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Abstract—Computing similarity between high-dimensional
data is a fundamental problem in data mining and information
retrieval, with numerous applications—such as e-discovery and
patient similarity. To address the relevant performance and
scalability challenges, approximation methods are employed. A
common characteristic among all privacy-preserving approxi-
mation protocols based on sketching is that the sketching is
performed locally and is based on common randomness.

Inspired by the power of attacks on machine learning models,
we introduce the study of adversarial inputs for secure similarity
approximations. To formally capture the framework of this family
of attacks we present a new threat model where a party is
assumed to use the common randomness to perturb her input
1) offline, and 2) before the execution of any secure protocol,
so as to steer the approximation result to a maliciously chosen
output. We define perturbation attacks under this adversarial
model and propose attacks for the techniques of minhash and
cosine sketching. We demonstrate the simplicity and effectiveness
of the attacks by measuring their success on synthetic and real
data from the areas of e-discovery and patient similarity.

To mitigate such perturbation attacks we propose a server-
aided architecture, where an additional party, the server, as-
sists in the secure similarity approximation by handling the
common randomness as private data. We revise and introduce
the necessary secure protocols so as to apply minhash and
cosine sketching techniques in the server-aided architecture. Our
implementation demonstrates that this new design can mitigate
offline perturbation attacks without sacrificing the efficiency and
scalability of the reconstruction protocol.

I. INTRODUCTION

Quantifying similarity between high-dimensional data
points is a cornerstone problem in the area of data mining.
The history of the problem goes back to 1901 with the
influential work of Jaccard [53] and has a wide range of
applications in today’s software systems and services espe-
cially in the areas of healthcare [81], law [46], finance [45],
recommendation engines [47], personalization systems [30],
social networks [89], databases [90], earth science [71], link
prediction [62], forensics [77]. The wide adoption of this
concept in diverse fields highlights the importance of similarity
computation—the spectrum of application is so broad that
instead of listing them we refer the reader to books [60], [64],
[80] describing some of the applications of similarity com-
putation. Some of the applications above consider similarity
computation between high-dimensional data in the presence
of strict privacy requirements. As motivating examples, we
consider two such areas: electronic discovery and healthcare.

Electronic discovery (or e-discovery) typically focuses on
the discovery and identification of information among privacy-
sensitive electronic files as part of a lawsuit or formal inves-
tigation. It has been reported that the area of legal forensic
discovery is a $9.9 billion market [31]. The community of
technologists and legal experts in the area has formed the
Electronic Discovery Reference Model (EDRM) [1], which
is a framework that describes standards for the recovery and
discovery of digital information during the legal process—
e.g., criminal evidence discovery. According to the EDRM
paradigm, during the phase of “Preparation” the discovery
model filters documents so as to shortlist the ones most
interesting/relevant among a voluminous collection of data.
Section 1.2 of EDRM’s directive [2] explicitly lists “Similar-
ity Hashing” as a recommended action to shortlist privacy-
sensitive documents. Thus, similarity approximation is a vital
component of this multi-billion dollar business.

The area of patient similarity has attracted attention from
both industry [57] as well as the medical community [18], [44],
[81]. The emerging area of personalized medicine, where pa-
tient similarity plays a central role, aims at treatments tailored
to individual characteristics of each patient. To achieve this
goal, one needs to organize similar patients into subgroups that
have the same response to a given treatment. This approach has
dramatically changed the area of pharmacogenetics [92]. From
a computational perspective, entire research teams (e.g., [57])
are focusing on the problem of patient similarity, applying
advanced algorithmic techniques so as to discover groups
of patients with similar health record profiles, while aiming
to provide high secrecy for the sensitive healthcare records.
Health information exchange protocols are already in place [3],
allowing patient similarity computation across hospitals of
different US states. These are two of the many important
examples highlighting not only the central role of similarity
detection in important business areas, but also the need for
performing such detection using secure and robust methods,
due to the sensitivity of the analyzed data.

Secure Sketching. As computing exact similarity metrics on
very large datasets is prohibitively expensive, state-of-the-art
methods seek to approximate the similarity function that needs
to be computed, by working with a succinct representation of
the data that is called a sketch. Sketching is the mainstream
approach for efficiently approximating a plethora of functions



and applications [13], [16], [17], [23], [25], [33], [39], [49],
[50], [61], [66], [68], [51], [79], [83]. The seminal work by
Feigenbaum et al. [35] set the foundation for secure multi-
party computation of approximation functions. Furthermore,
the community has made several important steps towards
private computation on genomic data in a time-efficient and
scalable manner [6], [11], [24], [29], [73]. Wang et al. [87]
demonstrate the potential of secure approximations, by running
a privacy-preserving similarity query for a human genome on
1 million records distributed across the U.S., in a couple of
minutes. All of the above works only consider an honest-but-
curious adversary. In this work we extend the threat model
and demonstrate how easy it is to craft adversarial inputs for
sketching algorithms within this new model.

On Crafting Adversarial Inputs. The sketching protocol
as presented by Feigenbaum et al. [35] has two phases: 1)
the sketching function is applied locally by each party, and 2)
the reconstruction function is performed via secure multiparty
computation. Our offline attack is mounted on the first phase
by a data owner who exploits the fact that i) the randomness
of the sketching algorithm is known to all the participants,
and ii) the sketching algorithm is performed locally. Such an
adversary can steer any similarity approximation between the
perturbed data and any other data point to an incorrect output,
regardless of the secure computation protocols of the second
phase. Our first attack uses simple probabilistic arguments,
and is mounted on the minhash sketching, which is deployed
to measure the Jaccard similarity between two sets. Our second
attack formulates a high-dimensional constrained optimization
problem, and is mounted on the cosine sketching, which is
deployed to measure the cosine similarity between two vectors.

Threat Model. In this threat model the only action the
attacker is allowed to take is to change the input data to
the sketching algorithm. This is because any other alteration
that concerns, a) the steps of the locally computed sketching
algorithm, b) the sketch computed, and c) the secure protocols,
can be easily detected by applying verifiable computation
mechanisms [38], [78]. We focus our attention to the threat
related to the input data of the sketching algorithm, and leave
as an open problem the task of deploying efficiently verifiable
computation for the remaining steps (i.e., potential attacks on
items a, b, and c above). The input to the sketching algorithm
is the very first step of the pipeline and is provided directly by
the user, therefore the protocols have no means of verifying
if it is a legitimate input or an adversarially perturbed input.
This new threat model formally capture the attack surface of
malicious perturbations of the input data with the end-goal of
violating the correctness of the similarity approximation.

Motives for Mis-approximating Similarity. The motiva-
tion for such attacks can be clearly demonstrated by consid-
ering the previously discussed examples of e-discovery and
patient similarity (among others). In the case of e-discovery
the plaintiff party is interested in correctly approximating sim-
ilarity between privacy-sensitive documents so as to discover
important evidence. On the contrary, the defending party might
prefer to masquerade evidence by causing mis-approximation.

Applying a perturbation attack on document similarity approx-
imation algorithms will conceal important documents from
the shortlisted set that will be thoroughly investigated on a
criminal evidence discovery case, such an outcome violates
the directive of EDRM [2]. In the case of patient similarity,
a perturbation attack will cause a pair of patients that have
similar medical profiles to be assigned to different subgroups.
For instance, all future patients that are assigned to a subgroup
with perturbed data will receive personalized treatment that is
not effective or, even worse, lethal. Such an attacker not only
causes a disrupted service on the patient similarity component
of a personalized treatment engine, but also introduces liability
for the participating parties.

Proposed Mitigation. To mitigate perturbation attacks
we follow the standard server-aided paradigm [55] and for-
mulate a server-aided secure approximation architecture that
requires the participation of three parties, as opposed to two
of the previous schemes. A new honest-but-curious entity—
the server—stores the common randomness which is treated
as private information. A user, who no longer knows the
common randomness, is therefore forced to run a protocol
with the server to build an encrypted sketch, as opposed to the
local computation of the previous model’s first phase. During
the sketching protocol the user doesn’t learn any information
about the common randomness and the server doesn’t learn
any information about the user’s data. The sketch-generation
takes place only once for each data point, and the sketch
can be reused for any future pairwise approximation. Most
importantly, under this new server-aided framework the users
do not have direct access to the common random input and
thus they can not mount an offline perturbation attack. In
this paper, we devise and implement new secure protocols in
order to generate minhash and cosine sketches in our proposed
architecture. Given a pair of sketches1 our implementation
achieves throughput of 30-600 approximations per second for
data points with hundreds of dimensions.

Our Contributions:
• We identify and formalize the notion of perturbation

attacks against secure multiparty approximation. We pro-
pose two attacks, the first is on the minhash sketching
that is used to approximate the similarity between two
sets, and the second is on the cosine sketching that is
used to approximate the similarity between two vectors.
We apply our attacks on both real and synthetic data.

• Following the paradigm of server-aided design, we pro-
pose a server-aided approach that mitigates offline per-
turbation attacks. In our setup, a server has exclusive
access to the common randomness, and is assisting the
clients in the sketch computation. Thus, a user does not
learn any information about the common random input.
Additionally, the server doesn’t learn any information
about the user’s data2.

1The parameterization, and consequently the efficiency, of the sketching
instantiation depends on the approximation guarantees.

2Other than the result of the approximation of unknown inputs.



II. RELATED WORK

Aside from the secure sketching protocols mentioned earlier,
there is a rich body of protocol that devise a combination
of semi-homomorphic cryptosystems and garbled circuits to
operate on encrypted data [7], [14], [56], [70], [88]. The work
by Mironov et al. [67] introduces the model of sketching in
adversarial environments which is different in certain ways
from what we consider in our work. Specifically, the work
in [67] studies a model where a single party adversarially
chooses the input for all other parties while they approximate
joint functions on the adversarially chosen input. In their
model, the adversarial inputs are provided to the parties in
an on-line manner and thus the users update the sketch incre-
mentally without being able to store the original information,
much like in one-pass streaming algorithms. In our work, each
party uses her own data which is stored locally. Our model
is different from the data stream model, and follows more
closely the published work on privacy-preserving sketches
discussed above. The work by Naor et al. [72] introduces a
new adversarial model for Bloom filters. The threat model
of [72] is somewhat similar to our model, in the sense that
both adversaries exploit the used randomness so as to violate
the correctness of the computation. In terms of differences, our
adversary has direct access to the randomness used, whereas
for the case of [72] the adversary has only oracle access via
the responses of the Bloom filter. Furthermore in our work
sketching is just the first phase of the computation and the
second phase consists of a secure computation protocol; on
the contrary the work of [72] does not involve any form of
secure computation.

There is a significant body of research focusing on the
attack vectors that lay in the intersection of machine learning
and privacy-preserving mechanisms [8], [21], [26], [36], [37],
[65]. The line of research closer to our proposed attack is
the work on Deep Learning in adversarial settings. Some
works [5], [22], [76], [84] show how an adversary can craft
her input so as to maximize the prediction error of a deep
neural network (DNN). Interestingly, in this work we show
that adversarial inputs are very effective not only with learning
and classification mechanisms, e.g. DNN, but also with simple
randomized algorithms, e.g. sketching.

III. PRELIMINARIES AND BACKGROUND

k-Independent Hashing. Space and time-efficient hash
functions provide rigorous guarantees about the distribution
of their values, such a family is the family of k-independent
hash functions. Let U be the domain of the inputs to the hash
function and let x ∈ U be a specific input. Let p > |U | be a
prime and a0, a1, . . . , ak−1 ∈ Zp be uniformly chosen values
over the prime field Zp. A commonly used construction of a
k-independent family is based on polynomials of degree k−1:

h(x) = (αk−1x
k−1 + . . .+ α1x+ α0) mod p.

A. Secure Sketching
Exact similarity computation between two data points takes

at least linear time with respect to the size of the data, since

we need to parse the data item for every comparison regardless
of the similarity function. A way to overcome this overhead
is to settle with an approximation of similarity.

Definition III.1. (Def. 10.1 in [69]) A randomized algorithm
gives an (ε, δ)-approximation for the value ν if the output ν′

of the algorithm satisfies, Pr(|ν′ − ν| ≤ εν) ≥ 1− δ.

We are interested in sketching techniques that are well-
studied and widely applied in the area of data-mining and
information retrieval [16], [17], [23], [25], [33], [50], [61],
[68], [79], [83]. A benefit of sketching is that the succinct
summary of the data, i.e., the sketch, is built once and can
be reused in future pairwise approximations. Thus the super-
linear overhead occurs only during the construction of the
sketch which significantly speeds up the total time perfor-
mance over a series of similarity approximations. The notion
of a sketching protocol is defined as:

Definition III.2. (Def. 8 in [35]) A sketching protocol for a
2-argument function f : {0, 1}∗ × {0, 1}∗ → R is:
• A sketching function, S : {0, 1}∗ × {0, 1}∗ → {0, 1}∗

mapping one input and a random string to a sketch
consisting of a (typically) short string.

• A (deterministic) reconstruction function G : {0, 1}∗ ×
{0, 1}∗ → R, mapping a pair of sketches to an approxi-
mate output.

On inputs α, β ∈ {0, 1}n, the protocol proceeds as fol-
lows. First, Alice and Bob locally compute a sketch σA =
S(α, rcmn) and σB = S(β, rcmn) respectively, where rcmn is
a common random input. Then, the parties exchange sketches,
and both output locally f̂ = G(σA, σB). We denote by f̂(α, β)
the randomized function defined as the output of the protocol
on inputs α, β. A sketching protocol as above is said to (ε, δ)-
approximate f , if f̂ (ε, δ)-approximates f .

We note that in this work we are interested in normalized
similarity therefore the output of the sketching protocol takes
values in [0, 1]. Following the terminology of Goldreich for
multiparty computation (Section 7.2 [41]) we capture the
above process with the following functionality:

FApprox

(
(α, rcmn), (β, rcmn)

)
→ (f̂(α, β), f̂(α, β)), (1)

where the first (resp. second) pair is the input of client CA
(resp. client CB) and the output to both parties is the (ε, δ)-
approximation f̂(α, β). We note here that if the clients execute
the sketching computation with different randomness then
the output of the reconstruction is meaningless3, thus the
randomness must be the same. We emphasize that α, β are
user-provided inputs and their legitimacy relies on the honesty
and intention of the user.

A metric space is a set X accompanied with a distance
function d : X × X → R, or simply distance, that measures
the distance between points x, y ∈ X . We are interested in

3This is equivalent to using different hash functions for the approximation
of Jaccard similarity, or using different random vectors for the approximation
of the cosine similarity.



the approximation of distance functions from which we can
derive the similarity. Given the similarity we can compute the
corresponding distance, and vice versa, thus the two terms are
used interchangeably in the rest of the work.

B. Similarity Approximation

Approximating Jaccard Similarity. The Jaccard similarity
coefficient (or Jaccard index) measures the similarity between
two sets. Formally, given sets S1, S2 the Jaccard similarity
coefficient and the Jaccard distance dJac are defined as:

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

, dJac(S1, S2) = 1− J(S1, S2).

Minwise hashing [16], [17], or minhashing, is a technique for
approximating the Jaccard index that has been successfully
applied to numerous problems (e.g., [17], [61], [68], [79],
[85]). Even though the analysis of the approximation is based
on random permutations [16], in practice we use minhash
functions that are defined as hmini (S) = minx∈S(hi(x)),
where hi is a k-independent hash function. Using κ distinct
minhash functions one can build a minhash sketch, also called
minhash signature, σ(S) for input set S. Given two minhash
sketches we approximate the Jaccard distance d̂Jacc as follows:

d̂Jacc(S1, S2) =
1

κ
dH(σ(S1), σ(S2)),

σ(S) = (hmin1 (S), . . . , hminκ (S)),
(2)

where dH denotes the hamming distance between the two
input arguments. The common random input rcmn from Def-
inition III.2 is used to initialize the minhash functions.

Mitzenmacher et al. [68] introduced an approximation tech-
nique using odd sketches. An odd sketch of set S, denoted as
odd(S), consists of 1) a bit array T of size u and 2) a hash
function hodd : U → [0, u − 1]. In order to approximate the
Jaccard similarity via odd sketches one uses the values of the
minhash sketch σ(S) = (x1,. . . ,xκ) as the input set for the
odd sketch. Whenever an item xi = hmini (S), where i ∈ [1, κ],
is hashed to the odd sketch T using function hodd, the bit in
position hodd(xi) of T is flipped. We approximate the Jaccard
index as follows [68]:

Ĵodd(S1, S2) = 1+
u

4κ
ln
(

1− 2|odd(σ(S1))∆odd(σ(S2))|
u

)
,

(3)
where |odd(σ(S1))∆odd(σ(S2))| denotes the number of 1s in
the sketch resulted after the exclusive-or operation over the
odd sketches, κ denotes the number of independent minhash
values, and u denotes the size of the odd sketch. Jaccard
distance is approximated using eq. (3), as d̂Jacc(S1, S2) =
1 − Ĵodd(S1, S2). The common random input rcmn is used
to initialize hodd and hmin1 , . . . , hminκ . Thus all the parties of
the sketching protocol (see Definition III.2) generate the same
hash functions.

Approximating Cosine Similarity. The work of Charikar
[23] introduced the notion of cosine sketching commonly

used [33] to estimate the similarity between two vectors.
Formally, let ~v1, ~v2 ∈ Rn the cosine similarity as

C(~v1, ~v2) =
~v1 · ~v2

‖~v1‖2‖~v2‖2
, dcos(~v1, ~v2) = (1− C(~v1, ~v2)) /2,

(4)
where ‖ ·‖2 is the Euclidean norm of the vector. The resulting
similarity C(~v1, ~v2) ranges from −1 to 1 which is interpreted
as completely opposite and as exactly the same, respectively.
The cosine sketching technique is based on sign random
projections. Let ~v ∈ Rn be a unit vector4, then the cosine
sketch is a κ-dimensional bit vector σ(~v) = (σ1, . . . , σκ). The
components σi for i ∈ [1, κ] and the symmetric cosine sketch
distance [63] are defined as:

σi =

{
1, if ~wi

T · ~v ≥ 0

0, if ~wi
T · ~v < 0,

, d̂cos(~v1, ~v2) =
dH(σ(~v1), σ(~v2))

κ
,

(5)
where ~wi ∈ Rn is sampled uniformly at random from the
set of n-dimensional unit vectors. The common random input
rcmn is used to initialize the vectors ~wi, for i ∈ [1, κ].

C. Semi-Homomorphic Cryptosystems

We use the described notation to highlight that messages
are encrypted under different cryptosystems.

Paillier Cryptosystem. The Paillier cryptosystem [75] is
semantically secure. The term [m] denotes the encryption of
message m under the key pair KP = (PKP , SKP ); from the
additive homomorphism we have that [m1]·[m2] = [m1+m2].

Goldwasser-Micali Cryptosystem. The Goldwasser - Mi-
cali (GM) cryptosystem [42] is semantically secure. The term
|m| denotes the encryption of the bit m under the key pair
KGM = (PKGM , SKGM ); from the homomorphism we have
that |m1| · |m2| = |m1⊕m2|, where ⊕ is the XOR operation.

Damgård-Geisler-Krøigaard Cryptosystem. The
Damgård-Geisler-Krøigaard (DGK) cryptosystem [27], [28]
is semantically secure. The DGK cryptosystem is considered
to be much more efficient [12], [34], [59] than Paillier due
to its small plaintext space. The term 〈m〉 denotes the en-
cryption of message m ∈ Zu under the key pair KDGK =
(PKDGK , SKDGK). DGK is additively homomorphic; more-
over, it embeds reductions modulo u to its homomorphic
operations, therefore 〈m1〉 · 〈m2〉 = 〈(m1 +m2) mod u〉.

IV. THREAT MODEL

In this work we consider a new threat model where the ad-
versary can maliciously perturb only her input to the sketching
algorithm which is executed offline and locally, a behavior
that is challenging to detect. We form this new threat model
so as to formally capture and study an algorithmic blindspot
that permits the proposed family of attacks. At a high level,
this new adversary does not interfere with the computation
of the sketching, the reconstruction, and the communication,
i.e., adversary follows the prescribed protocols after the per-
turbation of the input data. Thus, our threat model is not

4In case the input vector is not unit we convert it by normalizing.



the honest-but-curious. Our adversary is not trying to learn
the input of the other party, the goal is to make his/her own
data look different from what it really is with respect to the
approximation. Consider the following class of protocols that
compute the functionality FApprox from the previous Section.

Class of Protocols for FApprox

• Step 1: Generate and distribute the common random
input rcmn to all the parties.

• Step 2: Each party inputs her data and rcmn so as to
locally compute the sketching function S.

• Step 3: Parties run an MPC protocol that outputs the
result of the reconstruction function G.

Attack Surface of FApprox. We assume that the adversary
participates in the above protocol. We distinguish two possible
offline attacks on this class of protocols, the attacker can: 1)
deviate from the correct execution of the locally computed
sketching, and/or 2) execute the sketching correctly, but cor-
rupt its output—and therefore the input to the reconstruction
function G. Both attacks can be detected using verifiable com-
putation [38], [78], i.e., provide proof of correctness for the
computation and the output of S. Addressing such mitigations
is outside the scope of our work and is left as future work.
We focus on the remaining attack surface: since cryptographic
techniques exist to detect the above attacks, the last resort for
the adversary is to perturb the input to the sketching function.

Perturbing the Input to S. To capture the remaining attack
surface, in the new threat model we extend the above class
of protocols by allowing the adversary to locally execute
a function right before Step 2. Specifically, the adversary
executes a randomized function Perturb that takes as an
input the data point α and the common random input rcmn
outputted by Step 1. Function Perturb runs locally, without
any interaction, and outputs a value α+ that will serve as the
new input to the sketching function S. We emphasize that
after the execution of Perturb the adversary behaves in a
semi-honest fashion, i.e., she honestly follows the sketching
function and honestly executes the MPC protocol. Thus, in
our threat model the only malicious activity of the adversary
is the local execution of Perturb.

V. PERTURBATION ATTACK

In this Section we define perturbation attacks on the class
of protocols defined in Section IV. A successful attack on
secure sketching protocols for a distance function yields a
perturbed input such that although the pair (original input,
perturbed input) is close with respect to the corresponding dis-
tance function, the approximation instantiation appears vastly
distant. Thus, if one compares the sketch of any data point that
is close to the original input, to the sketch of the perturbed
input the distance is heavily mis-approximated.

To the best of our knowledge this work is the first that
concretely demonstrates the pitfalls of using common random
input rcmn for secure sketching protocols. In this work we
focus on distance functions, analogous definitions can be

formed for other functions. Note that Definition III.2 deals
with two inputs α and β from distinct users, whereas the
following definition deals with the input of a single user and
it perturbed version, i.e., α and α+.

Definition V.1. Let FApprox be the functionality described in
Equation (1) for a sketching approach of a distance function
d. Let Perturb(·) be the function that adversary A can apply
according to the threat model of Section IV. Let α ∈ X
be a point of the metric space (X, d) with distance function
d. Let rcmn be the common random input to the sketching
function S. Then we say that Perturb(·) is a successful (ν, ν′)-
perturbation attack for sketching function S if for any α and
rcmn, Perturb(α, rcmn) outputs a point α+ such that:

1) The true distance between α, α+ is ν, d(α, α+) = ν,
2) The approximate distance between α, α+ is ν′ according

to (S,G) with input rcmn, d̂(S,G)(α, α
+) = ν′,

3) The inequality |ν′ − ν| > εν holds.
where ε is the parameter of the (ε, δ) approximation guaran-
tees of d̂(S,G).

One might suggest that it is trivial to mount a successful
perturbation attack by generating random data and call it α+.
This naive approach would successfully increase the approx-
imate distance ν′ (condition 2), but it would heavily distort
the original input and as a result the true distance ν would
increase as well, i.e., doesn’t satisfy the inequality of condition
3. Intuitively, for the case where ν′ > (1 + ε)ν, condition 3
guarantees that the perturbed data “appears” more distant from
the original than it truly is even when we consider the valid
approximation error ε. For the case where ν′ < (1 − ε)ν,
condition 3 guarantees that the perturbed data “appears” more
similar from the original than it truly is. In this work we focus
on the case ν′ > (1 + ε)ν, thus the adversary wants to hide
the high similarity by minimally perturbing the input. Due to
the triangle inequality, if α appears distant to α+ w.r.t. the
approximation, then any data point β that is close to α will
also appear distant to α+ w.r.t. the approximation. We leave
as an open problem the case where the adversary perturbs the
data so as to make highly dissimilar items look similar.

On using Commitment Schemes. It appears that the
perturbation attack can be avoided if we deploy commitment
schemes [40] for the data before they receive rcmn. Thus,
any perturbation will be caught due to the binding property
of the construction. This mitigation indeed works only if all
data from all the users is available during the initialization
of the system and no sketch is created thereafter. In all
practical scenarios, however, the system is more dynamic—
users generate additional data and join/leave at arbitrary times.
If a user creates new data after the commitment phase then
this new input can be perturbed since the randomness value
is already known and the new data is not committed. One
might argue that we can redistribute new randomness to all the
clients periodically. This will defend against these attacks but
it implies that every party must re-compute the sketches from
scratch whenever new randomness is issued, which would
go against the very reason we used sketching techniques in



d̂Jac ≥ 0.9 d̂Jac = 1
s = 500 s = 1, 000 s = 10, 000 s = 500 s = 1, 000 s = 10, 000

κ dJac fSuccess Time dJac fSuccess Time dJac fSuccess Time dJac fSuccess Time dJac fSuccess Time dJac fSuccess Time
10 0.01 1.00 0.01 0.008 1.00 0.03 0.0008 1.00 0.37 0.01 0.98 0.10 0.009 0.99 0.22 0.0009 0.99 2.52
50 0.08 1.00 0.07 0.043 1.00 0.15 0.004 1.00 1.47 0.09 0.95 1.32 0.047 0.96 3.04 0.005 0.98 38.9
100 0.15 1.00 0.14 0.082 1.00 0.30 0.008 1.00 3.00 0.16 0.89 4.07 0.090 0.92 9.23 0.009 0.96 120.1
200 0.27 1.00 0.34 0.159 1.00 0.59 0.018 1.00 5.25 0.28 0.82 12.60 0.166 0.86 27.6 0.019 0.94 380.1

TABLE I
EVALUATION OF THE PERTURBATION ATTACK ON MINHASH SKETCHES OVER SYNTHETIC DATA. THE TERM κ DENOTES THE SIZE OF THE SKETCH, s IS
THE SIZE OF THE SET UNDER ATTACK, fSUCCESS IS THE FREQUENCY OF SUCCESS OF THE PROBABILISTIC ALGORITHM 1. THE DATA POINTS SHOWN ARE

THE AVERAGE OVER 5,000 INSTANTIATIONS. TIME IS MEASURED IN SECONDS.

the first place—to avoid processing the high-dimensional data
points multiple times.

On the Level of Distortion. Many of the occasions where
secure similarity approximation protocols are applied typically
employ multiple layers of forensic investigation mechanisms
or sanity checks. A legal document comprised of random
words or a genomic expression with random data are easy
to spot. Therefore, in order to minimize the likelihood of
getting detected (e.g., by another mechanism in place or
during an audit), the attacker is incentivized to minimize the
amount of changes to the input data—making the changes less
incriminating and harder to detect. Extensive transformations
(e.g., substituting large amounts of data with random noise)
are likely recorded in system logs, and can be incriminating
as they demonstrate malicious intent. Another illustration of
this intent comes from the case of adversarial inputs on facial
recognition - wearing a mask that covers the entire face clearly
shows intent of avoiding facial recognition whereas an attacker
that is wearing a set of “adversarially” decorated 3D-printed
glasses [82] can fool such a system into matching the attacker
to any maliciously-chosen individual.

Objectives of Perturbation Attacks. Note that dJac and
dcos as defined in Section III-B take values from the range
[0, 1]. Ideally, a successful (ν, ν′)-perturbation attack 1) max-
imizes the approximate distance d̂ so as α and α+ appear as
distant as possible, e.g., d̂Jac(α, α+) ≈ 1, while 2) minimizes
the true distance between α and α+, e.g., dJac(α, α+) ≈
0. We present two such attacks that utilize different tools,
namely a randomized algorithm and constrained optimization
formulation, and provide different guarantees. We slightly
abuse notation and indicate by d̂Jac and d̂cos the approximate
distance that is returned by a sketching protocol (S,G).

A. Attacking Minhash Sketches

Minhash sketches are used for approximating the Jaccard
distance between sets. We propose a perturbation attack on
minhash sketches guaranteed to perform the minimum number
of changes to the original input set, thus minimizing d(α, α+).
The perturbation that we apply is in the form of adding new
elements to the set.

Intuition. The adversary takes as input a set S and the
common random input rcmn. The goal is to augment S
with the smallest number of new elements in order to create
S+, such that d̂Jac(S, S+) = 1. Recall that the approximate
Jaccard distance between two sets is maximized when their κ-

dimensional sketches σ() differ in all dimensions, i.e., quantity
d̂Jac in equation (2) is equal to 1. Thus, the adversary is
looking for at most5 κ new elements such that every dimension
of sketch σ(S+) is different from σ(S). We denote by t′

the number of samples drawn from the metric space. The
following algorithm describes the attack, the corresponding
proof can be found in the full version [58] of this work.

Algorithm 1: Attack Perturb on Minhash Sketches
Input: Original set S, common randomness rcmn, sketch size

κ, attempts t′ to augment the original set
Output: S+ s.t. d̂Jac(S, S+) = 1, dJac(S, S+) = κ

s+κ

1 Use rcmn to sample κ hash functions (h1, . . . , hκ);
2 σ(S)←

(
minx∈S(h1(x)), . . . ,minx∈S(hκ(x))

)
;

3 S+ ← S;
4 for i = 1 to t′ do
5 Sample an element zi /∈ S uniformly at random;
6 for j = 1 to κ do
7 if hj(zi) < minx∈S(hj(x)) then
8 S+ ← S+ ∪ {zi};
9 end

10 end
11 end

Theorem V.1. Let S be the set of s values from the range
[0,m] that is given as an input to Algorithm 1. Let κ be
the number of dimensions of the minhash sketch according
to (2). Then a quasilinear number t′ of samples are enough
for Algorithm 1 to mount a successful (1, κ

s+κ )-perturbation
attack for minhash sketching with probability at least

Pr
(
{Succesful Attack}|(t′ ≥ 2c(s+1) ln3(s))

)
≥ 1− 6κc1/2

sc
,

for any constant c > 0 assuming the codomain of the hash
function is Ω(s log4(s)).

Attacking Synthetic Data. We demonstrate the frequency
of success and the efficiency of the perturbation attack on
synthetic data. We tested setups that range across all dif-
ferent variables of the problem: 1) dimension of the sketch
κ ∈ {10, 50, 100, 200}, 2) size of the set under attack s ∈
{500, 1000, 10000}, 3) desired mis-approximation d̂Jac() = 1
or d̂Jac() ≥ 0.9. Works such as [63] deploy a sketch of 64
bits to capture similarity of a collection of 8 billion webpages.

5There is a case where the same new element of S+ can contribute to more
than one locations of the sketch σ(S+).



Therefore, we think that sketches with size in the 10-200 range
are indicative of what might be used in practice. The attack is
implemented in C++ where the elements of the original set are
randomly generated numbers from a universe of size 2 · 105.
We used 4-wise independent hash functions, and run 5,000
instantiations for each of the above setups. As observed in
Table I, when the desired approximation is d̂Jac() ≥ 0.9, the
attack succeeds in all instantiations, and its execution time
is less than 1 sec in most of the parameterizations. In this
scenario it is enough for the adversary to discover smaller
minhashes for 90% of the κ entries of the minhash sketch.
Thus, if there are some small minhash values in the original
sketch, the adversary can ignore those and “break” the rest of
the sketch, whereas in the case of d̂Jac = 1 the adversary is
forced to continue searching so as to “break” all κ minhashes.
Overall, the frequency of success is extremely high, but there
are a few cases for which the probabilistic guarantees of
Theorem V.1 are not met. One explanation is that the analysis
was performed assuming that hash functions are truly random,
whereas in the experiment we use 4-wise independent hashing.
Table I clearly demonstrates that the probabilistic perturbation
attack on minhash sketches succeeds in the vast majority of
the instantiations and the total time ranges from less than a
second to a couple of minutes even when dealing with sets
that contain thousands of elements.

Fig. 1. Illustration of the perturbation attack on an e-discovery data. The
adversary can add the 5 red-colored words in the original email with id 549
and the approximate distance of our instantiation will be 1 even though the
exact distance is 0.004.

Attacking Real Data. To further verify the effectiveness
of the attack we tested in real data using the bag of words
dataset of Enron emails6 which according to EDRM [1] has
served for many years as an industry-standard dataset for e-
discovery. We highlight that the findings of the attack on the
synthetic data are expected to be similar to those on any real
data, regardless of the context of the document, e.g. email,
legal document. This is because the hash functions used are
sampled uniformly at random and are independent of the input.
In this real dataset every email is transformed into a multiset
of words where the stop-words are removed. In this context
Jaccard distance captures the similarity between any pair of
emails. In our experiment we use the standard Rabin-Karp
rolling hash function modulo n = 105, 943. For simplicity
we choose the size of the minhash sketch to be κ = 5 and
the value of c to be 2 (see Theorem V.1). Without loss of
generality, for the purposes of this evaluation we focus on

6https://archive.ics.uci.edu/ml/datasets/Bag+of+Words

email with id-549 (denoted as set S549), with size s = 1181
words, 492 of which are unique.

The average time to mount 100 instantiations of the attack
was 2.2 seconds. Specifically, 83 out of 100 instantiations
mounted successfully a (0.004, 1)-perturbation attack and ter-
minated in less than 1 second. The remaining 17 instantiations
took between 3 to 22 seconds due to the fact that at least one
of the minhash values of the original sketch was already too
small (< 10). Figure 1 illustrates one of the successful attacks
where by adding the 5 words {pursued, glide, ralston, alluring,
sensor} in the current email, i.e. create S+

549, the approximate
distance becomes 1, while the real distance is 0.004. Thus,
any future comparison between S+

549 and a similar email will
result in mis-approximation.

B. Attacking Cosine Sketches

Cosine sketching is used for approximating the cosine
distance between vectors. We propose a perturbation attack on
cosine sketching guaranteed to output d̂cos(·) = 1, while the
exact distance between the perturbed and the original vectors
depends on the solution of the formulated constrained non-
convex optimization problem. Our perturbation is in the form
of adding a new vector ~x to the original vector ~v.

Algorithm 2: Attack Perturb on Cosine Sketch
Input: ~v ∈ Rn, rcmn, κ
Output: ν, ~v+ ∈ Rn s.t. d̂cos(~v, ~v+) = 1, dcos(~v, ~v+) = ν

1 Use rcmn to sample vectors ( ~w1, . . . , ~wκ) from the unit
(n− 1)-sphere

2 Solve the following optimization problem

~x = argmax
~x∈Rn

~v · (~v + ~x)

||~v||2||~v + ~x||2
subject to sgn( ~wiT~v) · ( ~wiT (~v + ~x)) ≤ 0, i = 1, . . . , κ.

ν = dcos(~v,~v + ~x)
3 return ν, ~v+ = ~v + ~x

Intuition. The adversary takes as input the original vector
~v ∈ Rn and rcmn. The goal is to add a new vector ~x to the
original ~v in order to create ~v+ such that d̂cos(~v, ~v+) = 1. Recall
that the approximate cosine distance between two vectors is
maximized when their κ-dimensional sketches σ() differ in all
dimensions. Thus the addition of vector ~x to ~v must change
the sign of the κ inner products with respect to Equation (5)
and consequently flip the bits of the sketch σ(~v+). Overall, the
adversary wants to maximize the approximate cosine distance,
handled by the constraints of the optimization problem, and
minimize the exact cosine distance, handled by the objective
function of the optimization.

In Algorithm 2 the function sgn(x) has output −1 in case
x < 0 and output +1 in case x ≥ 0. The unit (n − 1)-
sphere is defined as the set of points {u ∈ Rn : ||u|| = 1}.
Notice that minimizing the exact cosine distance is equivalent
to maximizing the cosine similarity as it is described in
Equation (4), so our problem is formed as a maximization of
the cosine similarity C(~v,~v+~x). Algorithm 2 requires to solve



a non-convex, non-linear, high-dimensional constrained opti-
mization problem. Furthermore the objective function presents
discontinuity at point ~x = −~v, see Figure 2. Since closed
form solutions are generally challenging for this setup, we
approximate the solution of the above problem using iterative
algorithms from standard optimization toolboxes. Figure 2
visualizes the objective function for a toy example where
v ∈ R2. Due to the lack of formal guarantees about the quality
of the approximation, we present the effectiveness of the attack
in a form of a remark.
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Fig. 2. An illustration of the objective function of the maximization problem
of Algorithm 2 where n = 2 and ~v = (20, 10). The X-,Y -axis denote the
x1 and x2 dimension of vector to be added, ~x.

Remark V.1. Let ~v ∈ Rn be the vector that is given as
an input to Algorithm 2. Let also ~wi ∈ Rn be a vector
sampled from the unit (n − 1)-sphere using rcmn according
to Algorithm 2, where i = [1, κ]. Then, Algorithm 2 is
a successful (ν, 1)-perturbation attack for cosine sketching,
where ν is the achieved similarity of the perturbed input that
is returned by the algorithm.

Attacking Synthetic Data. We evaluated the performance
of the attack on synthetic data using the interior point al-
gorithm of MATLAB [4] where the input vector ~v is an
n-dimensional vector where the value of each element is
chosen uniformly at random from [0, 105]. We tested setups
that range across the different variables of the problem: 1)
the number of dimensions of the vector under attack n ∈
{500, 1000, 5000}, and 2) the size of the sketch under attack
κ ∈ {10, 50, 100, 200}. To generate vectors ~wi ∈ Rn we
sampled vectors from the (n−1)-sphere of unit radius centered
at the origin. We run the above setups with 10 different com-
mon randomness inputs rcmn and present the mean. As one
may observe in Table II, the approximate distance is always
d̂cos = 1 which implies that all the returned solutions were
part of the feasible region of the optimization problem. The
value of the exact cosine distance dcos between the original
and the perturbed data depends on the returned solution of
the optimization problem. Note that different solution methods
can potentially result in even lower dcos values. Depending
on the optimization toolbox and the number of dimensions
the time performance may vary, in our case all the executions
terminated within a couple of minutes.

Attacking Real Data. We demonstrate the perturbation

TABLE II
EVALUATION OF THE PERTURBATION ATTACK ON COSINE SKETCHES OVER
SYNTHETIC DATA. THE DATA POINTS SHOW THE AVERAGE VALUE OVER 10

INSTANTIATIONS.

n = 500 n = 1, 000 n = 5, 000

κ dcos d̂cos dcos d̂cos dcos d̂cos

10 0.005 1 0.002 1 0.0005 1
50 0.02 1 0.01 1 0.002 1
100 0.05 1 0.02 1 0.005 1
200 0.11 1 0.06 1 0.01 1

Fig. 3. Illustration of the perturbation attack on a gene-expression of an
adenoma patient. The proposed attack on vector ~v outputs the perturbed ~v+

with approximate cosine distance 1 even though the exact distance is 0.0036.

attack of Algorithm 2 on a real dataset7 of human gene-
expression levels that can be found in the work of Notteramn
et al. [74]. The authors perform a clustering analysis on the
vectors of gene-expression levels so as to capture similarity
patterns between healthy patients, patients with adenoma and
patients with adenocarcinoma. It is rather common to perform
similarity-based analysis on genomic data with the goal of
understanding and diagnosing diseases at the molecular level.
We highlight that the findings of the attack on the synthetic
are expected to be similar to those on any real data. This
is because the generative model of the input vector ~v does
not affect the sign of the inner product with a random
vector ~w. We approximate the solution of the optimization
problem using the interior point algorithm from MATLAB [4].
We use a cosine sketch of κ = 100 dimensions and we
repeat the experiment for 10 different initializations of the
vectors ( ~w1, . . . , ~wκ). The input vector is denoted as ~v and
it has n = 7, 086 dimensions each of which is a gene-
expression measured with a DNA microarray. We report that
all of the instantiations successfully satisfied the optimization
constraints and thus resulted in d̂cos(~v, ~v+) = 1. The average ν
value was 0.0033 with a maximum value of 0.0039. Therefore,
on average we mounted a successful (0.0033, 1)-perturbation
attack. One of the recorded instantiations is illustrated in
Figure 3 where it shows that if the adversary perturbs ~v to
form ~v+ then according to the cosine sketching initialization we
have d̂cos(~v, ~v+) = 1, even though their exact cosine distance
is dcos(~v, ~v+) = 0.0036.

7http://genomics-pubs.princeton.edu/oncology/



TABLE III
AN OVERVIEW OF THE PROTOCOLS. FOR BREVITY WE ASSUME THAT THE PUBLIC KEYS OF THE SERVER PK

(S)
P , PK

(S)
GM AND THE CLIENT

PK
(C)
P , PK

(C)
GM , PK

(C)
DGK ARE PUBLICLY AVAILABLE AND THUS NOT PASSED AS AN INPUT TO THE PROTOCOLS.

Protocol Client (C) Input Server (S) Input Client (C) Output Server (S) Output Summary
PrvComparison∗ a b - [t] [t=1] if a < b, [0] otherwise
EncComparison∗ SK

(C)
P , SK

(C)
GM , l [a], [b], l t - t=1 if a < b, 0 otherwise

EncComparison2∗ SK
(C)
P , SK

(C)
GM , l [a], [b], l - |t| |t = 1| if a < b, |0| otherwise

ChangePartyEnc∗ SK
(C)
GM SK

(S)
GM , |b| |b| - Encrypts |b| under SK(S)

GM

kIndHashing SK
(C)
P , x, k, p {ai}k−1

i=0 , p - [h] [(
∑k−1
i=0 aix

i) mod p]

EncHashing∗ SK
(C)
P , k, p [x], {ai}k−1

i=0 , p - [h] [(
∑k−1
i=0 aix

i) mod p]

FindMin∗ SK
(C)
GM , SK

(C)
P , l {[yi]}ni=1, l - [min] [mini yi]

UpdateOddSketch SK
(C)
GM , SK

(C)
P , SK

(C)
DGK , u, k [x], {ai}k−1

i=0 , u, (|skt0|, . . . , |sktu−1|) - (|skt′0|, . . . , |skt′u−1|) Update odd sketch with x

SketchingCosine ~v, SK
(C)
P , SK

(C)
GM {~wi}κi=1, SK

(S)
GM (|σ1|, . . . , |σκ|) - Encr. cosine signature

SketchingOdd S, k, u, SK
(C)
GM , SK

(C)
P , SK

(C)
DGK {hmini }κi=1, hodd, p, SK

(S)
P , SK

(S)
GM (|σ1|, . . . , |σκ|) - Encr. odd-minhash signature

VI. SERVER-AIDED APPROXIMATION

In this Section we reframe the architecture of secure sketch-
ing protocols so that we can 1) still use the well-studied
sketching techniques based on the common random input
rcmn, and 2) eliminate the possibility of an offline perturbation
attack. In our proposed server-aided design we introduce a
new semi-honest entity, i.e., the server S, that has exclusive
access to the common random input rcmn and assists in the
sketching protocols. Compared to previous approaches, the
main difference of our design is that a client does not have
direct access to the common random input. The sketching
function that was previously a local computation (as described
in Section IV), is replaced by a two-party protocol denoted as
Sketching between the server and the client. We capture the
new functionality as follows:

Functionality FS-approx

• Input: Party CA provides vA, party CB provides vB ,
party S provides rcmn.

• Output: All three parties receive d̂(vA, vB).

Notice that in case client CA (similarly for client CB)
observes the values of σA, then it is possible for the CA to infer
rcmn, which is an attack that defeats the purpose of the server-
aided model. For example, in the case where rcmn is used to
sample k-independent hash functions then the set of values
of σA consists of the evaluations of the above hash functions.
An adversary that observes the output of the polynomial-based
hash function can easily infer the coefficients of the hash
function by solving a system of equations [48]. In our design,
protocol Sketching outputs the encrypted sketch σA to CA so
as to avoid the above type of attacks.

The Real Model. Let Π be a three-party protocol computing
the functionality FS-approx. For ease of exposition we consider
the execution of Π in the presence of an adversary A as being
coordinated by a nonuniform environment Z = {Zλ}, much
like [20], [52]. In the beginning Z gives input (1λ, vA) to
CA, input (1λ, vB) to CB , input (1λ, rcmn) to S, and gives
z and X to A , where z denotes an auxiliary input and
X ∈ {CA, CB , S} is the corrupted party. At this point the
parties interact with each honest party behaving as instructed
by Π. At the end of the protocol, adversary A gives to

Z an output which is an arbitrary function of A ’s view.
Additionally, Z gets the output of the honest parties. Finally,
environment Z outputs a bit. We denote as REALΠ,A,Z(λ)
the random variable that represents the value of this bit.

The Ideal Model. In this model there is a trusted party that
computes FS-approx on behalf of the parties. Similar to the real
model, environment Z gives inputs (1λ, vA) and (1λ, vB) to
parties CA and CB , respectively. It gives input (1λ, rcmn) to
S, and also gives z and X to A′ where X ∈ {CA, CB , S}
indicates the corrupted party. All the parties send their input
to the trusted party. The trusted party computes FS-approx and
sends d̂(vA, vB) to all the parties. In the next step A′ outputs
to Z an arbitrary function of the view of A′. The honest parties
also give their output to Z . As a final step Z outputs a bit. We
denote as IDEALΠ,A′,Z(λ) the random variable that represents
the value of this bit.

Definition VI.1. Let Π be a three-party protocol for comput-
ing FS-approx functionality. We say that Π securely computes
FS-approx in the presence of semi-honest adversaries corrupting
one party if for any PPT semi-honest adversary A there
exists a PPT semi-honest adversary A′ such that, for every
polynomial size circuit family Z = {Zλ} corrupting at most
one party, the following is negligible:

|Pr[REALΠ,A,Z(λ) = 1]− Pr[IDEALΠ,A′,Z(λ) = 1]|.

Notice that if the adversary were to corrupt both a client
and the server then she would have access to the common
random input, and thus become capable of mounting a pertur-
bation attack. We note here that the server-aided approach has
been successfully deployed [11], [54], [55] in various other
problems. The proposed perturbation attacks of the previous
Section are based on the fact that all clients have offline
and direct access to the common random input rcmn. Under
our server-aided design an adversary can only attempt an
online attack, hoping to infer the rcmn from the value of
d̂(·), by performing a series of Sketching and Reconstruct
executions. Using rate-limiting techniques (e.g., [55]) one can
mitigate such an online attack. This scenario, however, is
beyond the scope of this paper.

Composition of Building Blocks. We define separate build-
ing blocks that can be combined and the proof of security



Protocol kIndHash:
Client: SK(C)

P , x, k, p Server: {ai}k−1
i=0 , p, l

(1) ∀i = 1, . . . , k − 1, [xi] := E(PK
(C)
P , xi)

[x],...,[xk−1]−−−−−−−−→ (2) Pick random r ∈ (0, 2l+λ) ∩ Z, [r] := E(PK
(C)
P , r)

(4) h′ = D(SK
(C)
P , [h′])

[h′]←−− (3) [h′] := [r] · [a0] ·
∏k−1
i=1 [xi]ai mod N2

(5) d = h′ mod p (6) c = r mod p

PrvComparison
(
d,c
)

←−−−−−−−−−−−→ (7) Receive [t] such that t = 1 if d < c

(8) [d] := E(PK
(C)
P , d)

[d]−→ (9) Output [h] = [d] · ([c])−1 · [t]p mod N2

Protocol UpdateOddSketch:
Client: SK(C)

GM , SK
(C)
P , SK

(C)
DGK , u, k Server: [x], {ai}k−1

i=0 , u, (|skt0|, . . . , |sktu−1|)
EncHashing

(
(SK

(C)
P ,k),([x],{ai}k−1

i=0 ,u)
)

←−−−−−−−−−−−−−−−−−−−−−−−−→ (1) Receive [h]

ChangeEnc
(

(SK
(C)
P ,SK

(C)
DGK ,k),([h])

)
←−−−−−−−−−−−−−−−−−−−−−−→ (2) Receive 〈h〉

(4) h′ = D(SK
(C)
DGK , 〈h′〉)

〈h′〉←−− (3) Pick random r ∈ Zu , 〈r〉 := E(PK
(C)
DGK , r) , 〈h′〉 := 〈r〉 · 〈h〉 mod N2

(5) ∀i = 0, . . . , u− 1, |mski| :=

{
E(PK

(C)
GM , 0), i 6= h′

E(PK
(C)
GM , 1), i = h′

|msk0|,...,|msku−1|−−−−−−−−−−−−→ (6) ∀i = 0, . . . , u− 1, |skt′i| :=

{
|skti| · |mskr+i|, i < u− r
|skti| · |mski−u+r|, i ≥ u− r

(7) Output (|skt′0|, . . . , |skt′u−1|)

Fig. 4. Two-party protocols between a client and the server that are used as building blocks for sketching.

for the overall construction can be derived using modular
composition [19]. The model is called hybrid model with
ideal access to functions f1, . . . , fm or simply (f1, . . . , fm)-
hybrid model . In the real life experiment we assume the
existence of an incorruptible trusted party T for evaluating
f1, . . . , fm; all parties hand their input to T and they receive
the corresponding output. As a next step, the ideal evaluation
of f at each step is replaced with the invocation of a protocol—
we refer the reader to [19] for a detailed exposition. In case the
function returns an encrypted output, a party passes a public
key as an input and we assume that the necessary encryption
algorithm is hardwired to the corresponding function. Table III
summarizes all the two-party protocols, which in our case are
executed between the server and the client. Using the above
building blocks we construct a secure two-party analogue for
minhashing (via odd sketches) and cosine skething. Due to
lack of space, protocols that are marked with ∗ in Table III
(simple modification of already proposed protocols [7], [14],
[86] or new protocols) can be found in the full version [58] of
this work. We note that we follow the protocol and encryption
notation established by the work of Bost et al. [14].

A. Building Blocks

k-Independent Hashing over Encrypted Data. The func-
tionality of FkIndHash is as follows. The input of the server is
the bit length l and the set of parameters of a k-independent
hash function—i.e., the coefficients {ai}k−1

i=0 , the prime p
of a (k − 1) degree polynomial on Zp. The client has the
input x which is used to evaluate the polynomial on Zp.
The degree of the polynomial as well as the modulo p are
considered to be known to both parties. At the end of the
protocol the server receives the evaluation of the polynomial
a0 + a1x + . . . + ak−1x

k−1 mod p that is encrypted with
the client’s public key. We do not use a private polynomial
evaluation technique due to the fact that we require the output
to be encrypted. The server should not learn any information

about the client’s input x and the client should not learn any
information about the coefficients {ai}k−1

i=0 of the polynomial.
A more thorough exposition of the protocol is provided in the
full version [58] of this work.

Lemma VI.1. Protocol kIndHash correctly and securely
computes FkIndHash in the (FPrvComp)-hybrid model.

Update Encrypted Odd Sketch. The functionality of
FUpdateOddSketch is as follows. The input of the server consists of
i) the bits of an odd sketch (skt0, . . . , sktu−1) encrypted with
the client’s public key, ii) the parameters of the (k−1)-degree
polynomial that is used as the hash function hodd, and iii) the
input x of the polynomial encrypted with client’s public key.
The input of the client is the set of secret keys. At the end of
the protocol the server receives an updated odd sketch where
the bit in location hodd(x) of the sketch is flipped, while the
client receives no output. The server and the client should not
learn which bit of the odd sketch is flipped or the input x
of the polynomial. One new idea of our design is the use of
DGK with message space Zu, where u is also the length of
the sketch, so as to securely translate the hash value into a bit-
mask, and eventually apply the mask to the original sketch.
A thorough overview of the protocol is provided in the full
version [58] of this work.

Lemma VI.2. Protocol UpdateOddSketch correctly and se-
curely computes FUpdateOddSketch in the (FEncHashing, FChangeEnc)-
hybrid model.

B. Protocols for the Server-Aided Model

Approximating Jaccard Distance via Odd Sketches. We
employ the protocols of the previous subsection as building
blocks to securely approximate Jaccard distance using the
approach by Mitzenmacher et al. [68]. As denoted in Figure 5,
the input of the server consists of the set of κ minhash
functions {hmini }κi=1, the hash function for the creation of



Protocol SketchingOdd:
Client: {ej}nj=1, k, u, κ, SK

(C)
GM , SK

(C)
P , SK

(C)
DGK Server: {hmini = (a0, . . . , ak)}κi=1, hodd, p, SK

(S)
P , SK

(S)
GM

(1) ∀y = 0, . . . , u− 1, |skty| := E(PK
(C)
GM , 0)

for i = 1 to κ do
for j = 1 to n do

kIndHash
(

(SK
(C)
P ,ej ,k),(hmini ,p)

)
←−−−−−−−−−−−−−−−−−−−−→ (2) Receive [h′ij ]

end for
FindMin

(
(SK

(C)
GM ,SK

(C)
P ,l),({[h′ij ]}

n
j=1,l)

)
←−−−−−−−−−−−−−−−−−−−−−−−−−→ (3) Receive [mini]

UpdateOddSketch
(

(SK
(C)
GM ,SK

(C)
P ,SK

(C)
DGK ,u,k),([mini],hodd,(|skt0|,...,|sktu−1|))

)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (4) (|skt0|, . . . , |sktu−1|)

end for

(5) Output encrypted sketch (|skt0|, . . . , |sktu−1|)
ChangePartyEnc

(
(SK

(C)
GM ),(SK

(S)
GM ,(|skt0|,...,|sktu−1|))

)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Protocol SketchingCosine:
Client: ~v = (v1, . . . , vn), SK

(C)
P , SK

(C)
GM Server: {~wi}κi=1, SK

(S)
GM

(1) ∀j = 1, . . . , n, [vi] := E(PK
(C)
P , vj)

[v1],...,[vn]−−−−−−−→
for i = 1 to κ

(2) [d1] := Πn
j=1[vj ]

wij mod N2

(3) [d0] := E(PK
(C)
P , 0)

EncComparison2
(

(SK
(C)
P ,SK

(C)
QR ,l),([d1],[d0],l)

)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (4) Receive |ti| s.t. ti = 1 if d1 < d0

(5) Receive |σi| := |ti| encrypted under PK(S)
GM

ChangePartyEnc
(

(SK
(C)
GM ),(SK

(S)
GM ,|ti|)

)
←−−−−−−−−−−−−−−−−−−−−−−−−→

end for
(6) Output encrypted sketch (|σ1|, . . . , |σκ|)

Fig. 5. The sketching protocols between the server and the client for the server-aided model.

the odd sketch hodd, as well as the corresponding secret
keys. Recall that {hmini }κi=1 and hodd are generated using the
common randomness rcmn that can only be accessed by the
server. The input of the client consists of her data, denoted as
the elements {ej}nj=1, as well as the publicly known moduli
p, u, and the secret keys. At the end of the protocol the client
receives the odd sketch encrypted with the server’s public key.

Lemma VI.3. Protocol SketchingOdd correctly and se-
curely computes FSketchingOdd in the (FkIndHashing, FFindMin,
FUpdateOddSketch, FChangePartyEnc)-hybrid model.

Approximating Cosine Distance via Cosine Sketching.
We approximate cosine distance as follows. The input of the
server consists of the vectors ~wi, that are sampled uniformly
at random from the (n − 1)-sphere. The input of the client
consists of her data which is represented by the vector ~v. Note
that vectors ~wi are generated using the common randomness
rcmn that can only be accessed by the server. At the end of the
protocol the client receives the cosine sketch encrypted with
the server’s public key.

Lemma VI.4. Protocol SketchingCosine correctly and
securely computes FSketchingCosine in the (FEncComparison2,
FChangePartyEnc)-hybrid model.

Reconstruct Protocol. The power of the sketching tech-
niques that we chose for approximating Jaccard distance and
cosine distance lies in the fact that their reconstruction function
is simple and efficient. Both techniques follow the same re-
construction process which performs an exclusive-or operation
between the two sketches, and then counts the number of 1
values (see Equations (3) and (5)). Taking advantage of the
homomorphic properties of the GM cryptosystem we build an

Protocol Reconstruct:
ClientA: | ~σA| ClientB : | ~σB | Server: SK(S)

GM

| ~σA|−−−→ (1) Receive sketch | ~σA|
(2) ∀i ∈ {0, . . . , κ− 1}, |σ′i| = |σAi | · |σBi |

(3) Pick a rand. perm.
π over {0, . . . , κ− 1}

(4) Permute |~σ′| w.r.t. π
|~σ′|−−→ (5) Decrypt all |~σ′|

(6) c←Count 1s in σ′

(9) Output c/κ c←− (8) Output c/κ c←− (7) Output c/κ

Fig. 6. The reconstruction of SketchingCosine between the server and the
clients. The reconstruction for SketchingOdd is the same for steps (1)-(6);
steps (7), (8) follow the reconstruction of Equation (3).

efficient Reconstruct protocols. See Figure 6.

Lemma VI.5. Protocol Reconstruct is correct and secure in
the semi-honest model.

On the Choice of Building Blocks. Since our protocols
follow a modular design, one can substitute the proposed
building blocks with protocols that follow other MPC tech-
niques so as to further optimize the performance of our
constructions. The work presented in this paper is meant to
present to principles of this modular design and is not rep-
resentative of a highly-optimized implementation. According
to the work of Bost et al. [14], comparison protocols that
utilize specialized homomorphic cryptosystems [34], [86] are
more efficient when the input is encrypted. Thus, our imple-
mentation invokes variations of the above protocols, namely
EncComparison and EncComparison2. For the comparison
protocol on unencrypted inputs, Bost et al. [14] denote that
a garbled circuit approach [9] results in a more efficient
implementation. In our implementation we followed the work
of Veugen [86], and therefore one can further speedup our
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Fig. 7. Subfigure (a): Time performance for varied set size of the SketchingOdd protocol. Time averaged for a single minhash over five runs. Subfigure (b):
Time performance for varied number of vector dimensions of the SketchingCosine protocol. Time averaged for a single random projection over five runs.

implementation by invoking a garbled circuit design instead.
We note that well-known protocols that are purely based on
garbled circuits for functionality such as FindMin can not
be deployed because the input of the FindMin is a set of
encrypted inputs (see Table III). A similar argument holds
for the output of kIndHashing which is encrypted. Thus,
to the best of our knowledge, the most promising speedup
opportunity would be opting for garbled circuit designs for
the simplest building blocks, such as comparison.

VII. SCALABILITY EVALUATION

Implementation Setup. We implemented the proposed
protocols in C++ using existing libraries as well as newly im-
plemented building blocks. For serializing the communication
between the server and client we use Protocol Buffers [43]. All
the arithmetic operations are performed with the gmp multiple
precision library [32]. We use the Advanced Crypto Software
Collection [10] implementation of the Paillier cryptosystem,
and an open-source implementation of the GM cryptosystem.
We implemented the DGK cryptosystem in C++ following the
design principles of [10] and the directions of the original
work [27], [28].

For the minhashing via odd sketching protocols we choose
the security parameter λ = 100. Given the scale of our
experiments the k-independent hashing setup is the following:
we choose k = 4 and a prime p that is at least an order of
magnitude larger than the size of the set—i.e., p ≥ 10n. As
explained in the description of protocol UpdateOddSketch,
prime u of the DGK cryptosystem is set to have the same
value as the length of the odd sketch. As it is also noted
in [14] the parameterization of Paillier has to be such that the
homomorphic operations do not overflow the message space.
To accomplish this instantiation we analyze the two phases of
the protocol. The first phase is the kIndHashing computation;
let l′ be the maximum bit-length of the inputs x. In step (1) of
protocol kIndHashing involves (k−1) exponentiations among
which the plaintext xk−1 can have the maximum length of
l′max = (k − 1)l′ bits. Step (3) of protocol kIndHashing in-
volves (k−1) multiplications and (k+1) additions of numbers
that are at most l′max bits long. Therefore it is sufficient for N
to be such that logN ≥ (k2 − k− 2)(l′/2) + 2 + λ. After the
execution of kIndHashing the numbers involved in protocols

PrvComparison and EncComparison are log p bits long,
since they are hash values. Thus protocols PrvComparison
and EncComparison operate on integers that are at most
l = log p bits long. Consequently, it is sufficient for N to
be such that logN > log p + λ + 1. We satisfy the above
inequalities by choosing logN ≥ 1024.

Regarding the protocols for cosine sketching, we also
choose a security parameter λ = 100. Recall that vectors
~wi = (wi1, . . . , win) are sampled uniformly at random from
the (n−1)-sphere, so each value wij is a real number. We can
transform the above real numbers to integers by multiplying
with a constant K and rounding, allowing us to interpret wij as
part of Paillier’s message space. The purpose of the random
projection is to compute the sign of the inner product thus
one can choose a relatively small K. In our implementation
we choose K = 1000. Similarly to the previous instantiation,
the parameterization of Paillier should not overflow by the
homomorphic operations of the encrypted inner product that
is performed in step (2) of protocol Sketching-Cosine. Let l
be the maximum length in bits of the entries in ~v. Then step
(2) of protocol Sketching-Cosine involves the multiplication
of a logK bit long integer with an l bit long integer. Thus, it is
sufficient for N to be such that logN ≥ logK+l+n. Finally,
in our implementation, both GM and DGK have moduli that
are at least 1024 bits long. The implementation of the protocols
and the serialization of the server is around 1400 lines, while
the client is around 1100 lines.

Scalability. We evaluate the scalability of the server-aided
design based on the described implementation setup. In Fig-
ure 7 we present the recorded computation time for the
sketching protocols on a commercial laptop with 2.6 GHz Intel
Core i5 CPU and 8GB DDR3 RAM.

The client and server have similar time performance for
the SketchingOdd protocol. This is mostly because both
parties are subject to a slowdown by a similar number of
encrypt/decrypt operations. The time performance presented
in Figure 7-(a) is for a a single minhash value (i.e., κ = 1),
and an odd sketch of 151 bits (i.e., u = 151). Note that the
computational overhead scales linearly with κ: for κ > 1 we
have the same computational overhead as the one depicted in
Figure 7-(a), only κ times larger. Notice, however, that the
computation for each of the κ dimensions of the sketch is in-
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dependent of each other, thus the overall task is parallelizable.
On the other, hand the computational overhead of the client
in protocol SketchingCosine is significantly higher than the
one of the server. This is mainly caused by the encryption
of each dimension of ~v, which translates to a large number
of exponentiations taking place in step (1) of the protocol.
Furthermore, the performance of the server (time) is measured
when we have a single random projection, i.e., κ = 1, thus
steps (2)-(4) of SketchingCosine are repeated only once.
Similar to the case of SketchingOdd, for κ > 1 the overall
task is highly parallelizable into κ tasks. The communication
overhead of the sketching protocols for various values of n is
depicted in Table IV.

TABLE IV
COMMUNICATION OVERHEAD OF SKETCHING. AVERAGE OVER 5 RUNS.

Protocol n
100 250 500 1000

Sketch-Odd 1112 KB 2930 KB 6218 KB 13201 KB
Sketch-ShimHash 69 KB 165 KB 324 KB 644 KB

In our design we prioritize the speedup the reconstruction
protocol, since it is the protocol that is executed multiple times
throughout the lifetime of the system—once for every pairwise
approximation. On the contrary, the sketching protocol is
invoked only once for every high-dimensional data point, so
as to create the sketch. Thus, using odd sketches (rather than
regular minhashing) introduced, indeed, some overhead in the
overall sketching protocol but resulted in a fast and more
scalable reconstruction protocol. Generally, the reconstruction
protocol from the server’s perspective is the same, regardless
of whether we are approximating Jaccard or cosine similarity,
since the only task performed by the server is to decrypt κ
ciphertexts encrypted under GM. The end result is a rather
scalable performance illustrated in Figure 8.

VIII. DISCUSSION

Moving forward, it would be interesting to study even
stealthier attacks where the perturbation is tailored to the spe-
cific context of the application. Under context-aware attacks
the adversary perturbs the data in a way that is relevant to the
semantics of the data. For instance, if the first dimension of
the vector under attack represents “age” then it is preferable

not to change the value to negative. In our work we focused on
perturbation mechanisms that add information. In a different
setup it might be preferable to remove existing information
or transform small pieces of data to something equivalent,
e.g., in the case of legal document, phrases that have the
same meaning. On the defensive end it would be interesting
to develop practical robust sketching methods in adversarial
environments, e.g. see concurrent work in this direction by
Boyle et al. [15]. Another direction would be the design of
secure approximation protocols where the approximation does
not rely on a fixed randomness but rather on fresh randomness
via a sampling-based approach, similarly to Zadeh et al. [91].

IX. CONCLUSION

In this paper we introduced and studied the effectiveness
of adversarial inputs for secure similarity approximation pro-
tocols. We proposed concrete perturbation attacks for the
well-studied minhash and cosine sketching techniques, and
measured the performance and scalability of the attacks on
both real and synthetic data, while tuning various parameters.
Subsequently, we formally defined a server-aided model that
mitigates the aforementioned attacks. We also proposed new
sketching protocols for this architecture, building upon state-
of-the-art sketching techniques. Our design and implementa-
tion aimed at speeding up the reconstruction protocols, as
they constitute the part of the overall computation that is
executed most frequently—thus having the most severe impact
on overall performance. We evaluated the implementation of
the proposed protocols and demonstrated that this architecture
achieves the desired scalability for the reconstruction process,
with reasonable performance.
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X. SUPPLEMENTARY MATERIAL

A. Overview of Protocols

Overview of FindMin. Initially the server assigns the first
encrypted value as the current minimum [min]. Then we
compare the current minimum with the next encrypted value
using the protocol EncComparison, which outputs the result
of the comparison without revealing the encrypted values to
the key holder (i.e., the client). Notice, however, that if the
server iterates through the ciphertexts in the originally given
order then the client can learn the index of the minimum value.
To overcome this the server picks a random permutation π that
is applied before any pairwise comparison (step (1)). Thus the
client learns the index of the minimum value with respect to
the secret random permutation that the server applied. After
the execution of the comparison protocol the client returns
a re-encryption [ci] of the smallest among the input values
[min], [yπ(i)], so as not to reveal to the server which of the
two ciphertexts is smaller. Re-encryption (denoted as Refresh)
can be achieved by either decrypting and re-encrypting the
ciphertext, or by using the homomorphic properties of the
cryptosystem to refresh the randomness. Since the client can
decrypt [min] and [yπ(i)], the server blinds the ciphertexts
using ri and si so as to create the blinded ciphertexts [bi]
and [ci]. In the final step we deal with two cases. If the
result of the comparison is min < yπ(i) (i.e., ti = 1) the
server subtracts the blinding ri from the value that the client
returned. Otherwise the server subtracts si. Protocol FindMin
performs n−1 encrypted comparisons of l bit integers, 8(n−1)
homomorphic operations and n− 1 roundtrips.

B. A Note on the Security Proofs

The security proofs take the classic simulation based ap-
proach for semi-honest adversaries on the hybrid model with
ideal access to functions [19] and show that a party’s view in a
protocol execution is simulatable given its input, its output (if
any), and access to a series of ideal functionalities. On the one
hand we have the hybrid world were protocols have access to
functions that are invoked by specific step of the protocol and
on the other hand we have the ideal world where the simulator
lives. Thus, the participating parties learn nothing from the
protocol’s execution beyond what can be derived from their
input. For the proofs we refer the reader to the full version of
our work [58].



Protocol EncHashing
Client: SK(C)

P , k, p Server: [x], {ai}k−1
i=0 , p

(2) ∀i = 2, . . . , k − 1, hi = D(SK
(C)
P , [hi])

[h2],...,[hk−1]←−−−−−−−− (1) ∀i = 2, . . . , k − 1, Pick ri ∈ (0, 2l) ∩ Z, [hi] := [x]ri mod N2

(3) ∀i = 2, . . . , k − 1, [h′i] := E(PK
(C)
P , hii)

[h′2],...,[h′k−1]
−−−−−−−−→ (4) ∀i = 2, . . . , k − 1, [xi] := [h′i]

r−ii mod N2

(6) h′ = D(SK
(C)
P , [h′])

[h′]←−− (5) Pick r ∈ Zu , [h′] := [r] · [a0] · [x]a1
∏k−1
i=2 [xii]

ai mod N2

(7) d = h′ mod p (8) c = r mod p

PrvComparison
(
d,c
)

←−−−−−−−−−−−→ Receive [t] such that t = 1 if d < c

(9) [d] := E(PK
(C)
P , d)

[d]−→ (10) Output [h] = [d] · ([c])−1 · [t]p

Protocol EncComparison
Client: SK(S)

P , SK
(S)
GM , l Server: [a], [b], l

(1) [x] := [2l] · [b] · [a]−1 mod N2

(2) Pick a random r ∈ (0, 2l) ∩ Z
(4) z = D(SK

(C)
P , [z])

[z]←− (3) [z] := [x] · [r] mod N2

(5) d := z mod 2l

(6) c := r mod 2l

PrvComparison
(
d,c
)

←−−−−−−−−−−−→ Receive |t′| such that t′ = 1 if c < d

(7) |zl| ← E(PK
(C)
GM , zl)

|zl|−−→
(8) |rl| := E(PK

(C)
GM , rl)

(10) Output t = D(SK
(C)
GM , |t|)

|t|←− (9) |t| := |zl| · |rl| · |t′| · |1|
Protocol FindMin:

Client: SK(C)
GM , SK

(C)
P , l Server: {[yi]}ni=1, l

(1) Pick a rand. permutation π over {1, . . . , n}
(2) [min] := [yπ(1)]

for i = 2 to n do

(3) Receive bit ti s.t. ti = 1 if min < yπ(i)

EncComparison
(
(SKP , SKGM , l), ([min], [yπ(i)], l)

)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(4) Pick random ri, si ∈ (0, 2l+λ) ∩ Z
[bi],[ci]←−−−− (5) [bi] := [min] · [ri] mod N2 , [ci] := [yπ(i)] · [si] mod N2

if ti is 1 then
(6a) [ci] := Refresh([bi])

else
(6b) [ci] := Refresh([ci])

end if
[ci],[ti]−−−−→ (7) [min] := [ci] · ([ti] · [−1])si · [ti]−ri mod N2

end for
(8) Output [min]

Fig. 9. Protocol EncComparison is a slight modification of the comparison protocol found in [14], [86]. Protocol EncComparison2 is the same up to step
(9) where it terminates by outputting |t| to the Server.


