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Abstract

This paper presents a system that can be
used to generate Elasticsearch (database)
query strings for English-speaking cyber-
threat hunters, security analysts or respon-
ders (agents) using a natural language in-
terface. This system relies on a hybrid
translation approach combining translation
memory, information extraction and text
classification techniques. The resulting
queries may be used to (i) speed up the
on-boarding of agents that are not (too)
familiar with a specific, flexible database
schema and (ii) collect question-to-query
mappings with a view to train future mod-
els using a more robust framework (e.g.
NMT). The system presented in this paper
supports multiple data sources, including
an industry-standard knowledge base and
collections of existing queries provided by
individual or corporate threat hunters. It al-
lows users to ask questions about specific
cybersecurity event or incident details and
generates Elasticsearch query strings that
can be executed against a database contain-
ing security event data. This paper presents
the key components of the backend system
and highlights some of the user interface
design choices that were made to maxi-
mize user adoption.

1 Introduction

Studying the translation of natural language into
SQL queries has a very long history. Earlier
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work focused on specific databases thus requir-
ing further customization to generalize to each
new database (Warren and Pereira, 1982) (Gior-
dani and Moschitti, 2012) (Tamas and Salomie,
2016) (Wang et al., 2017). More recent work has
explored the use of deep neural networks (Zhong
et al., 2017) especially for Wiki-based informa-
tion retrieval (Yu et al., 2018). Related areas have
also been studied, such as natural language inter-
faces to Web APIs (Su et al., 2017), (Su et al.,
2018), and dialogue-based query generation (Gur
et al., 2018). However, little attention has been de-
voted to document-oriented databases with flexible
schemas (e.g. Elasticsearch) that are often used
as Security Information and Event Management
(SIEM) systems. Such databases are commonly
used in the context of cyber-threat hunting (or dis-
covery) as shown for instance by the availabil-
ity of the HELK stack (Rodriguez, 2019). When
hunting for advanced threats, domain experts typ-
ically have to craft complex queries (Kindlund,
2018). Very often, however, little training data is
available apart from API/schema descriptions and
raw events so using a fully data-driven approach
is often not practical. Using interactive learning
in a dialogue-based scenario may alleviate this is-
sue (Filar et al., 2017) (Filar and Seymour, 2019),
but it is not clear that advanced users will have the
patience to answer a long series of questions (e.g.
which user do you mean?, what devices are you
talking about?) that are often required to fill slots.

In the present paper, we therefore present an
alternative approach to tackle the problem of
bootstrapping a natural language-based system
for threat hunting or security incident investiga-
tion. This hybrid approach is based on multi-
ple techniques, including semantic search tech-
niques (Mangold, 2007), whereby the Source Lan-



guage user input (English) is analyzed using a
number of components (mostly based on rules)
in order to extract entities and phrases or infer
text categories that are then mapped into the Tar-
get Language’s fields and terms before an actual
Elasticsearch query string can be generated (Elas-
ticsearchB.V., 2019). Using a combination of
text classification and slot filling has indeed been
shown to provide very competitive natural lan-
guage to SQL baseline systems (Finegan-Dollak et
al., 2018). Even though some of these rules have to
be manually created, their precision is well suited
to this task, especially as far the generation step is
concerned to ensure that users are provided with
valid queries. The rest of the paper is organized
as follows: Section 2 describes the various data
sources used to create some of the linguistic com-
ponents of our backend system (either manually or
automatically). Section 3 presents the actual sys-
tem components with some examples. The two fi-
nal sections provide some discussion of the design
choices that were made to create the user interface
and outline some directions for future work.

2 Data sources

In this section the main data sources used to boot-
strap our system are described. The data sources
include:

• An API schema file from which field descrip-
tions, values and value mappings can be ex-
tracted for the Event object of an actual end-
point detection and response (EDR) system.
This file required custom parsing in order to
extract enumerated (and potentially mapped)
values from free-text descriptions.1

• Raw event data from an actual EDR system
that is used in production (about 1000 sam-
ples). These samples were used to auto-
matically create linguistically-oriented entity
recognition rules.

• 49 manually curated pairs of queries and de-
scriptions pertaining to the underlying EDR
system. This set was extracted by parsing
a PDF file containing threat discovery guid-
ance.2

1https://help.symantec.com/bucket/
SymantecEDR_4.0/lists_of_all_symantec_
edr_event_schemas
2https://support.symantec.com/us/en/
article.doc11273.html

• The enterprise matrix from MITRE’s cyber-
threat intelligence (CTI) dataset, which is an
industry-standard knowledge base providing
some information for each of the 223 tech-
niques defined in the ATT&CK model (Mitre,
2019). A file in STIX format is parsed in or-
der to extract relevant information.3

• 285 manually curated pairs of queries and
descriptions originating from the Sigma
project (Roth and Patzke, 2019). This set was
extracted by parsing YAML files.

• 230 manually curated pairs of queries and
descriptions originating from the Lolbas
project (LOLBAS, 2019). This set was ex-
tracted by parsing YAML files.

• A subset of the annotations from 39 Ad-
vanced Persistent Threat (APT) reports (con-
taining 6,819 sentences) with attribute labels
from the Malware Attribute Enumeration and
Characterization (MAEC) vocabulary (Lim et
al., 2017).4

2.1 The API Schema dataset

In order to define the domain covered by our sys-
tem, we rely primarily on an API schema file based
on the OpenAPI specification (OpenAPI, 2019).
This file, which is available in JSON format, con-
tains a full-fledged description of multiple meth-
ods and objects pertaining to an actual endpoint de-
tection and response (EDR) system. Some of these
methods are very narrow in scope (e.g. how to
contain an endpoint) and can be covered by simple
OpenC2 commands (OASIS, 2019). Others, how-
ever, can be much more complex (e.g. querying
a database system to find specific security events
based on several search criteria). Examples of
fields pertaining to the Event object include (i) an
integer representing a port number, (ii) a specific
type ID, whose integer value maps to a textual de-
scription (e.g. 8000 for a session event), (iii) a host
name string for the client computer, (iv) a MITRE
tactic string corresponding to one of the 11 tactics
defined by the MITRE’s ATT&CK model (Mitre,
2019), or (v) an overloaded integer value mapping
to multiple descriptions depending on the value of
another field. The overall number of fields for the
3https://oasis-open.github.io/cti-
documentation/stix/intro
4https://github.com/MAECProject/schemas/
blob/master/vocabs.json



Event object is very large (more than 500) but the
actual number of fields will vary depending on the
type of event (e.g. a file reputation request event
or a session event). Such events tend to include a
few dozens fields so the goal of this system is to
cover those that appear the most frequently in the
data (raw events).

2.2 The threat discovery guide dataset

While the previous section focused on specific
fields and associated values, threat hunters often
need to craft more advanced queries whose textual
mappings do not include specific field values or de-
scriptions. For instance, a question such as show
me the outbound traffic occurring on non-standard
ports has to be matched with:

type_id:8007 AND
-target_ip:["192.168.0.0/16" OR
"10.0.0.0/8" OR "172.16.0.0/12"
OR "127.0.0.0/8"] AND
-target_port:[80 OR 443].

In this example, the phrase non-standard port
cannot be found in the API Schema but obviously
a domain expert is able to associate it with all ports
apart from 80 and 443 in the context of HTTP traf-
fic. The same applies to the phrase outbound traf-
fic.

Since the number of descriptions/queries pairs is
quite small in this dataset (less than 50), these com-
plex mappings cannot be learnt using a data-driven
approach. However, we can try and detect some of
these phrases in the user input and either (i) apply
a translation memory technique to retrieve partial
(or fuzzy) matches or (ii) offer suggestions via the
user interface. These two approaches will be de-
scribed in sections 3.1 and 4 respectively.

2.3 The MITRE CTI dataset

The MITRE cyber-threat intelligence (CTI) dataset
provides some textual information for each of the
223 techniques defined in the ATT&CK model.
We leverage this dataset in two ways: First, we
use the technique names to detect their mentions as
entities in user input (as described in Section 3.2).
Second, we use additional information in order to
train a multi-class text categorizer. This informa-
tion includes a brief description of the techniques
as well as guidance on how to detect and mitigate
against such attacks. Some examples of malware
or attack group using this technique may also be
provided. All of this information can be parsed and

split into sentences. The initial data set, referred to
as mitre-6.5k, is quite small (6500 sentences) and
not very balanced as most techniques (140/223)
(classes) contain less than 23 sentences. In order
to deal with this data shortage issue, we can sup-
plement the training data with sentences extracted
from external references (e.g. web pages, PDF
documents) cited in the MITRE pages. This strat-
egy allows us to increase the size of the training
data to about 60K sentences (referred to as mitre-
60k). This text classifier will be presented in Sec-
tion 3.5.

2.4 The Sigma and Lolbas datasets

While the previous two datasets are directly as-
sociated with the EDR system of interest, other
datasets could be relevant to users of that system.
For instance, the Sigma project contains a number
of detection rules that may be used to query se-
curity information and event management system
logs. Some experienced cyber-security profession-
als may actually be more familiar with these rules
(and their default fields) than the schema presented
in section 2.1. Similarly, the Lolbas project makes
a number of detection rules available to identify
anomalous or suspicious usage of legitimate sys-
tem or administration tools. Such rules are associ-
ated with a description and/or a title whose words
could appear in user input. These rules from these
datasets are therefore parsed by our system and
made available to users via interactive suggestions
and partial matching. One of the challenges with
these datasets is that the queries or commands they
expose are not fully compatible with our target
Elasticsearch index. For instance, the following
Lolbas command includes a Command field that
must be mapped to a process.cmd line field:

Command: rundll32.exe
shdocvw.dll,OpenURL
"C:\test\calc.url"

This example also includes a test parameter
"C:\test\calc.url" that would have to be
replaced with a proper value in a successful query.
In order to deal with this problem, this test param-
eter can be easily filtered out by parsing the com-
mand in order to generate the following query:

process.cmd_line:["rundll32.exe"
AND "shdocvw.dll,OpenURL"]

Interestingly, both of these data sources also in-
clude references to MITRE technique IDs in their
rules. This is useful for two reasons. First, when



the query includes fields that cannot easily be
mapped (e.g. Event ID 13: RegistryEvent (Value
Set) generated by Sysmon (Russinovich and Gar-
nier, 2019)), the MITRE technique ID may be sug-
gested to the user who would then be able to fil-
ter out the results interactively. Second, we can
use 420 labelled sentences from these datasets (re-
ferred to test-set) to evaluate our system’s text clas-
sification component trained on the actual MITRE
data.

3 System Overview

Our system is implemented on top of a Spacy
pipeline (Honnibal and Montani, 2017) using
a number of default and custom components.
Specifically, we rely on Spacy’s default tokenizer,
tagger, named entity recognizer and dependency
parser for English.5 We also designed a number
of custom components to address some of the is-
sues described in the previous section. These six
components, which are shown in Figure 1, are de-
scribed in the next sections.

3.1 Index-based Phrase Matcher

This component relies on the descriptions/queries
pairs described in the previous section. The de-
scriptions are first lemmatized, lower-cased and
split into n-grams (with a minimum length of
3). These n-grams are then stored as the keys
of an inverted index in order to point to relevant
queries (and associated metadata, such as descrip-
tion, source, etc.). When user input is submitted,
this index is used to find an exact match or partial
match, by computing a similarity score (between 0
an 1) using the n-gram overlap technique for text
reuse described by Clough et al. (2002). When
an exact match is found, the other steps from the
pipeline may be skipped.

3.2 Named Entity Recognition

When a partial match or no match is found, the
user input is processed by the modules perform-
ing named entity recognition. Default entity types
such as ORG or GPE are considered as they proved
relevant on the sample of raw events. For instance,
some fields contain country or organization names
when the event has been enriched with a domain’s
WHOIS information or when it includes file-based

5In our experiments, we used their small model trained on
OntoNotes5.

digital certificate information. The PERSON en-
tity also proved relevant for fields containing user
names such as email addresses or host names. In
other cases, however, custom entity types have to
be defined. Since we wanted to automate this pro-
cess as much as possible, we performed some anal-
ysis on the raw event samples to find some fields
whose values contained specific word shapes or
word lemmas. For instance, we found that de-
vice names followed a specific pattern that could
be learnt from specific word shapes. Since de-
vice naming will vary from one organization to the
next, using this approach provides a lot of flexi-
bility. This approach also allows to support vari-
ants or synonyms, for instance to handle adversary
groups that tend to be named in multiple ways in
the industry. Finally, when ambiguity is present
(i.e. when a value occurred across multiple fields,
such as “suspicious”) or when the pattern seems
too complex to learn automatically, we rely on
the rules-based phrase matcher which is presented
next.

3.3 Rules-based Phrase Matcher
Since this component requires the creation of man-
ual rules to annotate specific token sequences from
the input text, it is reserved to a small set of sig-
nificant fields that may rely on ambiguous values.
For instance, the operation field can refer to a cre-
ation event that may take a different value depend-
ing on the context (e.g. deleting a registry key
value or deleting a file). Using a high-precision
rule to match such token sequences is well suited
to tackle this problem. Besides, it allows us to
quickly add variants (e.g. synonyms) to extend the
rule’s coverage. In order to speed up the identifi-
cation of variants for specific verbs and nouns, we
rely on the annotations from the MalwareTextDB
dataset (Lim et al., 2017) for those annotations
whose MAEC attribute label overlaps with some
of the Event field descriptions (e.g. “delete file”).
This strategy allows to recover a number of vari-
ants, such as “delete”, “clean”, “wipe”, “remove”,
or “destroy” for “delete file”, or “connect”, “com-
municate”, “establish”, “initiate” for “send net-
work packet”.

3.4 Entity Relation Extractor
This component relies on additional manually cre-
ated rules that cannot easily be expressed using
the formalism of the rules-based phrase matcher.
This module makes use of dependency parsing in-



Figure 1: Custom components included in the pipeline

formation to target specific event types. Specifi-
cally, email-related events (including phishing and
spear-phishing) tend to involve a number of enti-
ties (i.e. sender, recipients(s)) and properties (e.g.
subject, attachment, message status) that can be
very challenging to handle even when substan-
tial training data is available. For instance, Su
et al. (2017) report 57% accuracy for generating
valid GET-Messages API calls using Microsoft’s
email search API when these calls contain 1 to 4
parameters. One of the rules used by our compo-
nent navigates the parse tree of the user input and
looks for subtrees starting with prepositions such
as to (for the email recipient), from or by (for the
sender), about (for the subject), and with (for the
attachment). The content of the subtree is then an-
alyzed to determine whether they contain specific
entities (such as email addresses, person names or
filenames). When such entities are found, they can
be associated with the actual field names.

3.5 Text Classification

When no entities or matches are found in the user
input, we rely on a fall-back component. This
component is completely different from the pre-
vious ones as it does not rely on rules. Instead,
we train a multi-class (223) categorization model
(a stacked ensemble of a bag-of-words model and
a convolutional neural network model) using the
MITRE technique training data sets described in
Section 2. Even if the performance of this boot-
strapped model is poor (16% on test-set when
trained on mitre-6.5k and 24% accuracy when
trained on mitre-60k) it allows for the initial la-
belling of user input with a MITRE technique ID
(i.e. when the class probability is greater than
0.5) even when the actual MITRE technique name
is not explicitly present. The performance of the
model is expected to improve as usage data is col-

lected.

3.6 Query Generator

Once all of the analysis components have been
executed on the user input, their output is com-
bined in order to generate an Elasticsearch query
string following the syntactic constraints of this
mini language. Some field/value combinations
are much easier to handle than others (e.g. ac-
tor:actor name). In some cases, however, a map-
ping is required to restore the expected value.
When multiple values are present for a given field,
these values are joined together with an OR oper-
ator in a list. All fields/terms pairs are currently
joined with the AND operator, unless field ambi-
guity must be handled (e.g. an IP address entity
may refer to multiple fields so the various options
must be present in the query). Finally, we have in-
troduced some basic support for regular expression
patterns when specific entities are found instead of
others. As mentioned in Section 3.4 a person name
may be used to search for specific email events.
Since an email address is expected for this field,
the query will not return the expected results un-
less the person name (e.g. John) is turned into a
pattern such as /John.*/).

4 User Interface

When designing the user interface, four main re-
quirements were taken into account:

1. The interface should be familiar to users who
may have been relying on conversion systems
to convert their queries from one SIEM sys-
tem to another. Tools such as Uncoder6 or
Sigma UI7 allow users to write, save and con-
vert queries in a number of formats, but do not

6https://uncoder.io/
7https://github.com/socprime/SigmaUI



Figure 2: Web-based standalone user interface

allow users to use natural language to gener-
ate a new query. Using a 2-column format
where (source) user input and (target) gener-
ated query are displayed side by side in the
middle of the screen is a well-known layout
for (machine) translation or conversion appli-
cations. Using this layout prevents usabil-
ity issues that are typically associated with
chat widgets as they only use a fraction of the
screen.

2. The interface should be as intuitive as pos-
sible, so the number of UI elements should
be limited to the following functions: (i) gen-
erating a query after entering some text (e.g.
question), (ii) executing the query against the
DB (possibly via an API call, (iii) copying the
query to the clipboard, (iv) indicating whether
the query was useful (or not), and (v) giving
the user a chance to access the source of a
leveraged rule via a hyperlink.

3. To minimize user frustration due to mis-
interpretation, question suggestions should
be made available as a drop-down selection
once the user has typed at least one word.
These suggestions are based on those ques-
tion/query pairs described in Section 2 that
have not been rated negatively by users.

4. The interface should be able to be deployed as
a standalone application or as a widget within
an existing Web application (e.g. a Kibana in-
stance).8 In the latter scenario, a bookmarklet
can be made available to users and some con-
textual application can be leveraged to influ-
ence the query generation step. For instance,

8https://www.elastic.co/products/kibana

when a user name or incident ID is detected
on the page of the host application, this infor-
mation can be passed to the query generator
component to (i) skip queries that may have
been rated as poor by a given user or (ii) dis-
ambiguate some entities.

These four main requirements led to the creation
of a simple interface whose standalone version is
shown in Figure 2. Since this interface can be eas-
ily integrated within existing applications, it allows
for a seamless collection of question/query/rating
triplets that we plan to make use of in the future as
explained in the next section.

5 Future work

One of the next steps is to make the system avail-
able to real users and study how they would benefit
from using such system. Once the system is de-
ployed, we would also like to investigate the feasi-
bility of using an NMT framework to leverage the
user feedback. Specifically, we would like to fur-
ther improve training data generation and create
robust sequence to sequence models so that both
novice and expert users can perform their work in
a proficient manner. Also, we would like to sup-
port additional input languages, including the pos-
sibility to generate natural language descriptions
of queries entered by expert users. Additional fu-
ture work also includes a better handling of spe-
cific query conditions (e.g. NOT) that are not cur-
rently covered by our rules, thus requiring addi-
tional user input.
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