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Abstract—In this work, we define a collaborative and privacy-
preserving machine teaching paradigm with multiple distributed
teachers. We focus on consensus super teaching. It aims at
organizing distributed teachers to jointly select a compact while
informative training subset from data hosted by the teachers
to make a learner learn better. The challenges arise from three
perspectives. First, the state-of-the-art pool-based super teaching
method applies mixed-integer non-linear programming (MINLP)
which does not scale well to very large data sets. Second, it is
desirable to restrict data access of the teachers to only their own
data during the collaboration stage to mitigate privacy leaks.
Finally, the teaching collaboration should be communication-
efficient since large communication overheads can cause syn-
chronization delays between teachers.

To address these challenges, we formulate collaborative super
teaching as a consensus and privacy-preserving optimization
process oriented to minimize teaching risk. We theoretically
demonstrate the necessity of collaboration between teachers for
improving the learner’s learning. Furthermore, we show that the
proposed collaborative teaching method enjoys a similar property
as the Oracle property of adaptive Lasso. Extensive empirical
study on large-scale data sets illustrates that our teaching method
can deliver significantly more accurate teaching results with high
speed, while the non-collaborative MINLP-based super teaching
becomes prohibitively expensive to compute.

I. INTRODUCTION

Machine teaching [1]–[5] studies the inverse problem of
machine learning, where a teacher already has a specific target
model (θ∗) it wants to teach some other student (learner),
and the teacher designs the optimal training set such that the
student can efficiently learn the target model. The constructed
training set does not need to be independent and identically
distributed. The teacher is allowed to design any instance in
the input space, which enables flexibility when generating an
efficient training set. The efficacy of teaching is measured
by computational cost of the model training, accuracy of the
derived learner, robustness of the training process and so on.
In general, machine teaching places a strong emphasis on
the teacher and its power to control data. Machine teaching
is connected to machine learning fundamentals as it defines
abstractions and interfaces between the learning algorithm
and the teaching paradigm. Research on machine teaching
has not only great theoretical value, but also applications in
personalized education and human-in-the-loop learning.

Super teaching is an interesting phenomenon unveiled re-
cently in machine teaching. As stated in [6], a learner is super-
teachable if a teacher can trim down an i.i.d. training set while
enhancing the learning performance. Distinct from training set
reduction where the target model is hidden from the learner,
super teaching assumes the teacher knows the target model

and rely on such knowledge to select a training subset so that
a student learner can learn better on that subset.

Prior work in super teaching assumes that only one central
teacher is present and it has full knowledge of all data
instances used for teaching. As the privacy concern of data
security becomes increasingly important, research in super
teaching faces the following important challenges. First, in-
stead of transferring all data used to teach to the central
teacher where teaching is conducted, it is preferable to keep
data on the local devices and conduct teaching with multiple
distributed teachers. Each teacher only accesses the data
samples hosted by itself. It avoids heavy overheads of the
data transferring and prevents leaks of private information
contained in the local data set. However, it is not clear whether
organizing a consensus collaboration between teachers can
provide merits of teaching compared to independently con-
ducting teaching by each teacher in a stand-alone mode.
Little efforts have been devoted to discuss how to organize
an efficient collaborative super teaching paradigm to achieve
good teaching performances and a privacy-preserving process
of teaching at the same time. Furthermore, the state-of-the-
art super teaching method proposed in [6] is formulated as
a mixed-integer non-linear programming (MINLP) problem.
The general computational complexity of MINLP problem
is undecidable in theory [7]. In the worst case, the popular
heuristic solver, such as Branch-and-Bound (BnB) method,
has an exponential time complexity thus becomes prohibitively
expensive given large-scale training data. Solving a MINLP
problem with distributed players is even more difficult, as
it usually needs a central processor to allocate the resource
across multiple players to solve the overall problem [?]. There-
fore, the central processor can access the local private data,
which potentially violates the privacy regulation. Besides, fre-
quent synchronization between the central process and the end-
devices can cause severe latency given a low-communication
environment. Finally, limited computing capability of end-
devices in a distributed network can not afford to the intensive
computation of solving the MINLP problem.

We propose a novel computationally efficient distributed
super teaching paradigm, which coherently facilitates collabo-
ration between multiple teachers in a privacy-preserving way.
Our study confirms a well-known intuition: A carefully or-
ganized consensus collaboration between different teachers
can enhance the teaching performances. We also show that
independently conducting teaching in a non-colluded way can
even make the teaching performance deteriorate. Furthermore,
the privacy-preserving design of the proposed collaborative



teaching paradigm encourages information sharing between
teachers in the collaboration stage.

II. RELATED WORK

A. Machine Teaching

Machine teaching was originally proposed in [1], [2]. It
has attracted plenty of research interest, most of which focus
on studying a key quantity called the teaching dimension,
i.e., the size of the minimal training set that is guaranteed
to teach a target model to the student. For example, [1]
provides a discussion on the teaching dimension of version
space learners, [8] analyzes the teaching dimension of linear
classifiers, and [4] studies the optimal teaching problem of
Bayesian learners. In standard machine teaching, the student
is assumed to passively receive the optimal training set from
teacher. Later works consider other variants of teaching setting,
e.g., in [3], [9], the student and the teacher are allowed to
cooperate in order to achieve better teaching performance.
More studies about machine teaching can be found in [5],
[10]–[13].

Machine teaching as a theoretical regime also has many
applications in cognitive science and computer security. One
application is the personalized education, where a clairvoyant
teacher can help design minimal teaching curriculum for a
human student such that an educational goal is achieved [14].
As another popular application, machine teaching can be
used to perform data poisoning attacks of real-world machine
learning systems. In such cases, the teacher is viewed as
a nefarious attacker who has a specific attack goal in his
mind, while the student is some machine learner, then the
teaching procedure corresponds to minimally tampering the
clean dataset such that the machine learner learns some sub-
optimal target model on the corrupted training set. Some
adversarial attack applications can be found in [15], [16].

Instead of artificially designing the training set, super teach-
ing [6] selects a subset from an i.i.d. training set to conduct
teaching. Mathematically, super teaching is defined as below.

Definition 1 (Super Teaching). Let S be an n-item iid training
set, and T be a teacher who selects a subset T (S) ⊂ S as
the training subset for learner A. Let θ̂S and θ̂T (S) be the
model learned from S and T (S) respectively. Then T is a
super teacher for learner A if ∀δ > 0,∃N such that ∀n ≥ N

PS

[
R(θ̂T (S)) ≤ cnR(θ̂S)

]
> 1− δ, (1)

where R is some teaching risk function, the probability is with
respect to the randomness of S, and cn ≤ 1 is a sequence
called the super teaching ratio.

The idea of selecting an informative training subset is also
explored in [17]. In the proposed learning-to-teach framework,
the teacher conducting subset selection is modeled with Deep
Neural Nets (DNN). The goal of teaching is to select training
samples to make faster convergence of the DNN based learner.
The teacher network is tuned via reinforcement learning with
reward signals encouraging fast descent of the classification

loss of the learner. In contrast to learning-to-teach, super
teaching in [6] focuses on a more general teaching goal, which
drives the student to learn the expected model. Although only
simple learners such as Logistic Regression are considered
in [6], the theoretical study over the teachability of super
teaching can be further applied to many advanced learners.

Inspired by the teachability theory proposed in [6], our work
extends the horizon of super teaching by studying applicability
of a collaborative and privacy-preserving teaching scenario.
Different from learning-to-teach, multiple teachers are present
as collaborative players in the teaching activity. Furthermore,
training data hosted by any one teacher can not be accessed
by the others in our problem setting, whereas learning-to-teach
assumes the teacher network can access all the training data.

B. Federated Learning

Another relevant branch of research is federated learning
[18]. Federated learning is a communication-efficient and
privacy-preserving distributed model training method over dis-
tributed agents. Each agent hosts their own data instances and
is capable of computing local model update. In each round of
model training, the training process is first conducted on each
node in parallel without inter-node communication. Only the
local model updates are aggregated on a centralized parameter
server to derive the global model update. The aggregation is
agnostic to data distribution of different agents. Neither the
centralized server, nor the local agents have visibility of the
data owned by any specific agent. In [19], a communication-
efficient distributed optimization method named CoCoA is
proposed for training models in a privacy-preserving way.
CoCoA applies block-coordinate descent over the dual form of
the joint convex learning objective and guarantees sub-linear
convergence of the federated optimization. Furthermore, the
optimization process does not require to access data instances
hosted by each node. Only local dual variable updates need to
transfer from local nodes to the central server. This property
makes CoCoA inherently appropriate for federated training.

A federated data poisoning attack is recently proposed
in [20]. This work assumes that only one malicious agent
conducts non-colluding adversarial data poisoning over the
local data instances that it hosts. Our method is distinct from
this work since we study consensus collaboration of multiple
teachers. In addition, we investigate a more generous goal
of teaching than data a pre-specified target model with that
training set., which guides the learner to learn a pre-specified
yet potentially malicious target model.

III. COLLABORATIVE SUPER TEACHING

We assume K teachers and one central parameter server
as the learner. Each teacher hosts a local private dataset Di

(i ∈ [K]) of size Ni. As the output of super teaching, each
teacher selects a subset Si ⊂ Di. The learner runs the learning
algorithm L on the aggregated subsets S = ∪i∈[K]Si to
obtain the model. Each teacher only accesses its own data
Di during the teaching process due to the privacy-preserving
regulations. Once the teaching stage terminates, the learner can



further conduct federated model training to keep the local data
subsets {Si} on the local machines, which protects teachers’
data privacy after teaching. Discussing how to conduct model
training is beyond our scope. Without loss of generality, we
assume that the learner choses federated training.

We set the teaching goal as the value of the model parameter
θ∗ that the teachers expect the learner to obtain, as the setting
in [6]. In the collaborative environment, the union of the
selected subsets {Si} should be jointly helpful in inducing
θ∗. Therefore we propose to define the collaborative super
teaching as in (2)

θ̂S , b
i : i ∈ [K] = arg min

θ̂S ,b
i:i∈[K]

R∗(θ̂S)

s.t. θ̂S = arg min
θ

K∑
i=1

Ni∑
j=1

bij`(θ, x
i
j , y

i
j) +

λ

2
Ω(θ), bi = {0, 1}Ni ,

(2)

where R∗(θ̂S) = ‖θ̂S − θ∗‖ measures the teaching risk as
Euclidean distance between θ̂S and θ∗, (xij , y

i
j) is the jth

data instances of Di hosted by the teacher i, and bi is an
Ni-dimensional binary-valued vector with bij = 1 denoting
the instance (xij , y

i
j) is selected and bij = 0 otherwise. ` is

the learning loss function, Ω(θ) is the regularization over the
model complexity of the learner and λ is the regularization
weight. Intuitively, there is a primitive solution to the proposed
distributed teaching problem: oblivious teaching, where each
teacher independently selects its own teaching set without col-
laborating with the other teachers. The independently selected
subsets are aggregated to form the training set of the learner.
The questions of interest are thus i) whether the oblivious
teaching can reduce the teaching risk. and ii) whether it
is possible to improve teaching performance by organising
appropriate collaboration between the teachers, compared to
the oblivious teaching.

For simplicity of analysis, we assume that Ω(θ) is the l2-
norm penalty ‖θ‖2 and ` is a τ -Lipschtiz convex objective
function in θ, which holds in many cases such as the logistic
loss with bounded input space. Thus, the learning algorithm L
of the learner takes the form of convex optimization. Based on
such assumption, we provide an initial answer to the question
i) in Theorem 1:

Theorem 1. Assume the model space Θ is bounded, i.e., ∀θ ∈
Θ, ‖θ‖ ≤ B. Also assume the learning loss ` is τ -Lipschitz in
θ. The teaching risk is defined as R∗(θ̂) = 1

2‖θ̂− θ
∗‖2, where

θ∗ is the target model. Each teacher independently solves (2)
on its own dataset Di with regularization weight λ

K , and let
S = ∪i∈[K]Si be the aggregated dataset. If ∀i, R∗(θ̂Si) ≤ ci,
then R∗(θ̂S) ≤ 1

K ( τλ + B
K )

∑K
i=1

√
2ci.

Proof. Let the (x̂ij , ŷ
i
j) be the jth point in the selected Si.

Define gi(θ) =
∑|Si|
j=1 `(θ, x̂

i
j , ŷ

i
j) + λ

2K ‖θ‖
2, where |Si| is the

size of Si. Then θ̂Si = arg minθ∈Θ gi(θ). Define

g(θ) =
1

K

K∑
i=1

gi(θ) =
1

K
(

K∑
i=1

|Si|∑
j=1

`(θ, x̂ij , ŷ
i
j) +

λ

2
‖θ‖2). (3)

Then θ̂S = arg minθ∈Θ g(θ). Since g(θ) is λ-strongly convex,

g(θ∗)− g(θ̂S) ≥ λ

2
‖θ∗ − θ̂S‖2. (4)

Thus R∗(θ̂S) = 1
2‖θ̂S − θ

∗‖2 ≤ 1
λ (g(θ∗) − g(θ̂S)). Next we

upper bound g(θ∗)− g(θ̂S). Note that

g(θ∗)− g(θ̂S) =
1

K

K∑
i=1

(gi(θ
∗)− gi(θ̂S))

≤ 1

K

K∑
i=1

(gi(θ
∗)− gi(θ̂Si)),

(5)

where the last inequality is due to θ̂Si = arg minθ∈Θ gi(θ).
Remember ` is τ -Lipschitz and Θ has bounded norm B, thus
gi(θ) is Lipschitz with parameter τ + λB

K . Then we have

gi(θ
∗)− gi(θ̂Si) ≤ (τ +

λB

K
)‖θ∗ − θ̂Si‖ ≤ (τ +

λB

K
)
√

2ci. (6)

By (5) and (6), we have

R∗(θ̂S) ≤ 1

λ
(g(θ∗)− g(θ̂S)) ≤ 1

K
(
τ

λ
+
B

K
)

K∑
i=1

√
2ci. (7)

Theorem 1 implies that if ∀i, ci ≤ c, then R∗(θ̂S) ≤
( τλ + B

K )
√

2c. Note that the bound is in fact worse than c
for small enough c due to the square root. Thus by simply
aggregating the selected subsets, one can guarantee that if
every teacher individually teaches the target θ∗ well, then the
joint teaching performance is still reasonably good. However,
the aggregated teaching set S can be worse than any teaching
set held by an individual teacher. Therefore it is obvious that in
order to achieve better joint teaching performance, the teachers
should share information with each other and decide how to
tweak their own teaching subset based on the selection made
by the peers. This is also intuitive in real-world education,
where human teachers collaboratively teach student better via
communication with each other. Motivated by this observation,
we define a collaborative teaching strategy that encourages
information sharing between teachers to jointly minimize the
teaching risk, while keeping the local data private.

A. Regularized Dual Learning for Collaborative Teaching

The dual objective of the learning paradigm for the learner
gives:

α∗ = arg min
α

K∑
i=1

Ni∑
j=1

`∗(−αij) +
λ

2
‖Zα‖2 (8)

where `∗ is the Fenchel dual of the loss function `. Let
N =

∑K
i=1Ni denote the number of training instances

delivered by the teachers. Z ∈ Rd∗N denotes aggregated data
matrix with each column corresponding to a data instance. The
duality comes with the mapping from dual to primal variable:
ω(α) = Zα as given by the KKT optimality condition. α is
the N -dimensional dual variable, where each αij denotes the
dual variable corresponding to the jth data instance hosted by
teacher i. If αij diminishes, the corresponding data instance



Zij consequently has no impact over the dual objective in (8).
Thus, only the data instances with non-zero αij dominates the
training process. Motivated by this observation, we propose to
optimize the dual objective and enforce sparsity structure of α
simultaneously to achieve selection of the informative training
samples in (9). Bearing in mind the goal of the collaborative
teaching, we also introduce an additional quadratic penalty
shrinking the gap between θ∗ and the learnt model Zα.

α = arg min
αij ,i∈[K]

1

n

K∑
i=1

Ni∑
j=1

`∗(−αij) +
λ

2
‖Zα‖2

+ λθ‖θ∗ − Zα‖2 + λα

K∑
i=1

Ni∑
j=1

wij |αij |

(9)

where λα and λθ are the weight coefficients of the adaptive
l1-norm based penalization enforcing sparsity of α and the
quadratic penalty minimizing the teaching risk R∗. wij is data-
dependent per-variable weight assigned to each dual variable
αij . Based on [21], wij can be set up as 1/|α̂ij |. 1/|α̂ij | denotes
a warm-start estimate of αij , which can be derived by simply
calculating the Ordinary-Least-Squares solution to ‖θ∗−Zα‖2.
The teaching objective given in (9) is apparently convex
according to the property of Legendre-Fenchel transform. Thus
solving (9) with gradient descent guarantees fact convergence.
As enforced by the l1-norm regularization over α, the non-
zero entries of the optimal α of the objective function in (9)
correspond to the most useful data instances for the learner to
reach the expected teaching goal and minimize the teaching
risk R∗. In practice, the learned α has a small fraction of
entries with dominant magnitudes, and rest are negligible. We
thus rank the data instances Zij according to the magnitude
of |αij |. The top-ranked |S| data instances with the largest
|αij | are selected to form the final training subset for the
learner. Since the selected data instances are distributed over
different teachers. Solving (9) helps to jointly identify which
data instances on each of the K teachers should be used to
teach the learner. In the consensus optimization, each teacher
learns to conduct the selection based on the decisions of the
other teachers. Compared to heuristically tuning each teacher’s
decision, solving (9) explicitly coordinates different teachers to
deliver collaborative subset selection to minimize the teaching
risk globally. Furthermore, we observe that the solution to (9)
enjoys a similar property as the Oracle property of adaptive
Lasso [21] with an appropriately chosen λθ and λα, as given
in Observation 1.

Observation 1. Given a training set {(xi, yi)}i∈[N ], where
xi ∈ Rd. We assume that the goal of the super teaching
satisfies θ∗ =

∑
i∈A α

∗
i xi, where A ⊂ [N ], and α∗ denotes

the dual variable. We further assume that λθ � ϕ where
ϕ is the empirical upper limit for the learner’s classification
loss on the training set. Given γ > 0, if λα

λθ
d−

1
2 → 0 and

λα
λθ
d−

1
2 + γ

2 → ∞ (see Theorem 2 in [21]), then the global
optimal solution α to (9) must satisfy the Oracle property:
limd→∞ P (α = α∗) = 1.

Data: {zij i = 1, 2, 3...,K, j = 1, 2, 3, ..., Ni} hosted by
K teachers

Input: T ≥ 1 as the maximum iteration steps, scaling
parameter 1 ≤ βi ≤ K, by default βi = 1

Output: αij , i = 1, 2, ...,K, j = 1, 2, ..., Ni
Initialize: αij = 0 for all machines and θ̃(0) = 0
for t = 1 to T do

for all teachers i = 1, 2, 3, ...,K in parallel do
∆αi = arg min

∆αi

λ
2 ‖θ̃

(t−1) + 1
λ

∑Ni
j=1 ∆αijx

i
jy
i
j‖2 +

`∗(−α(t−1),i −∆αi) +
∑Ni
j=1 w

i
j |αij + ∆αij |+

λθ‖θ̃t−1 + 1
λ

∑Ni
j=1 ∆αijx

i
jy
i
j − θ∗‖2

αt,i = αt−1,i + βi
K∆αi

end
Reduce on the central parameter server
θ̃t = θ̃t−1 + 1

λ

∑K
i=1

∑Ni
j=1 α

t,i
j x

i
j

Broadcast θ̃t to all K teachers
end

Algorithm 1: Block-Coordinate Descent for Collaborative
Super Teaching

B. privacy-preserving teaching via block-coordinate descent

We propose to use block-coordinate descent to solve (9).
In each round of the descent process, we minimize (9) with
respect to all αij belonging to the same teacher i, while
fixing all the other α as constants. The pseudo codes of the
optimization procedure is given in algorithm 1.

We use αt,i to denote the disjoint block {αij}, j =
1, 2, 3.., Ni corresponding to the data instances hosted by
teacher i, which are estimated at the t-th iteration. Zi denotes
the columns in the data matrix Z storing the data instances of
the teacher i. In each round of iteration, we update the dual
variable αi for each of the K teachers in parallel. We assume
an incremental update ∆αi based on the value of αt−1,i.
This incremental variation indicates the descent direction
minimizing the teaching loss with respect to the block αi. It is
estimated by minimizing the local approximation to (9), where
αi is represented as the additional combination αt−1,i + ∆αi.
βi is the learning rate adjusting the descent step length for the
block αi. Note updating each block αi does not require knowl-
edge of the values for the other blocks. All the local updates
need is the local dual variable value αt−1,i obtained from the
last round and the global aggregated variable θ̃ broadcasted
from the central server. As such, update of each block can
be conducted in parallel without inter-teacher communication.
Similarly, aggregating to derive the global variable θ̃ is also
a parallel process. The teachers forward the local aggregation∑Ni
j=1 α

t,i
j x

i
j to the central server, where simply summing up

the local aggregation gives the global variable value. It is worth
noting that we use θ̃ to denote the global aggregation variable.
It does not imply the primal-dual correspondence, as we are
solving a different problem from (9). Throughout the block-
coordinate descent process, it is easy to find that i) private
data hosted by any teacher is kept on its own machine in



the collaboration stage. In other words, no training data is
transferred directly between teachers. Furthermore, updating
θ̃ only needs to transfer the local aggregation

∑Ni
j=1 α

t,i
j x

i
j to

the central sever. It is difficult to infer any statistical profiles
about the local data of the teachers based on solely on the
local aggregation

∑Ni
j=1 α

t,i
j x

i
j , which reduces the risk of

unveiling local private data of one teacher to the others in the
collaboration step. ii) sharing information between different
teachers is conducted in the proposed method by updating
the global aggregation variable θ̃ and then broadcasting the
updated value to all K teachers. Communication for teaching
collaboration is thus efficient, with the cost of O(Kd) in each
round of iteration. Moreover, according to [19], updating αi of
local teachers can be triggered with asynchronous parallelism,
which allows to organize efficient teaching collaboration with
large number of teachers and tight communication budget.

We demonstrate how to apply the proposed super teach-
ing method to two prevalent learners, l2-regularized Logistic
Regression (LR) and Ridge Regression (RR).

1) Collaborative Teaching for l2-regularized Logistic Re-
gression: (xij , y

i
j), i = 1, 2, 3, ..,K, j = 1, 2, 3, .., Ni denote

the features and labels of the data instances hosted by all K
teachers. To instantiate (9) to l2-regularized Logistic Regres-
sion, we concretize the definition of `∗ with slight modification
on the weight parameters, which gives:

α = arg min
α

λ

2

K∑
i=1

Ni∑
j=1

‖ 1

λ
αijx

i
jy
i
j‖2 +

K∑
i=1

Ni∑
j=1

`∗(−αij)

+ λα

K∑
i=1

Ni∑
j=1

wij |αij |+ λθ‖θ∗ −
1

λn

K∑
i=1

Ni∑
j=1

αijy
i
jx
i
j‖2

s.t.0 ≤ αij ≤ 1

(10)

where yij is the binary class label of the data instance, valued
as +/-1 and `∗(−αij) = αilogαi + (1− αi) log(1− αi)

The collaborative super teaching for LR is defined as a box-
constrained convex quadratic programming problem following
the principle of algorithm 1. The optimization process is given
in algorithm 2: Π is the projection operator to make the
updated value of α(t),[k] satisfy the box constraint.

2) Collaborative Teaching for Ridge Regression: Given the
feature xij and regression target yij of each data instance, we
can define the objective of collaborative teaching for Ridge
Regression similarly.

α = arg min
α

1

2

K∑
i=1

Ni∑
j=1

`∗(−αij) +
1

2λ
‖
K∑
i=1

Ni∑
j=1

xijα
i
j‖2

+ λα

K∑
i=1

Ni∑
j=1

wij |αij |+ λθ‖θ∗ −
1

λ

K∑
i=1

Ni∑
j=1

xijα
i
j‖2

(11)

where `∗(−αij) = 1
2‖α

i
j‖2 − αijyij . It is thus easy to define

collaboratively teaching ridge regression in algorithm 3

C. Computational complexity and communication cost

As shown in algorithm 2 and algorithm 3, estimating the
incremental update of each block αi is a convex quadratic

Initialize: αij = 0 for all teachers and θ̃(0) = 0
for t = 1 to T do

for all teachers i = 1, 2, 3, ...,K in parallel do
∆αi =
arg min

∆αi

∑Ni
j=1 `

∗(−αt−1,i
j −∆αij) + λ

2 ‖θ̃
t−1 +

1
λ

∑Ni
j=1 ∆αijx

i
jy
i
j‖2 + λα

∑Ni
j=1 w

i
j |α

t−1,i
j +

∆αij |+ λθ‖θ̃t−1 + 1
λ

∑Ni
j=1 ∆αijx

i
jy
i
j − θ∗‖2

αt,[k] = Π(αt−1,[k] + βK
K ∆α[k])

end
Reduce on the central parameter server
θ̃t = θ̃t−1 + 1

λ

∑K
i=1

∑Ni
j=1 α

t,i
j x

i
j

Broadcast θ̃t to all K teachers
end

Algorithm 2: Block-Coordinate Descent for Collaborative
Super Teaching of l2-Regularized Logistic Regression

Initialize: αij = 0 for teachers and θ̃0 = 0
for t = 1 to T do

for all teachers i = 1, 2, 3, ...,K in parallel do
∆αi =
arg min

∆αi

∑Ni
j=1 `

∗(−αt−1,i
j −∆αij) + λ

2 ‖θ̃
t−1 +

1
λ

∑Ni
j=1 x

i
j∆α

i
j‖2 + λα

∑Ni
j=1 w

i
j |α

t−1,i
j +

∆αij |+ λθ‖θ̃t−1 + 1
λ

∑Ni
j=1 ∆αijx

i
j − θ∗‖2

αt,i = αt−1,i + βi
K∆αi

end
Reduce on the central parameter server
θ̃t = θ̃t−1 + 1

λ

∑K
i=1

∑Ni
j=1 α

t,i
j x

i
j

Broadcast θ̃t to all K teachers
end

Algorithm 3: Block-Coordinate Descent for Collaborative
Super Teaching of Ridge Regression

programming problem. With appropriately set λθ and λα, the
quadratic programming problem is well scaled and can be
solved in a well scalable way using polynomial time interior
point algorithms, such as [22]. According to algorithm 1, only
the step of aggregating the global variable θ̃ needs communi-
cation between the K teachers and the learner. Assuming that
in total T iterations are needed in the block-coordinate descent
in algorithm 1, the overall communication cost of running the
collaborative teaching paradigm for both models is O(TKd).
In practices, T = 100 is enough to achieve convergence of the
block coordinate descent.

IV. EXPERIMENTAL STUDY

A. Experimental setup

We test the proposed collaborative teaching method with
both synthetic data set and real-world benchmark datasets
(summarized in Table.I). For the synthetic classification and
regression data set, we create clusters of random data instances
following normal distribution. In the classification dataset,
equal number of clusters are assigned to positive and negative
classes to construct a balanced labelled data set. In the



TABLE I
SUMMARY OF PUBLIC REAL-WORLD BENCHMARK DATASETS.

Dataset No. of Instances No. of Features
Higgs 1,000,000 28

Superconduct 21,263 81

regression dataset, the regression target Y is given by applying
random linear regressor to X . The dimensionality of each
data instance is fixed to 10 universally. In the experimental
study, we assume that each of the K teachers hosts bNK c
data instances as the local data set. To generate i.i.d. data
instances, the mean and variance of the normal distribution
for data generation are kept the same for different teachers.
The summary of the real-world datasets is shown by Table.I,
which are used to evaluate practical performances of the
proposed method over large-scale real-world data samples. The
empirical study over the real-world data samples uniformly the
data set and assign bNK c instances to each teacher.

To generate the target of teaching in the study, we run
standard LR and RR on all the data samples hosted by K
teachers to derive true model parameter θgt. The teaching
target θ∗ is given by adding a white Gaussian noise τ ∈ Rd, as
θ∗ = θgt + τ . We fix the magnitude of τ as the same of that
of θgt in the following experiments to generate a teaching
target with reasonable difficulty. To measure the teaching
performances, we use the teaching risk R∗ as the major metric.
In addition, in the binary classification scenario, we apply both
the teaching target θ∗ and the learned parameter θ̂S on the
whole data set. We count the fraction of the data instances
where the output labels of the teaching target and the learned
model are consistent. The higher the fraction value is, the
better the teaching performance is, as the goal of teaching is to
approximate the target model as close as possible. Similarly for
regression, we measure r-square score between the regression
output of the teaching target model and the learned model on
the whole synthetic regression data set as the metric measuring
the teaching quality for regression. The two additional metrics
are noted as ρlr and ρrr in the experiments.

We compare the proposed collaborative teaching method
to the primitive oblivious teaching strategy. To organize the
oblivious teaching, we further require that each teacher selects
|S|
K instances as the identified local subset, as there is no

heuristic preference over any specific teacher. The oblivious
teaching is conducted by running the MINLP based teaching
paradigm [6] on each teacher. The selected data instances
are aggregated to form the training set of the learner. The
proposed collaborative teaching method is implemented with
Spark TFOCS library on a AWS EC2 public cloud server,
with one core per teacher. For implementing the oblivious
teaching method, it is difficult to find an open-sourced MINLP
library tailored for parallel computing environments. We thus
use Spark to call the MINLP solver of NEOS [23] for each
teacher and aggregate the selected data instances to form the
learner’s training set. We record the running time to evaluate

and compare the scalability of both teaching methods, as
indicated by κ in the empirical study.

B. Benchmark with synthetic classification and regression
datasets

For the tests of both classification and regression scenarios,
we vary the total number N of synthetic data instances as
5000, 10000, 50000, 100000 and 500000 to cover intermediate
and large-scale data volumes. For each choice of N , we further
set the number of teachers K to be 5 and 10 respectively.
For a fixed combination of N and K, we run 10 trials. In
each trial, we draw randomly an iid synthetic instances and
apply the proposed method of collaborative super teaching. We
show the fraction of the selected subset |S|/N that achieves
the minimum average teaching risk of the 10 trials in Table.II
and Table.III. λα and λθ are the parameters of the proposed
collaborative teaching method. In the experimental study of
both the classification and regression scenario, both parameters
are tuned empirically using validation data instances that are
generated independently besides from the benchmark set. It
is interesting to find out that the values of λα and λθ are
insensitive to the varying N and K. Therefore, we fix λα
as 0.1 and λθ as 1000 in the binary classification scenario.
In the regression scenario, they are fixed as 1 and 2000
respectively. We also run the MINLP based teaching paradigm
as a centralized teacher over all the training data instances,
as indicated by MINLP in both tables. We compare to the
centralized teaching to highlight the computing efficiency of
the proposed teaching paradigm.

The collaborative super teaching method selects less than
0.1 and 0.4 of the data instances to achieve accurate teaching
result in both the classification and the regression test. Given
N fixed, increasing K barely changes the teaching risk and
the decision consistency between the target model and the
model learned with the selected subset. However, it slightly
increases the running time due to the increased communication
cost during the global aggregation and broadcasting of θ̃t.
In all of the tests, the collaborative super teaching method
runs for 85 to 150 iterations to reach convergences. With the
same N , more teachers (larger K) requires more iterations
before convergence. On one hand, collaborating with more
teachers leads to smaller block size of the block coordinate
descent, which causes slower convergence [24]. On the other
hand, more teachers help to reduce the computational cost on
each teacher. Depending on the computational resource budget
of the teachers, we can benefit from the balance to organize
efficient collaboration of the teachers. In general, compared to
the oblivious teaching and the centralized teaching method, the
collaborative teaching method provides significantly lower or
similar teaching risk and better approximate the target model
with the selected training subset in both tests. It requires
distinctively less running time. The collaborative teaching
method costs less than 5% of the running time compared
to both of the opponents according to Table.II and Table.III.
Notably, the time and storage cost of the oblivious teaching
becomes prohibitively expensive when N ≥ 10000. NEOS



TABLE II
COMPARISON OF THE TEACHING PERFORMANCE IN THE BINARY CLASSIFICATION SCENARIO

N K Collaborative Super Teaching Oblivious Super Teaching MINLP
|S|/N R∗(θ̂S) ρlr κ |S|/N R∗(θ̂S) ρlr κ |S|/N R∗(θ̂S) ρlr κ

5000 5 3.7e-2 0.43 0.95 7.15s 6.0e-2 0.54 0.90 200.53s 4.0e-2 0.30 0.97 175.91s10 4.5e-2 0.37 0.92 8.13s 5.8e-2 0.62 0.87 197.33s

10000 5 1.5e-2 0.23 0.94 16.90s 2.0e-2 0.63 0.87 320.69s N/A N/A N/A N/A10 1.0e-2 0.26 0.97 18.85s 2.0e-2 0.54 0.89 327.16s

50000 5 2.5e-2 0.35 0.93 67.20s N/A N/A N/A N/A N/A N/A N/A N/A10 2.4e-2 0.36 0.96 72.52s 1.3e-2 0.22 0.94 2100s

100000 5 2.9e-2 0.33 0.95 180.24s N/A N/A N/A N/A N/A N/A N/A N/A10 3.0e-2 0.41 0.93 179.12s N/A N/A N/A N/A

500000 5 6.4e-2 0.15 0.98 1064.15s N/A N/A N/A N/A N/A N/A N/A N/A10 7.2e-2 0.12 0.98 1100.75s N/A N/A N/A N/A

TABLE III
COMPARISON OF THE TEACHING PERFORMANCE IN THE REGRESSION SCENARIO

N k Collaborative Super Teaching Oblivious Super Teaching MINLP
|S|/N R∗(θ̂S) ρlr κ |S|/N R∗(θ̂S) ρlr κ |S|/N R∗(θ̂S) ρlr κ

5000 5 1.20e-1 81.53 0.82 2.04s 2.00e-1 112.93 0.71 230.53s 1.20e-1 98.09 0.76 195.84s10 1.12e-1 80.43 0.83 2.38s 1.80e-1 120.54 0.70 262.65s

10000 5 9.00e-2 69.52 0.86 4.25s 2.00e-1 93.20 0.75 320.28s 2.00e-1 87.96 0.76 506.01s10 7.00e-2 67.46 0.87 5.15s 2.50e-1 94.20 0.76 570.32s

50000 5 1.00e-1 110.62 0.84 35.16s N/A N/A N/A N/A N/A N/A N/A N/A10 1.12e-1 118.36 0.82 32.53s N/A N/A N/A N/A

100000 5 3.00e-1 99.85 0.88 81.80s N/A N/A N/A N/A N/A N/A N/A N/A10 3.00e-1 101.36 0.88 101.03s N/A N/A N/A N/A

500000 5 3.60e-1 51.72 0.94 310.42s N/A N/A N/A N/A N/A N/A N/A N/A10 3.60e-1 49.67 0.95 395.91s N/A N/A N/A N/A

can’t get results given the large N . We write N/A in case
NEOS fails to solve the MINLP problem. In contrast, the
proposed collaborative teaching method can still produce
accurate teaching output with acceptable time cost. Despite of
the difference of implementation details of the three teaching
methods, the difference of running time confirms the superior
computational efficiency of the proposed collaborative teach-
ing paradigm. Benefited from the consensus optimization pro-
cess, the proposed collaborative teaching paradigm provides a
highly scalable solver to the distributed super teaching task.
Moreover, it is interesting to find out the centralized teaching
paradigm performs better than the oblivious teaching method.
This observation is consistent with what Theorem.1 unveils:
information sharing is the key to achieve good teaching co-
operation. Stand-alone teaching without inter-communication
between teachers can do harm to the teaching performance.

C. Benchmark with real-world data sets

Two real-world data sets, Higgs and Superconduct, are
employed to test the collaborative super teaching method
for l2-regularized Logistic Regression and Ridge Regression
respectively. The number of the teachers is chosen to be 5 on
both data sets. The setting of λα, λθ, the computing platform
and the teaching goal follow the same setting as the test
on synthetic data. For Higgs data set, we randomly sample
1000000 instances from the whole set for 10 times and re-
run the proposed method on the sampled Higgs data samples.

Figure 1a illustrates the variation of the averaged teaching risk
of the proposed collaborative teaching method by incremen-
tally increasing the number of the jointly selected instances. In
Figure 2a, we demonstrate how the objective function value
of the proposed teaching method diminishes as the iterative
block-coordinate descent runs. On Higgs data set, the proposed
method selects only 15% of the 1000000 instances to achieve
the teaching risk of 3.28. The corresponding consistency score
ρlr is 0.99. It indicates that the learner manages to approximate
the expected target model perfectly with the selected subsets
given the teachers. Interestingly, the teaching risk declines
at first as |S|/N increases to 15%. After this turning point,
the teaching risk begins to increase again. The observation is
consistent with our intuitive understanding about the teaching
process. Insufficient and too many data instances can do harm
equally to the teaching performances. From Figure 2a, we can
find the objective function value of the proposed collaborative
teaching method declines rapidly within 50 iterations. In
this experiment, the consensus optimization process of the
proposed collaborative teaching paradigm converges with 80
iteration steps. which costs 2095.48s. Similarly, Figure 1b
shows the declination of teaching risk by increasing gradually
the number of selected instances on Superconduct data set.
As seen in the figure, the proposed teaching method selects
25% of the data instances to reach the teaching risk of 2.23
and ρrr of 0.97. Figure 2b illustrates the declination of the
objective functions values on Superconduct achieves. Similar
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Fig. 1. Teaching risk variation with different number of the selected data
instances
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Fig. 2. Convergence of the quadratic programming based collaborative
teaching process

pattern of the teaching risk variation is witnessed in Figure 1b,
compared to Figure 1a. The turning point of the teaching risk
curve confirms empirically the existence of the optimal subset
for teaching. Based on the selected subset, the learner can
accurately fit the target regression model. Minimizing the col-
laborative teaching objective for Ridge Regression converges
within 125 iterations, which costs only 35.12s.

V. CONCLUSION AND DISCUSSION

In this paper, we explore how to organize scalable, collab-
orative, and privacy-preserving super teaching with multiple
teachers. We define a convex objective for conducting consen-
sus super teaching with varying number of teachers. We further
propose to adopt a block descent based solver to optimize
each teacher’s decision, which provides promising theoretical
convergence rates while being privacy-preserving during the
teaching process. We show that the proposed collaborative
teaching scheme can provide lower teaching risk than the non-
collaborative approaches. The proposed collaborative teaching
objective enjoys the Oracle property of adaptive Lasso given
proper parameter setting, which allows the proposed method
to identify the informative subset with high probability. Our
empirical results on both synthetic and real-word data sets
confirm the superior performances of the proposed collabora-
tive teaching method over the non-collaborative solution. Our
future work studies practical use of distributed and privacy-
preserving super teaching based on the proposed collaborative
teaching framework. More concretely, we plan to explore the
teaching goals that are realistic to practical use, such as AUC-
maximization oriented goals. Furthermore, we plan to extend
the teaching paradigm to diverse types of machine learning
models, like deep neural nets.
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