal all in-
dividual data points, and covariances equal the shared con-
stant B2. During a very toxic adversarial campaign where
half of all samples become turbid, KDE-smoothed PDFs from
aggregated data at the desired e-vs-d proportions reveal 3
crossovers (Fig. 8(a)). The corresponding equiprobable pos-
terior crosses the 0.5 threshold 3 times (Fig. 8(b)). Operat-
ing the original unmitigated detector yields the pinched-down
ROC (Fig. 9(c)). In contrast, passing the scores thru the mit-
igated posterior function yields the repaired ROC (Fig. 9(d)).
Fig. 9 confirms the inversion, pinch-down, and repair as pre-
dicted by the theory. We note however that the empirical na-
ture of the construction makes ROCs look like staircases and
it’s impossible to discern convexity of the inversion from con-
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Figure 9. Regular, inverted, pinched-down & repaired ROCs
in adversarial campaign against MNIST detector.

cavity of the pinch-down (something we know only from the
theory).

4.2. Malware Detection from Raw Bytes

We additionally verified the adversarial campaign health
management framework using a pre-production model in-
tended for an IIoT “ICSP Neural” USB scanning device. It
contains a deep network with {embedding, 4 convolutional,
3 dense, softmax} layers trained on half a million raw exe-
cutable files (aggregated from a mix of clean and malicious
customer submissions and vendor feeds). This type of net-
work is fed integers in [0,255] representing bytes of a file
zero-padded or cropped to length 700,000 (as if it were a
wide image that is only 1 pixel tall). The test dataset con-
sisted of 2000 clean and 2000 malicious files sampled from a
time split spanning 1 month after the training date. The model
was made purposely suboptimal (with regular ROC curve far
from upper-left corner) in order to better observe the mani-
festations of the theory.

One of the simplest adversarial attacks for binaries is to ap-
pend a crafted payload at the end of the file (Kuppa, Gr-
zonkowski, & LeKhac, 2018). The brute-force algorithm ap-
pends random chunks until the model flips its decision (to
within some trial count tolerance). A high-confidence cam-
paign was defined as a set of new binaries bypassing the
model with pseudo-probability output above 0.97. Drawing
seeds from the size-4000 test set, 512 adversarial FPs and 524
adversarial FNs were created this way. The empirical class-
conditional histograms in the toxic environment are charac-
terized (when pegged to the regular minimum-balanced-error

Figure 10. Regular, pinched-down & repaired ROCs in spe-
cial adversarial campaign against malware detector.

score threshold 2.2) by 357 unforced + 512 forced FPs, plus
498 unforced + 524 forced FNs, totaling 1891 errors and thus
a 62.5%-37.5% clear-to-turbid ratio. The clean (class 0) con-
ditional is estimated from

ptoxic(s|0) ≈ 1
n0

n0∑
i=1

1
B0
K

(
s−s(0)i

B0

)
,

where K(·) is the standard Gaussian kernel, s(0)i are the un-
folded decision scores (2nd-unit softmax preactivation minus
1st) under class 0, and B0 = 0.687 is the bandwidth from
Silverman’s estimate. The malware (class 1) conditional was
similarly obtained with B1 = 0.928. Fig. 10 shows the dev-
astating effect of this campaign on ROC and how much could
be mitigated. Passing the original models decision scores
through the KDE-formed posterior brings the whole curve
back to at least a gracefully degraded state.

5. CONCLUSIONS

The common misunderstanding surrounding what to do about
adversarial inputs that fool detectors can be cleared by fixing
the “regular-vs-adversarial” dichotomy and by recognizing
the difference between one-off/per-trial basis protection vs
adversarial campaign mitigation. Our investigation suggests
that universal pre-hardening defenses are impossible without
paying a price in accuracy of the original model operating in
its regular environment.

We introduced turbidity detection, campaign mitigation, and
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preemptive domain adaptation as conceptual frameworks
leading to practicable detector health management solutions.
The theory yielded previously unreported results about ROC
inversion, pinch-down, and repair in the context of adversarial
threats to deep neural networks increasingly used in industry,
and also applicable to widely prevalent ensembles of decision
trees.

It should be understood that our method is not a panacea to
shield or empower a model; what it does is optimally mitigate
the damage (dramatically so for some ROC operating points)
caused by adversarial toxicity that the original model wasn’t
designed to tackle on its own.
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