
To appear in IEEE Transactions on Visualization and Computer Graphics

VIGOR: Interactive Visual Exploration of Graph Query Results

Robert Pienta, Fred Hohman, Alex Endert, Acar Tamersoy,
Kevin Roundy, Chris Gates, Shamkant Navathe, Duen Horng Chau

Fig. 1. A screenshot of VIGOR showing an analyst exploring a DBLP co-authorship network, looking for researchers who have
co-authored papers at the VAST and KDD conferences. (A) The Exemplar View visualizes the query, and (B) the Fusion Graph
shows the induced graph formed by joining all query matches. Picking constant node values (e.g., Shixia) in the Exemplar View filters
the Fusion Graph. (C) Hovering over a node shows its details. (D) The Subgraph Embedding embeds each match as a point in
lower-dimensional space and clusters them to allow analysts to see patterns and outliers. (E) The Feature Explorer summarizes each
cluster’s feature distributions.

Abstract—
Finding patterns in graphs has become a vital challenge in many domains from biological systems, network security, to finance
(e.g., finding money laundering rings of bankers and business owners). While there is significant interest in graph databases and
querying techniques, less research has focused on helping analysts make sense of underlying patterns within a group of subgraph
results. Visualizing graph query results is challenging, requiring effective summarization of a large number of subgraphs, each having
potentially shared node-values, rich node features, and flexible structure across queries. We present VIGOR, a novel interactive visual
analytics system, for exploring and making sense of query results. VIGOR uses multiple coordinated views, leveraging different data
representations and organizations to streamline analysts sensemaking process. VIGOR contributes: (1) an exemplar-based interaction
technique, where an analyst starts with a specific result and relaxes constraints to find other similar results or starts with only the
structure (i.e., without node value constraints), and adds constraints to narrow in on specific results; and (2) a novel feature-aware
subgraph result summarization. Through a collaboration with Symantec, we demonstrate how VIGOR helps tackle real-world problems
through the discovery of security blindspots in a cybersecurity dataset with over 11,000 incidents. We also evaluate VIGOR with a
within-subjects study, demonstrating VIGOR’s ease of use over a leading graph database management system, and its ability to help
analysts understand their results at higher speed and make fewer errors.

Index Terms—graph querying, subgraph results, query result visualization

1 INTRODUCTION

Mining graph patterns, whether suspicious, anomalous, malicious, or
just interesting, has become a critical technology for data analytics. For
example, in financial transaction networks, analysts may want to flag
“near cliques” formed among company insiders who carefully timed
their activities [42]. Or in online auctions, analysts may want to uncover
“near-bipartite cores” formed among fraudsters and their accomplices

• Robert Pienta, Fred Hohman, Alex Endert, Shamkant Navathe, and Duen
Horng Chau are with Georgia Tech. E-mail: {pientars, fredhohman, endert,
sham, polo}@gatech.edu.

• Acar Tamersoy, Kevin Roundy, and Chris Gates are with Symantec Research
Labs. E-mail: {acar tamersoy, kevin roundy, chris gates}@symantec.com.

[29]. While there is significant research interest and development in
graph algorithms, database management systems and even visual graph
query construction techniques [2, 7, 32], much less work has focused
on helping analysts make sense of the graph structure and rich data
that makes up subgraph results. Visualizing graph query results (or
matches) poses significant challenges, because we must effectively
summarize: the underlying data from the nodes, the structure of each
subgraph result, a large number of results, and the potential overlap in
node and edges among results.

In this work, we visualize the resulting subgraphs from exact graph
querying, in which the structure of nodes and edges matches exactly
what the analyst specified in their query. Exact graph querying is used
in many domains, from bioinformatics [39], cybersecurity [29], social

1

network analysis [21], to finance [42].
Most graph mining tasks are considered finished when query results

have been returned; however, for analysts, seeing initial query results is
only the beginning of their sensemaking process. Despite the significant
interest in graph database management systems (DBMSs) and querying
techniques, little investigation has been done in the space of graph query
result visualization and exploration. Contemporary graph querying
systems provide only basic methods for displaying results, often using
tables or long lists (see examples in Figure 2). Given only the table
and list visualizations, it’s a challenge to determine what groupings
of similar results occur or how a particular node value appears among
the results. In the current paradigm, analysts must first find patterns
manually in a table before they can rewrite their original queries to do
any filtering or grouping. This can be tedious and does not promote the
development of an internal representation of the information space [36].

We present a novel visual analytics system, VIGOR, for exploring
and making sense of graph querying results. VIGOR uses multiple
coordinated views, leveraging different data representations and orga-
nizations to streamline analysts’ sensemaking process [18, 34]. The
important contributions of VIGOR include:

• Exemplar-based interactive exploration. VIGOR simultane-
ously supports bottom-up sensemaking [36], where an analyst
starts with a specific result and relaxes constraints to find other
similar results; and top-down sensemaking , where the analyst
start with only the structure (i.e., without node value constraints),
and add constraints to narrow in on specific results (Figure 1A).
VIGOR supports analysts when investigating how many values
are matched to each query-node and how a particular node value
filters the results.

• Novel result summarization through feature-aware subgraph
result embedding and clustering. VIGOR provides analysts
with a top-down, high-level overview of all their results which en-
ables analysts to handle complex grouping and comparison tasks
to make sense of their data [28,36]. We introduce an algorithm to
group results by node-feature and structural result similarity (Fig-
ure 1C) and embed them in a low dimensional representation. By
grouping similar results into clusters and making cluster compari-
son easy, analysts can quickly detect and understand underlying
patterns across their results.

• An integrated system fusing multiple coordinated views.
VIGOR provides multiple brushable linked views to flexibly
explore and make sense of subgraph results, by integrating the Ex-
emplar View, Subgraph Embedding View, and the Fusion Graph.
The Fusion Graph (Figure 1B) shows the subgraph from the un-
derlying network created from combining all the results, in which
very common or uncommon nodes will have high and low degree
respectively. The coordinated views make it easier to see how
nodes appear together across the many subgraph results.

• Real world application to discover cybersecurity blindspots;
advancing the state of the art Through a collaboration with cy-
bersecurity researchers at Symantec, a leading security company,
we present the investigative analysis performed in and insights
gleaned from using VIGOR to discovering and understanding
blindspots in a cybersecurity dataset with over 11,000 real inci-
dents. Through a usability evaluation using real co-authorship
network data obtained from DBLP 1, we demonstrate VIGOR’s
ease of use over Neo4J, a leading graph DBMS, and its ability to
help users understand their results at higher speed and with fewer
errors.

2 INTRODUCING VIGOR

To illustrate how VIGOR works in practice, we will briefly cover an
overview of the system’s components (in Section 2.1) and an illustrative
scenario where we explore co-authorship in a DBLP network.

1DBLP Website: http://dblp.uni-trier.de/

Fig. 2. (A) Neo4j, a commercial system, displays subgraph matches
in a long table. One match with three nodes is shown here, each gray
box describes one nodes’ features. (B) VISAGE [32] displays subgraph
matches in a list, without revealing connections among results. Even for
modest sized queries, these conventional approaches require significant
scrolling, and cannot easily reveal broader patterns and relationships
among matches.

DBLP Dataset. In this paper we utilize a real co-authorship net-
work drawn from a subset of DBLP’s computer science bibliography
data. The undirected, unweighted network contains 59,655 authors,
48,677 papers, 7,236 sessions, 417 proceedings, 21 conferences and
1,634,742 relations from the data mining and information visualization
communities. We will use this network in both the illustrative scenario
(Section 2.2) and in our user study (Section 5.1).

2.1 VIGOR Interface Overview

The VIGOR user interface is composed of four main areas (Figure 1).
The Exemplar View at the top (Figure 1A) visualizes the user’s tex-
tual graph query (entered into the text form at the top of Figure 1)
and supports quick filtering by value. The Fusion Graph (Figure 1B)
displays an induced graph of all the result subgraphs from the query,
quickly demonstrating which nodes appear often and with which other
nodes. The Subgraph Embedding view (Figure 1C) summarizes all the
results by reducing each result into a square, gray glyph and clustering
them (colored, concave clusters) based on feature similarity. Analysts
are free to create, name, and compare their own clusters. Clusters are
compared in the Feature Explorer view (Figure 1E), which provides
summary distributions of each node type included in the results. The
goal of the VIGOR interface is to enable analysts to detect underlying
patterns in their result set as well as explore individual values with as
little tedium as possible. The synergy of these techniques across our
three views enables analysts to explore their query results with ease.

2.2 Illustrative Usage Scenario

We demonstrate how VIGOR works with an illustrative example ex-
ploring a cross-conference co-authorship query. Imagine an analyst,
Alexis, is interested in finding authors and papers that bridge the in-
formation visualization and data mining communities. This scenario
demonstrates some of the interactions and major features in VIGOR.

Because Alexis wants to learn about papers, conferences, and au-
thors, she begins with a query looking for an author who has pub-
lished two papers with a co-author, where the papers were published

Fig. 3. Exemplar View displaying a query seeking researchers who have
coauthored papers at two different conferences. (A) The analyst starts
with only the structure of the graph query, then incrementally adds node
value constraints to narrow in on specific results, (B) first by choosing
KDD, which (C) narrows down the remaining choices for authors.

2

http://dblp.uni-trier.de/

To appear in IEEE Transactions on Visualization and Computer Graphics

Fig. 4. The Subgraph Embedding provides an overview of the results
through the feature-aware subgraph embedding, where results are dis-
played as points in two dimensions based on node feature similarity. We
see the clustered results of a query seeking two co-authors of two papers
at VAST and another conference (shown in Figure 3). Nearby clusters
(A) and (B) both contain VAST and KDD papers, the features of which
are compared in Figure 6. Cluster labels are customized by the analyst
during exploration.

to VAST and another conference. In VIGOR, Alexis starts by enter-
ing a query written in the Cypher query language from the popular
Neo4j (http://neo4j.com) DBMS. Her query appears graphically in our
Exemplar View, where she verifies that she correctly specified the right
structure (Figure 3A).

Alexis has just begun her investigation and she wants to see an
overview of her results. She gets over 2,500 results, each with six nodes
(from the previously mentioned query), wherein some nodes could be
shared among multiple results. She wants a high level overview of her
results that allows her to see similarities and groupings.

VIGOR’s Subgraph Embedding view provides an overview of all
her results in the form of a plot with clusters. Similar subgraph results
(gray squares in Figure 4) are placed spatially close together by the
feature-aware subgraph result embedding and clustering (Section 4).
To help her differentiate among groups, VIGOR uses a density-based
clustering technique [22] to detect clusters and automatically creates
colored concave hulls for each. Alexis has the option to adjust the
embedding and clustering parameters. She may also create and name
her own clusters by lassoing groups of points (Figure 5A-C).

She shift-right-clicks two neighboring clusters (Figure 4A and 4B) to
compare them in the Feature Explorer (Figure 6). The Feature Explorer
shows common node values and feature distributions for each node
type included in the clusters, similar to [35, 41]. The color of the plots
in the Feature Explorer correspond to the colors of the selected clusters.
She can use the value-plots (bar charts in Figure 6) to see what nodes
appear most commonly in a cluster. Alexis labels the clusters based
on their most common conferences (e.g., “VAST & UIST” in Figure
4). She notices that both clusters are composed of authors and their
publications at VAST and KDD, a top tier data mining conference.
From the author feature distributions in the Feature Explorer (Figure

Fig. 5. (A) Starting from a group of results, (B) an analyst lassos the
desired results. (C) A concave hull is established forming a cluster with
the points. Cluster can be used to: filter the Fusion Graph and compare
features and node values in the Feature Explorer.

Fig. 6. The Feature Explorer shows common node values and feature
distributions for each node type included in two clusters (A and B in
Figure 4). The features for each node type in the Fusion Graph view are
summarized as distribution charts. The bar chats show the top-k most
common values, including those shared between the selected clusters.

6-left) she discovers that the gray cluster (cluster B) is likely to contain
more senior researchers, because they have higher paper counts, more
distinct conferences and greater numbers of co-authors. Her curiosity
grows as she wonders what types of papers bridge these two research
communities.

After her initial query, Alexis is faced with numerous results, but
she wants to find specific authors and papers. What should she do
next? She can quickly filter down results by values with which she’s
comfortable by clicking one of the yellow conference nodes in the
Exemplar View window, which displays a searchable dropdown menu
with the matching conferences (Figure 3B). She selects KDD. When
she clicks on an author node in Figure 3A, the dropdown now contains
only those authors who have published together at VAST and KDD.
From the list she recognizes Shixia Liu, a VAST’17 Paper Chair, and
selects her (Figure 3C).

Alexis’ selection in the Exemplar View filters the Fusion Graph
(Figure 7), a force-directed graph induced by joining all subgraph
matches together (e.g., if a conference is shared among several results,
it will appear only once). The Fusion Graph now shows only Shixia
Liu’s co-authors on at least one paper with her from VAST and one
from KDD (e.g., Michelle, Furu, Li, Xiting, and Baining in Figure 7).
Alexis discovers that each paper is related to understanding textual data
and is potentially valuable to her future research. She is inspired by
the combination of the speed, scale, and automation of data mining
being combined with the visual, interaction design, and sensemaking
of visualization.

Fig. 7. Shixia Liu’s papers and co-authors who have published papers
together at VAST and KDD. The Fusion Graph view shows an induced
subgraph of all the combined results from the original query, which can
be filtered from either the Subgraph Embedding or the Exemplar View.

3

http://neo4j.com

3 CORE DESIGN RATIONALE

Below, we present the core facets of VIGOR’s design and discuss how
they support sensemaking for query results.

3.1 Leveraging Examples: Bottom-Up Exploration
Starting with low level details is often referred to as a bottom-up sense-
making [31, 36]. Starting from a known example can greatly improve
the development and understanding of a query [49]. We designed the
Exemplar View (Figure 3) to provide the following: (1) an arrangeable
visualization of the typed input query for fast error-checking; (2) easily
accessible information on how many values a particular node from the
query finds in the results (e.g., does an author node in a query match to
only 3 authors or 3,000?); (3) the ability to start from a familiar result
and relax constraints to find other results; and (4) a fast mechanism to
add node value constraints to filter down the number of results.

At every step of relaxation in (2) or filtering in (3), the analyst
sees real-time updates (in dropdowns in the Exemplar View and as
filtering in the Fusion Graph) as the number of possible results changes.
Conversely, if the analyst adds new node value constraints

3.2 A View From Above: Top-Down Exploration
High level overviews, like the Subgraph Embedding (see Figure 4),
have proven useful in visualization models for sensemaking in other
datasets [28, 31]. An overview of subgraph results is challenging,
because: the number of subgraphs is large, the subgraphs may share
nodes and edges, and each subgraph is made of multiple nodes that
each have separate (and often very different) features.

To overcome these challenges we represent each result as a square
glyph (to differentiate from the circles used for nodes) rather than nodes
and edges, to simplify plotting. The Subgraph Embedding has the
strengths of a scatterplot (including concave hulls around clusters) of
all the results based on their nodes’ features. The Subgraph Embedding
allows zooming, panning, jitter, and fine-grain control over embedding
and clustering. We group similar results with concave hulls, because
there are many cases in which convex hulls overlap unnecessarily. New
clusters can be freely created using a freeform lasso tool. Similar
results are plotted close to each other and often form clusters as in [45].
The details of our graph embedding algorithm are discussed further in
Section 4.

3.3 Feature-centric Sensemaking for Result Clusters
Typically, when an analyst poses a query they have constrained only
some of the potential features of their results; the remaining features
are free to vary and often form patterns. Feature distributions [41] and
node-feature distributions [35] have proven a valuable way to compare
results. To compare these features, we created the Feature Explorer
(Figure 6), which provides node feature and value distributions by node
type for a cluster. The lasso can be used to create new clusters, even
from within other clusters or combining them. Multiple clusters can be
compared at once by selecting them in the Subgraph Embedding.

3.4 Coordination in Multiple Views
VIGOR utilizes linked highlighting and filtering so that changes made
in one view are reflected in the others. The Exemplar View highlights
the Subgraph Embedding and filters or highlights the Fusion Graph
based on node-value constraints. Clicking squares or clusters in the
Subgraph Embedding: allows the selection an exemplar result in Ex-
emplar View for bottom-up exploration, filtering or highlighting the
Fusion Graph, and allows for the selection of different clusters in the
Feature Explorer. Hover over a node in the Fusion Graph: highlights
the node’s neighbors and the results containing that node in the Sub-
graph Embedding. An analyst can choose to filter or highlight the
Fusion Graph with the Exemplar View and Subgraph Embedding, with
filtering the default.

4 METHODOLOGY & ARCHITECTURE

In the following section we outline our novel feature-aware, subgraph-
result embedding for reducing subgraph-results to 2D points. While

dimensionality reduction is common in other areas of visualization,
visualizing graph query results has seen significantly less advancement.
Dimensionally reducing subgraphs requires: (1) a graph embedding
to turn each subgraph into a high-dimensional vector and (2) distance-
preserving reduction techniques to reduce the dimensionality of each
subgraph, without losing underlying similarities. We combine both
structural features from the network topology as well as features from
the nodes. Often some nodes may have missing values or different
types making

4.1 Embedding Subgraphs
For our embedding, we utilize both network topology features as well
as the rich domain features from our nodes. The embedding pipeline
takes four stages from result set to low-dimensional representation. The
steps of the pipeline are (see Figure 8):

• Extract Features - Calculate the topological- and node-features.

• Vectorize - Merge the common features into per-result vectors.

• Aggregate & Normalize into Signature - Reduce the large input
vectors into uniform signatures.

• Reduce & Cluster - Reduce the signatures using dimensionality
reduction to fit them into 2D.

Our Subgraph Embedding reduces query results (each is a subgraph)
into points via a subgraph embedding for visual results similar to [45];
however, our approach differs in several key areas outlined below.

Extract Features We use both the node-features fs and a small
set of topologically extracted features ft as inputs to our embedding
(Figure 8A and 8B). There are many different ways to extract features
from a graph. We started with the structural features from [45] and
NetSimile, [4], for structural features. Based on our experiments using
structural features alone is insufficient in our case. Often our subgraph
results have significantly fewer nodes than both previous approaches
and have exactly the same network structure. Because of the identical
structure of our subgraphs the embedding from [4] will project all the
results into a single point.

We integrate some of the novel features from NetSimile, but leave
several out as they did not perform well on our induced subgraphs.
Unlike both approaches we make use of the node features from the
results themselves in our embedding. This means that different nodes
with similar features will be closer to each other, increasing the chances
of semantically meaningful and explainable clusters. In the case of
real world data nodes may be missing values, which makes a purely
feature-driven comparison between results imbalanced (as some results
may have features that others do not). We address this problem by
converting the raw features to fixed-length signatures, which we cover
in the Aggregate & Normalize into Signatures subsection. Which
node features to use are chosen by the analyst in a network schema
configuration done once during VIGOR setup.

Assume we have received k results, where each result is composed
of n nodes. For just the structural features we look at each result in
the context of the original network and extract subgraph neighborhood
and egonet information from the underlying graph. An egonet of a
node, i, is the neighbors of i, the edges to these neighbors and all the
edges among neighbors. This performs significantly better for small
queries by structurally differentiating them based on their place in the
underlying data. The most effective structural features are:

• Node degree - or the number of neighbors
di = |N(i)|

where N(i) is the set of neighboring nodes of node i.

• Egonet edges - the sum of inter-neighbor edges of node i

E(ego(i)) = ∑
j∈N(i)

 ∑
e jk∈E(j)

δik

 ,

δ (ik) =

{
1 if k ∈ N(i)
0 if k /∈ N(i)

,

where e j,k ∈ E(j) are the edges at node j to node k.

4

To appear in IEEE Transactions on Visualization and Computer Graphics

fs,1 fs,2 f s,...
...

f d fs,2 fs,2

Node Features Structural Features

...
...

...

Structural
Features

Node
Features

Arrange values by feature over result

R1

f ()
mean

fskew()
fkurtosis()

f ()
var

fs,1

fd

Repeat for each
feature vector

R1
R1

R2

R1

R2

Rk

R1

R1 ...

Unvravel

R2 ...

............

......
Dimensionality Reduction

Spatial
Clustering

R 1
2

k

...

Results Feature Extraction Vectorize

Aggregate to Signature Reduce & Cluster

High Dimensional Embedding

Stack

A B C

D E

Fig. 8. Given a set of k results (A), we first extract topological features (B) from the neighborhood around each result in the underlying graph, which
are combined with features from each node in the result. Next the values are rearranged by feature (C). These feature sub-vectors are run through
the moment of distribution functions (mean, variance, skewness, and kurtosis), which collapse the original sub-vectors of different lengths into
new uniform-length vectors (D), each is unraveled into a signature for the result, which are unit-normalized and dimensionally reduced (E). The
low-dimensional space is clustered before the results are presented (E).

• Egonet neighboring nodes - the total number of neighbors across
all the neighbors

|N(ego(i))|=

∣∣∣∣∣∣ ⋃j∈N(i)

N(j)

∣∣∣∣∣∣ ,
• Clustering coefficient - the fraction of closed triples over total

triples from the neighbors of node i

ci =
2|e jk ∈ E(i) : j,k ∈ N(i)|
|N(i)| · (|N(i)|−1)

,

Vectorize Each node of a result now has the four structural features
from above and any non-text features from the nodes themselves (e.g.,
for an author node in our DBLP graph, we have additional features like
the number of coauthors, number of conferences, etc.). This creates
an issue, both because a result has k different feature vectors and also
the different types of nodes in the result will have different lengths of
features (see Figure 8C). The first problem we solve by vectorizing the
features per result. We merge common features across the nodes into a
single vector per feature for each result (Figure 8B).

Aggregate & Normalize To solve the issue of uneven lengths
of the per-result feature vectors we convert them into a signature (see
Figure 8D). We aggregate each vector down to a fixed number of values
such that the signatures are all the same length. We utilize the moments
of distributions to reduce the feature vectors into a fixed length signature.
We use the first 4 moments: mean, variance, skewness, and kurtosis. For
robustness we cannot use the mean and variance alone, because both
structural features and node-features may not be normally distributed.
The skew moment measures the lopsidedness of a distribution while
the kurtosis gives a measure of how heavy the tail of the distribution
is. We perform these for each feature vector per result and wrap them
into a single array, yielding a new signature of length 4 · (| fs|+ | ft |),
where fs and ft are the sets of features from the nodes and the structure
respectively.

Reduce & Cluster We then perform dimensionality reduction
to reduce the dimensions to two (see Figure 8E). There are many
dimensionality reduction techniques both linear and nonlinear. We

default to Principle Component Analysis (PCA) [19], but allow the
analyst to choose among kernel-PCA [38], multidimensional scaling
(MDS) [23], and t-Distributed Stochastic Neighbor Embedding (t-SNE)
[25]. We chose to offer PCA first due to its fast performance and simple
linear nature.

Both MDS and t-SNE allow arbitrary distance functions rather than
the Euclidean distance. For both MDS and t-SNE we compute the
Canberra distance (or weighted L1 Manhattan distance) [24] rather than
the Euclidean distance. We chose Canberra because it is sensitive to
small changes near zero, which helps preserves small distances in the
final reduction. It has also performed well on real datasets [15].

We perform clustering on the dimensionally reduced points (see
Figure 8E). There are many density-based clustering algorithms like
DBSCAN [37] or OPTICS [22]. We use OPTICS to perform our
density-based clustering, because it performs better on clusters with
different densities [22]. Because the choice of ε greatly affects the
resulting clusters, we allow the user to adjust the value via a slider. The
cluster information in encoded as colors in the Subgraph Embedding.

4.2 Architecture

VIGOR uses a client-server architecture using D3 and jQuery for the
front-end and python for the back-end. The network data are stored
using the popular Neo4j graph database. We chose Neo4j for its cross-
platform support, robust querying language, and its scalability to large
graph datasets. One of our goals is to offer VIGOR as a flexible
sensemaking tool that works on a wide variety of network datasets. Our
design separates the underlying network schema from the system, so
that VIGOR can easily by used on different network data.

Performance VIGOR is a practical working prototype analytical
system; the queries shown in this paper are all returned within 1-2
seconds. We achieve this performance through Neo4j indices and asyn-
chronous computation of dimensionality reductions. Because the dif-
ferent dimensionality reductions techniques have significantly different
run times, we return PCA (the fastest) first to maintain the interactivity
of the system and subsequently return the others in the background.

5

5 EVALUATION

We performed a two-part user evaluation of VIGOR (Section 5.1).
In the first part, we compare VIGOR against Neo4j, a leading graph
DMBS. Neo4j is an industry leader among the few free systems that
visualize graph query results. In the second part, we performed a think-
aloud investigation of the Subgraph Embedding, because there is no
analog in Neo4j against which to compare.

To study how VIGOR can help with solving real-world problems,
we collaborated with three security researchers at Symantec2, the lead-
ing security company, to identify blindspots in the understanding of
critical security incidents. In Section 5.2, we present the investigative
analysis performed and insights gleaned from using VIGOR on an
cybersecurity incident-network.

The details of the analyzed graphs are outlined in Table 1.

Network Type Node Edges Node Types

DBLP 115,989 1,543,792 5
Cybersecurity 17,651 384,172 3

Table 1. Graph datasets used for evaluation: DBLP dataset for user
study; cybersecurity dataset for real-world application to discover security
blindspots.

5.1 User Study

To evaluate VIGOR, we conducted a user study to assess how well
our new visualization techniques compare to the current state-of-the-art
Neo4j interface. Previous research has focused on how analysts can
visually construct queries [7, 32, 49]; however, our research focuses
on how well analysts can make sense of and solve tasks given a set
of query results. We chose a DBLP co-authorship graph, because the
concepts are relatively simple and accessible to non-expert participants.

Our protocol has two parts: (I) comparative tasks, (II) a think-aloud
exploration study. In Part I, we measured the number of errors and time
taken solving a set of tasks for both VIGOR and Neo4j. In Part II, we
asked participants to perform some open-ended exploration objectives
after giving them a tutorial on the think-aloud protocol.

5.1.1 Participant Demographics

We recruited a total of 12 participants via our institutions local mailing
lists. They ranged in age from 21 to 31, with 25 as the average. Of
the participants, 7 were female, while the rest were male. Each study
lasted on average 70 minutes, for which the participants were each paid
$10 for their time.

5.1.2 Protocol

We utilized a within-subjects experimental design with two systems
(VIGOR and Neo4j) and two task sets. Each system was tested with
one of two sets of tasks (see the subsequent Task section). Participants
completed the first set of tasks with the first system and the remaining
task set with the second system. System order was counterbalanced to
ensure experimental fairness. Task sets were also counterbalanced for
fairness.

Participants were given an introduction to the dataset and tutorials of
each system before being given the tasks. We encouraged participants
to ask questions at any time during the study, but especially during the
introductory period. For Neo4j we created an interactive Neo4j tutorial
tailored to our dataset and instructed participants on Neo4j’s interface
and its features. For VIGOR we provided an interactive tutorial of the
interface, how to filter results, and how to interact with our views.

Once a participant had completed tutorial for their current system,
we provided them with context in the form of a scenario based around
each query; participants were not asked to write queries. We then
instructed them to work quickly and accurately on each task. Each
task was allotted five minutes and was timed separately. Participants
could only move onto the next task once they had completed the current

2We invited our Symantec collaborators to join as coauthors of this work.

Author Paper Conference

Daniel Keim

Author 1

Paper
Author 2KDD

Conference
>= 2015

Author 1 Paper 1 INFOVIS

Author 2

Conference

Paper 2
KDD

Conference

Author 1

Paper
Author 2INFOVIS

Conference

Task 1

Task 2

Task 3

Task 4

Find the number of papers
Daniel Keim has published at
ICDM.

Find all authors from 2015 or
later at KDD, that have
published at least two papers
with 'entity' in the name.

List the distinct number of
INFOVIS publication groups that
Tobias Shreck is in.

For co-authors with a paper at
INFOVIS and another at KDD,
find the author with the most
distinct papers.

Query Objective

Fig. 9. VIGOR user study comparative tasks. These tasks were provided
to create the result sets used in Part I of our user study. Both task sets
utilized the same query topologies, but different values, carefully selected
to have the same number of results.

one, or if time ran out. Incorrect answers were recorded for each task,
including if they ran out of time before answering.

Once a participant had completed all the tasks with a system, they
would repeat the same process with the next system (including the
system demonstration). Participants were not informed which system,
if either, was developed by the examiner. After a participant had
completed both comparative tasks, we asked them to complete Part II,
the think-aloud exploration study. At the end of the study, participants
completed a questionnaire that asked for subjective impressions about
each software system.

5.1.3 Part I: Comparative Study
Tasks Our interest was in testing the speed of solving simple tasks

with a collection of results rather than the speed of writing queries. For
each task the participant was provided a short scenario and a pre-written
query. The patterns for the tasks were based on common patterns and
motifs from prior graph mining research [14, 21, 33]. The tasks from
Task Set A (shown in Figure 9) are:

1. Find the count of ICDM conference papers by Daniel Keim in our
dataset.

2. From the last two years of KDD publications, find and list the
authors who are on more than one paper with “entity” in the name.

3. Find the number of distinct groups of researchers that Tobias
Shreck is in from INFOVIS publications.

4. Among coauthors of at least two papers together at INFOVIS and
KDD, who has the most publications.

The tasks approximately increased in difficulty from 1 through 5. We
ranked the difficulty of each task based on the number of nodes, edges,
complexity of the query, and size of the results. Our initial intuition
was that Neo4j and VIGOR would achieve similar performance for the
easier early tasks, while VIGOR would be faster for harder queries.

Error rate and task completion time were the dependent measures.
Both measures could be affected by: (1) Software (VIGOR or Neo4j);
(2) Task Set (Set A or Set B); (3) Software Order (VIGOR or Neo4j
going first). Because of the within-subjects design we utilized a Latin
Square design randomizing each participant into one of four groups
where we counterbalanced the possible confounding factors (e.g., one
group is (VIGOR + Task Set A) then (Neo4j + Task Set B)).

6

To appear in IEEE Transactions on Visualization and Computer Graphics

0 150 300

Task 1

Task 2

Task 3

Task 4

0.0 0.5 1.0 1.5 2.0

(Shorter is better) (Shorter is better)

User Study Results for VIGOR & Neo4j

Average # of ErrorsAverage Task Time (s)

Fig. 10. Average task completion times and error rates for VIGOR
(yellow) and Neo4j (gray). VIGOR is statistically significantly faster
across all tasks. Error bars represent 95% confidence interval.

Quantitative Results We analyzed task completion times usinng
mixed-model analysis of variance (ANOVA) with fixed effects for soft-
ware, software order, task set, and a random effect across participants.
Mixed-model ANOVA improves over conventional ANOVA as errors
are calculated per-subject.

Our task completion times were measured over all combinations of
software order and task set. The experiment was successful as the only
statistically significant effect was from software system. Figure 10-left
demonstrates the average time per task in our study. The software
effect was significant for each task: task 1 (F1,11 = 29.79, p < 0.0003),
task 2 (F1,11 = 41.02, p < 0.0001), task 3 (F1,11 = 33.68, p < 0.0002), task 4
(F1,11 = 23.89, p < 0.0006). Only task 3 (F1,11 = 12.27, p < 0.0057), and task 4
(F1,11 = 19.6, p < 0.0013), had statistically significant error rates. This is
expected as the error rates for the first tasks were very low. The second
task in Task Set A came close to significance with (p < .048), likely
arising from slightly higher number of edges in the induced subgraph
than in Task Set B. Participants were both significantly faster and less
prone to error with VIGOR versus Neo4j.

Subjective Results At the end of the study we asked participants
to rate various aspects comparing both systems using Likert scales. Par-
ticipants felt that VIGOR was better than Neo4j for all 7 aspects asked
(Figure 11). One participants stated, “I enjoyed the clustering features
of VIGOR, allowing the user to quickly compare variables (Year, etc.)
about any possible combinations of groups.”. The participants enjoyed
using VIGOR more than a Neo4j and reported that our system was:
easier to learn, easier to use, and more likeable overall; although this is
a common experimental effect, we find the results encouraging.

5.1.4 Part II: Think-aloud Exploration Study
After the comparative tasks were completed, all participants were asked
to perform a think-aloud exploration study. We chose to separate this
part of the study from Neo4j as it tests new features that are not present
in Neo4j’s interface. This part of the study was not timed.

Our goals for the think-aloud study were:
• Feature interactions: were our features were working well to-

gether, and whether VIGOR met their basic exploration needs.

• Identify usability issues: were features usable and if they coor-
dinated in beneficial ways during their exploration.

• Feature application: what techniques participants would use
with VIGOR and whether its functionality would help streamline
their analytics workflow.

High-level Objectives We provided participants with a pair of
scenarios and high-level objectives to complete. We asked participants
to imagine themselves as researchers interested in:

1. the features from all papers by Jiawei Han or Christos Faloutsos
at PKDD and SIGMOD; and

2. understanding the outlier results (results distant from a cluster) for
co-authors of papers at VAST and KDD or INFOVIS and KDD.

0

2

4

6

8

10

12

Easier to
learn

Easier to
use

More
accurate

Faster More
enjoyable

More
liked

More likely
to use
in future

VIGOR Neo4j The Same
Which Software Seemed...

#
of

Pa
rt
ic
ip
an
ts

Fig. 11. Participants were asked to qualitatively compare each system
at the end of each trial. Overall, they felt that VIGOR was better than
Neo4j in all of the 7 aspects asked.

We provided the queries for both tasks. Participants were free to use
any features of VIGOR and ask questions during the objectives. We
chose the above objectives, because they are common in graph analysis
[10, 26].

Key Observations During the first objective, 6 participants began
their exploration by searching for PKDD and SIGMOD using the
Exemplar View to find the conferences. Another 4 of the participants
went directly to using the Fusion Graph to highlight results in the
Subgraph Embedding by hovering over specific conferences. The
remaining 2 participants used the Feature Explorer’s conference type to
investigate which clusters contained PKDD and SIGMOD conferences.
For 4 of the 12 subjects they had considerable difficulty with their
first few lassoing attempts, often completely missing the desired nodes.
Only 2 participants failed to adequately complete the objective.

In the second objective, 10 participants started by creating new clus-
ters by lassoing groups of outliers to compare them against the existing
clusters. The remaining 2 used the Fusion Graph to highlight results
in the Subgraph Embedding for particular nodes. Of 12 participants
3 reported that they had not found any satisfactory explanations for
outliers, while the remaining 9 either found specific papers or features
not present in the cluster. One participant correctly commented that
several of the outliers arise from single-author papers, because multi-
author papers have a higher chance of being repeated across the results
(and therefore have a higher chance of being similar to other results).
Overall participants performed very well using the coordinated views
in VIGOR.

5.1.5 Discussion and Limitations
The qualitative and quantitative results of our user study were posi-
tive. The results suggest that VIGOR provides useful and effective
visual techniques for analyzing and making sense of graph query results.
VIGOR achieves this improved performance through: (1) streamlining
the filtering process to allow users to quickly narrow down by a par-
ticular author (Task 3), or by a particular term in papers (Task 2); (2)
the flexibility and customization of the Fusion Graph graph layout (all
Tasks); and (3) the Subgraph Embedding, which makes grouping and
comparing the results easy (Part II).

While Neo4j is an industry leader, we found two specific design-
choices (based on participant feedback) that limited performance with
Neo4j: (1) the default edge-autocomplete, add any underlying edge
from the network (regardless of its inclusion in the query); and (2) the
instability of the force directed layout positions during node dragging.

We did not evaluate query creation and modification. Our study did
not evaluate query creation and refinement; participants were given
the query that corresponds to a scenario investigating co-authorship,
which may not be the most natural query that they would like to create.
If we allowed participants to create ad hoc task queries, the immense
variety of possible queries would make the evaluation extremely diffi-
cult. Moreover, query refinement, a challenge that would add additional
confounding factors to the study, would also require participants to
have more prior knowledge [32]. Even the queries provided were chal-
lenging to many participants, as demonstrated by the high error rates in

7

Company

Incident

Company

Incident

SignatureSignature

Severe

Active Passive

Severe
Took no actionResolved

Company

Incident

Signature

Severe

Active

Took no action

Incident
Severe
Resolved

A B

Fig. 12. Example queries from our exploration of cybersecurity blindspots.
Query A reveals companies ignoring critical security incidents that their
peers resolve, whereas Query B extracts companies responding incon-
sistently to critical security incidents.

Task 4.
We were pleasantly surprised to see that participants were able to

use and compare features using the cluster-based distributions in the
Feature Explorer (Figure 6) and that they could use when comparing
more than two clusters.

While our evaluation was very positive, the real-world scenarios and
initial queries of analysts would be ad hoc. We plan to study this case
and better understand how VIGOR can handle tasks in less planned
situations. For example, how would analysts utilize the Subgraph
Embedding for significantly different domains, transportation networks,
intelligence, bioinformatics?

5.2 Real World Application: Discovering Cybersecurity
Blindspots

We collaborated with three security researchers from Symantec to iden-
tify blindspots in their company company’s understanding of critical
security incidents. They see strong potential in VIGOR to help them
educate their company customers about these weak points in their
response to dangerous security situations. We used VIGOR in the
following ways to identify company blindspots and bring them into
focus: (1) we contrasted companies that tend to ignore critical security
incidents with peers that face the same types of incidents but exhibit
exemplary incident response (see Figure 12A), and (2) we highlighted
instances in which companies do not respond consistently to critical
security incidents such as vulnerability scans and malware outbreaks
(see Figure 12B).

Symantec Cybersecurity Network To pose these types of
queries, we created a cybersecurity network composed of Company
nodes (orange), Incident nodes (red) and Signature nodes (blue). In
total, this network of security data contains 17,651 nodes and 384,182
edges. All of these entities correspond to real world events and repre-
sent the detection of and actions taken against various security threats.
Companies are linked to the security incidents that were detected on
their systems, and each incident is in turn linked to the signatures that
were responsible for triggering it. Signatures that are responsible for
the creation of security incidents are designated as “Active Signatures”
that typically identify glaring security issues, such as malicious network
traffic and computer viruses. Security products also define “Passive
Signatures”, whose primary purpose is to provide contextual informa-
tion about such things as login behavior and other system or network
events. The active signatures trigger security incidents of various levels
of severity, of which critical incidents are the most important, and are
the basis of the incidents used in case study, as they should be met with
immediate investigation and resolution, but frequently are not.

Query 1 - Comparing Company Incident Behavior Our first
query (see Figure 12A) identifies pairs of companies faced with critical
security incidents that consist of at least one active and one passive
signature, such that one company resolved its incident while the other
company ignored it. By posing this VIGOR query and examining
its results (ref. Figure 13), we identify a company’s (Company 7)
blindspots in a way that simultaneously provides interactive graphical
evidence that another company (Company 16) is faced with similar
security incidents and takes them seriously. The results of this query can
also be used as an educational tool and shared directly with companies
as evidence of their most glaring blindspots. Doing so helps companies

Fig. 13. Results of our first blindspot detection query (see Figure 12A).
VIGOR identifies Company 7’s blindspots with evidence that Company
16 is faced with similar security incidents and takes them seriously.

re-evaluate and react differently to future instances of incidents that
they would have otherwise continued to ignore.

Query 2 - Inconsistent Company Threat-Reactions Of simi-
larly concern are situations in which a company reacts inconsistently to
the same type of security incident. By posing the query of Figure 12B,
we identify incidents that companies respond to inconsistently. This
query provides a company with the ability to identify blindspots at the
finer-grained level of its individual incident responders, some of which
may understand the perils of a particular type of security incident much
better than others do. Example results are shown in Figures 14A and
14B. In both cases, VIGOR identifies malware outbreaks that were
not fully eradicated. Further outbreaks of the malware are likely in
both cases. The malware of Figure 14A could be spreading by means
of the unmitigated unauthorized internal vulnerability scans that hap-
pened in a similar timeframe. Similarly, internal machines still infected
by the trojan malware of Figure 14B could be used by an attacker
to re-establish a firm foothold within the targeted company since the
compromised machines were not all cleaned. An additional benefit of
this VIGOR query and visualization is that it functions very well as
a progress checker after a major security issue, allowing companies
to track their progress as they work to ensure that malware outbreak
are fully eradicated from the environment. Finally, Figure 14A and
14B both highlight the way in which the Feature Embedding is able
to cluster related security blindspots in two dimensions for efficient
perusal.

6 RELATED WORK

Graph Visualization and Query Languages Visualizing graphs
is a challenging topic that has attracted significant research interest and
motivated the development of many tools and techniques. Herman et
al. [16] conducted an extensive survey of much of the foundational work.
More recently developed techniques for static graph visualization have
been covered in [47] and for dynamic graphs in [3]. Graph sensemaking
and interaction have grown in popularity [31]. Our work extends this
large body of research by providing a visual approach to graph query
result understanding and exploration.

Query By Example [49], is an early bottom-up querying system
allows users to formulate queries by creating templates from “example
queries” rather than writing conventional SQL statements. Another
key innovation is to abstract the exact underlying data schema away
from analysts as in PICASSO [20], which uses visual glyphs to create
visual database queries. Both [1] and [40] avoid complex data schemas

8

To appear in IEEE Transactions on Visualization and Computer Graphics

Fig. 14. Results of our second blindspot detection query (see Figure
12B). VIGOR identifies companies that respond inconsistently to critical
malware-related security incidents, while majority of the incidents are
resolved (circled in green), some received no action (circled in red).

in favor of graphical widgets. For a further detail of visual querying
languages on relational databases see [8]. Data storage techniques like
the extensible markup language (XML) and resource description frame-
work (RDF) have spurred other querying languages like XQUERY [6],
XPATH [12], SPARQL [30]. Both [9] and [27] propose graphical
querying languages for XML, while Hogenboom et. al propose one
for RDF data [17]. Our work builds on visual querying by using visual
metaphors for both the query and the results.

Graph Querying and Graph Databases Algorithmically deter-
mining if a given subgraph exists within another graph is referred to as
the subgraph isomorphism problem and is NP-Complete [13]. Tong et
al. proposed to use random walk with restart probabilities to heuristi-
cally score approximate matches in G-Ray [44]. The MAGE algorithm
follows a similar heuristic and supports a much wider set of possible
input queries [33]. Tian et al. utilize approximation indices to provide
real-time approximations to a user specified query [43]. While we use
Neo4j as our underlying database, most graph matching frameworks
work with the ideas we propose in this paper.

Visual Graph Querying There are a few recent visual graph query-
ing systems, many focus on the construction of queries rather than the
presentation of results. GRAPHITE [11], allows users to visually con-
struct a graph query over categorically attributed graphs. VOGUE [5],
is a query processing system with a visual interface that interleaves
visual query construction and processing. Cao et al. created g-Miner,
an interactive multivariate graph mining tool that supports template
matching and pattern querying [7]. VISAGE [32], is another graph
querying tool which guides the user using graph-autocomplete, or pre-
fetched results to help guide analysts towards results. GRAPHITE,
VOGUE, and VISAGE all use lists to present the results to the user
and focus considerably less on the result visualization than the query
formulation. Our work aims to fulfill this gap in the current research, by
proposing new methods to summarize and explore graph query results.

Summarizing Graphs, Kernels and Embeddings Another line
of research focuses on “summarizing” graphs. Koutra et al. [21] pro-
pose VoG, which constructs a vocabulary of subgraph-types like stars
and cliques to simplify visualization. Dunne and Shneiderman [14]

present motif simplification, wherein common patterns or motifs are
replaced with easily understandable glyphs (e.g. fans and cliques),
which was subsequently applied to biological networks in MAVisto [39].
Rather than replacing structural elements, graph kernels and embed-
dings allow graphs to be converted in the vectors and scalars. There are
numerous types of graph kernels and kernel similarity methods [46].
Both [48] and [46] use the structure to create the embedding while
NetSimile, [4], uses extracted features. Van den Elzen et al. used
graph embedding to plot the changes in dynamic graph snapshots over
time [45]. We draw on some of these ideas in our Embedded Results
view to collapse each result down to a point, the details of which will
be discussed in the Methodology & Architecture section.

7 DISCUSSION AND FUTURE WORK

When implementing visual graph querying systems, we must grapple
with two different scalability concerns; the visual and the computa-
tional. The visual scalability of our system is primarily limited by the
Fusion Graph, which quickly accumulates large numbers of nodes and
edges. By using the Exemplar View, and the Subgraph Embedding,
analysts can quickly filter down the Fusion Graph to manageable sizes.
The computational scalability of our model is most limited by the di-
mensionality reduction techniques like t-SNE and MDS, while PCA
and kernel-PCA run in under a second. The time to fetch the query
results was often trivial compared to the time needed for the embedding
pipeline.

We offer several forms of dimensionality reduction, because dimen-
sionality reduction is challenging and the best solution often depends
on the underlying data. The choice of which dimensionality reduction
method as well as the parameters (ε and nneigh) for OPTICS clustering
have been left up to the user. Theses choices vary greatly with the
underlying characteristics of the network data and suggest that the best
options should come from collaboration between a visualization expert
and a domain expert. In our experience, the nonlinear dimensionality
reduction techniques worked much better for clustering on most graphs;
however, the axes of these approaches are much harder to interpret.
Both t-SNE and MDS do a better job at preserving the small distances
between the high dimensional points than conventional PCA and this
likely leads to better clustering performance. VIGOR might benefit
from an approach that automatically detects the dimensionality with
the best clustering.

Currently VIGOR applied our system to exact subgraph matches;
however, new systems may also produce approximate subgraph
matches. Because the approximate results are not identical in shape
and content, the result set becomes much more complex. Additional vi-
sualization techniques are needed to show where and how approximate
results do not match the original query.

8 CONCLUSIONS

Visualizing graph query results is challenging, requiring effective sum-
marization of a large number of overlapping subgraph results, each
having complex network structure and rich node features. We presented
VIGOR, a novel visual analytics system for exploring and understand-
ing graph querying results.

VIGOR supports top-down and bottom-up result sensemaking,
through its (1) exemplar-based interaction technique, where an an-
alyst starts with a specific result and relaxes constraints to find other
similar results or starts with only the structure (i.e., without node value
constraints), and adds constraints to narrow in on specific results; and
(2) a novel feature-aware subgraph result summarization. Through our
collaboration with Symantec, we demonstrated how VIGOR helps
discover security blindspots in a cybersecurity dataset with over 11,000
incidents. We also evaluate VIGOR with a within-subjects study,
demonstrating VIGOR’s ease of use over a leading graph database
management system, and its ability to help analysts understand their
results at higher speed and make fewer errors.

ACKNOWLEDGMENTS

This research has been supported in part by NSF IGERT grant 1258425,
NSF grants IIS-1563816, TWC-1526254, and IIS-1217559.

9

REFERENCES

[1] C. Ahlberg, C. Williamson, and B. Shneiderman. Dynamic queries for in-
formation exploration: An implementation and evaluation. In Proceedings
of Conference on Human Factors in Computing Systems, pp. 619–626,
1992.

[2] R. Angles and C. Gutierrez. Survey of graph database models. ACM
Comput. Surv., 40(1):1:1–1:39, Feb. 2008. doi: 10.1145/1322432.1322433

[3] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. The state of the art in
visualizing dynamic graphs. In EuroVis - STARs, pp. 83–103. Eurographics
Association, 2014. doi: 10.2312/eurovisstar.20141174

[4] M. Berlingerio, D. Koutra, T. Eliassi-Rad, and C. Faloutsos. Netsim-
ile: A scalable approach to size-independent network similarity. CoRR,
abs/1209.2684, 2012.

[5] S. S. Bhowmick, B. Choi, and S. Zhou. Vogue: Towards a visual
interaction-aware graph query processing framework. In Proceedings
of the Biennial Conference on Innovative Data Systems Research (CIDR),
2013.

[6] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, J. Siméon,
and M. Stefanescu. Xquery 1.0: An xml query language, 2002.

[7] N. Cao, Y.-R. Lin, L. Li, and H. Tong. g-miner: Interactive visual group
mining on multivariate graphs. In Proc. CHI, pp. 279–288. ACM, 2015.

[8] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. Visual query systems
for databases: A survey. Journal of Visual Languages & Computing,
8(2):215–260, 1997.

[9] S. Ceri, S. Comai, P. Fraternali, S. Paraboschi, L. Tanca, and E. Damiani.
Xml-gl: A graphical language for querying and restructuring xml docu-
ments. In Proceedings of the Italian Symposium on Advanced Database
Systems (SEBD), pp. 151–165, 1999.

[10] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM computing surveys (CSUR), 41(3):15, 2009.

[11] D. H. Chau, C. Faloutsos, H. Tong, J. I. Hong, B. Gallagher, and T. Eliassi-
Rad. Graphite: A visual query system for large graphs. In Proceedings of
the IEEE International Conference on Data Mining (ICDM), pp. 963–966,
2008.

[12] J. Clark, S. DeRose, et al. Xml path language (xpath) version 1.0, 1999.
[13] S. A. Cook. The complexity of theorem-proving procedures. In Pro-

ceedings of the ACM Symposium on Theory of Computing (STOC), pp.
151–158, 1971.

[14] C. Dunne and B. Shneiderman. Motif simplification: Improving network
visualization readability with fan, connector, and clique glyphs. In Pro-
ceedings of the ACM SIGCHI Conference on Human factors in Computing
Systems (CHI), pp. 3247–3256, 2013.

[15] S. M. Emran and N. Ye. Robustness of chi-square and canberra dis-
tance metrics for computer intrusion detection. Quality and Reliability
Engineering International, 18(1):19–28, 2002. doi: 10.1002/qre.441

[16] I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and
navigation in information visualization: A survey. IEEE TVCG, 6(1):24–
43, 2000.

[17] F. Hogenboom, V. Milea, F. Frasincar, and U. Kaymak. Rdf-gl: A sparql-
based graphical query language for rdf. In Emergent Web Intelligence:
Advanced Information Retrieval, Advanced Information and Knowledge
Processing, pp. 87–116. Springer London, 2010.

[18] K. J. Holyoak and P. Thagard. Mental Leaps: Analogy in Creative Thought.
MIT Press, Cambridge, MA, USA, 1995.

[19] H. Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of educational psychology, 24(6):417, 1933.

[20] H.-J. Kim, H. F. Korth, and A. Silberschatz. Picasso: A graphical query
language. Softw. Pract. Exper., 18(3):169–203, Mar. 1988. doi: 10.1002/
spe.4380180302

[21] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. Vog: Summarizing
and understanding large graphs. In Proceedings of the SIAM International
Conference on Data Mining (SDM), pp. 91–99, 2014.

[22] H.-P. Kriegel, P. Krger, J. Sander, and A. Zimek. Density-based clustering.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
1(3):231–240, 2011. doi: 10.1002/widm.30

[23] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964. doi: 10.
1007/BF02289565

[24] G. N. Lance and W. T. Williams. Computer programs for hierarchical
polythetic classification (similarity analyses). The Computer Journal,
9(1):60–64, 1966.

[25] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of

Machine Learning Research, 9(Nov):2579–2605, 2008.
[26] M. E. Newman. Coauthorship networks and patterns of scientific col-

laboration. Proceedings of the national academy of sciences, 101(suppl
1):5200–5205, 2004.

[27] W. Ni and T. W. Ling. Glass: A graphical query language for semi-
structured data. In Proceedings of the International Conference on
Database Systems for Advanced Applications (DASFAA), pp. 363–370,
2003.

[28] C. North and B. Shneiderman. Snap-together visualization: A user inter-
face for coordinating visualizations via relational schemata. In Proceed-
ings of the Working Conference on Advanced Visual Interfaces, AVI ’00,
pp. 128–135. ACM, New York, NY, USA, 2000. doi: 10.1145/345513.
345282

[29] S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos. Netprobe: a fast
and scalable system for fraud detection in online auction networks. In
Proceedings of the 16th international conference on World Wide Web, pp.
201–210. ACM, 2007.

[30] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of sparql.
In International semantic web conference, pp. 30–43. Springer, 2006.

[31] R. Pienta, J. Abello, M. Kahng, and D. H. Chau. Scalable graph exploration
and visualization: Sensemaking challenges and opportunities. In 2015
International Conference on Big Data and Smart Computing, BIGCOMP
2015, Jeju, South Korea, February 9-11, 2015, pp. 271–278, 2015. doi: 10
.1109/35021BIGCOMP.2015.7072812

[32] R. Pienta, A. Tamersoy, A. Endert, S. Navathe, H. Tong, and D. H. Chau.
Visage: Interactive visual graph querying. In Proceedings of the Inter-
national Working Conference on Advanced Visual Interfaces, AVI ’16,
pp. 272–279. ACM, New York, NY, USA, 2016. doi: 10.1145/2909132.
2909246

[33] R. Pienta, A. Tamersoy, H. Tong, and D. H. Chau. MAGE: matching ap-
proximate patterns in richly-attributed graphs. In 2014 IEEE International
Conference on Big Data, Big Data 2014, Washington, DC, USA, October
27-30, 2014, pp. 585–590, 2014. doi: 10.1109/BigData.2014.7004278

[34] P. Pirolli and S. Card. The sensemaking process and leverage points
for analyst technology as identified through cognitive task analysis. In
Proceedings of international conference on intelligence analysis, vol. 5,
pp. 2–4, 2005.

[35] Z. L. J. V. P. T. J. A. G. P. D. H. P. C. Robert Pienta, Minsuk (Brian) Kahng.
Facets: Adaptive local exploration of large graphs. In SIAM International
Conference on Data Mining (SDM) 2017, 2017.

[36] D. M. Russell, M. J. Stefik, P. Pirolli, and S. K. Card. The cost structure
of sensemaking. In Proceedings of the INTERACT ’93 and CHI ’93
Conference on Human Factors in Computing Systems, CHI ’93, pp. 269–
276. ACM, New York, NY, USA, 1993. doi: 10.1145/169059.169209

[37] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based cluster-
ing in spatial databases: The algorithm gdbscan and its applications.
Data Min. Knowl. Discov., 2(2):169–194, June 1998. doi: 10.1023/A:
1009745219419

[38] B. Schölkopf and C. J. Burges. Advances in kernel methods: support
vector learning. MIT press, 1999.

[39] F. Schreiber and H. Schwbbermeyer. Mavisto: a tool for the exploration
of network motifs. Bioinformatics, 21(17):3572–3574, 2005.

[40] B. Shneiderman. Dynamic queries for visual information seeking. IEEE
Software, 11(6):70–77, 1994.

[41] J. Stahnke, M. Dörk, B. Mller, and A. Thom. Probing projections: Interac-
tion techniques for interpreting arrangements and errors of dimensionality
reductions. IEEE Transactions on Visualization and Computer Graphics,
22(1):629–638, Jan 2016. doi: 10.1109/TVCG.2015.2467717

[42] A. Tamersoy, E. Khalil, B. Xie, S. L. Lenkey, B. R. Routledge, D. H.
Chau, and S. B. Navathe. Large-scale insider trading analysis: patterns
and discoveries. Social Network Analysis and Mining, 4(1):1–17, 2014.

[43] Y. Tian and J. Patel. Tale: A tool for approximate large graph matching. In
IEEE International Conference on Data Engineering (ICDE), pp. 963–972,
2008.

[44] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast best-effort
pattern matching in large attributed graphs. In Proceedings of the ACM In-
ternational Conference on Knowledge Discovery and Data Mining (KDD),
pp. 737–746, 2007.

[45] S. van den Elzen, D. Holten, J. Blaas, and J. J. van Wijk. Reducing
snapshots to points: A visual analytics approach to dynamic network
exploration. IEEE Transactions on Visualization and Computer Graphics,
22(1):1–10, Jan 2016. doi: 10.1109/TVCG.2015.2468078

[46] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borg-

10

To appear in IEEE Transactions on Visualization and Computer Graphics

wardt. Graph kernels. J. Mach. Learn. Res., 11:1201–1242, Aug. 2010.
[47] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. van

Wijk, J.-D. Fekete, and D. Fellner. Visual analysis of large graphs: State-
of-the-art and future research challenges. Computer Graphics Forum,
30(6):1719–1749, 2011. doi: 10.1111/j.1467-8659.2011.01898.x

[48] L. A. Zager and G. C. Verghese. Graph similarity scoring and matching.
Applied Mathematics Letters, 21(1):86 – 94, 2008. doi: 10.1016/j.aml.
2007.01.006

[49] M. M. Zloof. Query-by-example: A data base language. IBM Systems
Journal, 16(4):324–343, 1977.

11

	Introduction
	Introducing VIGOR
	VIGOR Interface Overview
	Illustrative Usage Scenario

	Core Design Rationale
	Leveraging Examples: Bottom-Up Exploration
	A View From Above: Top-Down Exploration
	Feature-centric Sensemaking for Result Clusters
	Coordination in Multiple Views

	Methodology & Architecture
	Embedding Subgraphs
	Architecture

	Evaluation
	User Study
	Participant Demographics
	Protocol
	Part I: Comparative Study
	Part II: Think-aloud Exploration Study
	Discussion and Limitations

	Real World Application: Discovering Cybersecurity Blindspots

	Related Work
	Discussion and Future Work
	Conclusions

