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Abstract

Recent measurement studies have highlighted security
threats against the code-signing public key infrastructure
(PKI), such as certificates that had been compromised
or issued directly to the malware authors. The primary
mechanism for mitigating these threats is to revoke the
abusive certificates. However, the distributed yet closed
nature of the code signing PKI makes it difficult to evalu-
ate the effectiveness of revocations in this ecosystem. In
consequence, the magnitude of signed malware threat is
not fully understood.

In this paper, we collect seven datasets, including the
largest corpus of code-signing certificates, and we com-
bine them to analyze the revocation process from end to
end. Effective revocations rely on three roles: (1) discov-
ering the abusive certificates, (2) revoking the certificates
effectively, and (3) disseminating the revocation infor-
mation for clients. We assess the challenge for discover-
ing compromised certificates and the subsequent revoca-
tion delays. We show that erroneously setting revocation
dates causes signed malware to remain valid even after
the certificate has been revoked. We also report failures
in disseminating the revocations, leading clients to con-
tinue trusting the revoked certificates.

1 Introduction

The code-signing Public Key Infrastructure (PKI) is a
fundamental building block for establishing trust in com-
puter software [22]. This PKI allows software publish-
ers to sign their executables and to embed certificates
that bind the signing keys to the publishers’ real-world
identities. In turn, client platforms can verify the signa-
tures and check the publishers, to confirm the integrity
of third-party programs and to avoid executing malicious

code. A common security policy is to trust executables
that carry valid signatures from unsuspicious publishers.

The premise for trusting these executables is that the
signing keys are not controlled by malicious actors.
Unfortunately, anecdotal evidence and recent measure-
ments of the Windows code-signing ecosystem have doc-
umented cases of signed malware [8, 9, 12, 23, 26] and
potentially unwanted programs (PUPs) [1, 13, 17, 28],
where the trusted certificates were either compromised
or issued directly to the malware authors. The pri-
mary defense against these threats is to revoke the cer-
tificates involved in the abuse. For the better studied
Web’s PKI, prior measurements have uncovered impor-
tant problems with this approach, including long revo-
cation delays [6, 29, 30], large bandwidth costs for dis-
seminating the revocation information [19], and clients
that do not check whether certificates are revoked [19].
In contrast, little is currently known about the effec-
tiveness of revocations in the code signing PKI. With-
out this understanding, platform security protections risk
making incorrect assumptions about how critical revo-
cations are for end-host security and about the practical
challenges for implementing effective revocations in the
code-signing ecosystem.

Code signing uses a default-valid trust model, where
certificate chains remain trusted until proven compro-
mised. Due to this fact, missing or delayed revocations
for a certificate involved in abuse allow bad actors to gen-
erate trusted executables until the certificate expires or is
successfully added to a revocation list.

Abusive code-signing certificates may also present a
security threat beyond their expiration dates, which is an
important distinction from the Web’s PKI where the ex-
piration date limits the use of a compromised certificate
and also puts a limit on how long a revocation for that
certificate must be maintained. To avoid re-signing and
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Role Finding Implication

Discovery
of

Potentially
Compromised

Certificates

The mark-recapture estimation for the number of compro-
mised certificates suggests that even a large AV vendor can
only see about 36.5% of the population.

There might be malware with compromised certificates that
remain a threat for a long time without being detected.

CAs took on average 171.4 days to revoke the compro-
mised certificates after the malware signed with the cer-
tificates appeared in the wild.

Compromised certificates are not discovered and revoked
for a long time.

Setting
Revocation Date

CAs erroneously set effective revocation dates for 62 cer-
tificates, causing 402 signed malware to remain valid.

Wrong effective revocation date setting results in the sur-
vival of signed malware although its certificates is revoked.

Dissemination
of

Revocation
Information

788 certificates contain neither CRLs nor OCSP points. Clients have no way to check the revocation status of the
certificates.

13 CRLs and 15 OCSP servers had reachability issues.
OCSP servers responded with unknown or unauthorized
messages.
19 certificates have inconsistent responses from CRLs and
OCSP; they are valid from OCSP but are revoked in CRLs.

CAs improperly maintain their CRLs and OCSP servers.

278 revoked certificates were added and then later removed
from 18 CRLs.

Errors in the revocation process are made, and later re-
tracted. CAs misunderstood the code signing PKI and re-
moved expired certificates from CRLs.

Table 1: Summary of findings.

distributing binaries when a signing certificate expires,
Windows developers may extend the validity of binaries
they release by including a trusted timestamp, provided
by a Time-Stamping Authority (TSA), that certifies the
signing time of a binary. If a malicious binary is cor-
rectly signed and timestamped before the expiration date
of the certificate, it will remain trusted even after its cer-
tificate expires—unless the certificate is revoked. This
means that prompt and effective revocations, even of ex-
pired certificates, are critical in the code signing PKI.

An effective revocation process faces additional chal-
lenges in the code signing ecosystem. This process in-
volves three roles: (1) discovering certificates that are
compromised or controlled by malicious actors; (2) re-
voking these certificates effectively; and (3) disseminat-
ing the revocation information so that it is broadly avail-
able.

Unlike in the Web’s PKI, where potentially com-
promised certificates can be discovered systematically
through network scanning [6, 29, 30], in the code sign-
ing PKI this requires discovering signed malware or PUP
samples on end-hosts around the world. Security compa-
nies involved in this discovery process cannot observe all
the hosts where a maliciously signed binary may appear.
This also makes it a challenge to detect the total number
of certificates that are actively being used to sign mal-
ware, which leads to an incorrect perception about the
need and urgency of revocations. Even though a signed
malicious binary is discovered, it is difficult to determine
the date when a certificate revocation should become ef-
fective. Hard revocations that invalidate the entire life
of the certificate may invalidate too many benign signed

files, while soft revocations that set a revocation date af-
ter the issuance date may not cover undiscovered signed
malware. Moreover, the CAs also must properly main-
tain their revocation infrastructure so that the informa-
tion of compromise can be disseminated to the clients. If
the dissemination is not handled as it should be, it may
reduce the incentives for revoking code signing certifi-
cates. These challenges render the code signing ecosys-
tem opaque and difficult to audit, which contributes to an
under-appreciation of the security threats that result from
ineffective revocations.

In this paper, we present an end-to-end measurement
of certificate revocations in the code signing PKI; in
particular, how effective is the current revocation pro-
cess from discovery to dissemination, and what threats
are introduced if the process is not properly done. Our
work extends prior works in the code signing PKI; previ-
ous studies have focused on signed PUPs [1, 13, 28] and
signed malware [12], but there is no study of code sign-
ing certificate revocation process yet. Unlike the prior
studies in the Web’s PKI [2, 6, 7, 10, 19] where TLS cer-
tificate can be collected by scanning the Internet, we are
unable to utilize a comprehensive corpus of code sign-
ing certificates since there is no official repository for
code signing certificates. To overcome the challenge,
we utilize data sets that are publicly released from prior
research [1, 13] and increase our coverage with Syman-
tec’s internal repository of binary samples. We extract
145,582 unique leaf code signing certificates from the
data sets. From the code signing certificates, we also ex-
tract 215 Certificate Revocation Lists (CRLs) used only
for code signing certificates, and 131 Online Certificate

852    27th USENIX Security Symposium USENIX Association



Status Protocol (OCSP) points. We periodically probe
the collected CRLs to check their status to collect the re-
vocation publication date; the date on which a certificate
is revoked by a CA and the revocation information is dis-
seminated.

We highlight the nine findings from our analysis in
the revocation process in the three roles and the result-
ing security implication as depicted in Table 1. To allow
the security research community to reproduce and ex-
tend our study, we make three data sets publicly available
at http://signedmalware.org; (1) Revocation information
(D2), (2) Revocation Publication Date List (D3), and (3)
CRL/OCSP reachability history (D7) 1.

In summary, we make the following contributions: (1)
we collect a large corpus of code signing certificates and
the revocation information, (2) we conduct the first end-
to-end measurement of the code signing certificate revo-
cation process, (3) we use our data to estimate a lower
bound on the number of compromised certificates, (4)
we highlight the problems in the three parts of the re-
vocation process as well as new threats that result from
those problems, and (5) we discuss suggestions/recom-
mendations to improve the security of the code signing
ecosystem.

2 Problem Statement

In this section, we provide a brief overview of the code
signing PKI, with an emphasis on certificate revocation.
We also discuss the implications of code signing as it
currently exists, and highlight the research questions for
investigating the effectiveness of the revocation process.

2.1 Code Signing PKI
The code signing PKI provides a mechanism to validate
the authenticity of a software publisher and the integrity
of a binary executable.
Code signing process. Similar to the Web’s PKI (e.g.,
TLS), the software publishers first ask a Certificate Au-
thority (CA) to issue code signing certificates based on
the X.509 v3 certificate standard [4], and they use the
certificates to sign their binary files. In the process of
signing a binary file, the hash value is first computed,
and then the hash value is digitally signed with the soft-
ware publisher’s private key. Finally, the original code
is bundled with the signature as well as the public part
of the code signing certificate. The end users check the
validity of the certificates used to sign the program code

1Due to the agreement terms, we are unable to publicize the data
sets collected in the Symantec internal repository.

when they are first seen, and periodically after that to
make sure the certificate is still valid.

Microsoft Authenticode. In the Windows platforms,
Authenticode [21] is the code signing standard designed
to digitally sign Windows files including executables
(.exe), dynamically loaded libraries (.dll), cabinet files
(.cab), ActiveX controls (.ctl, and .ocx), catalogs (.cat)
files, etc. The standard relies on Public Key Cryptog-
raphy Standard (PKCS) #7 [11] that stores X.509 code
signing certificate chains, X.509 TSA certificate chains,
a digital signature, and a hash value of a PE file, with no
encrypted data.

Trusted timestamping. Unlike the Web’s PKI, the code
signing PKI provides trusted timestamping. Trusted
timestamping is a way to attest that the code was signed
at a specific date and time. The timestamp is issued and
signed by Time Stamping Authority (TSA) during the
signing process. The trusted timestamp guarantees that
the signature is generated within the validity period of a
certificate to extend the trust in the signed program code
even after the certificate expires. Unfortunately, mal-
ware writers also benefit from this mechanism. Properly
signed and trusted timestamped malware can be trusted
and remain valid even after its certificate expiration date.

Trends of code signing abuse. Digitally signed malware
can help to bypass some of the protection mechanisms
for end-users such as Windows’ User Account Control
(UAC) and some Anti-Virus (AV) engines. Therefore,
malware authors have abused the code signing PKI and
signed their malware code with the certificates either
stolen or fraudulently issued to malware authors: for
example, Stuxnet, Flame, and Duqu [8, 9, 23]. Kim et
al. [12] presented threat models that emphasize three
types of weaknesses in the code signing PKI: (1) in-
adequate client-side protections, (2) publisher-side key
mismanagement, and (3) CA-side verification failures.
Those weakness can breach the trust in the Windows’
code signing PKI.

Moreover, malware authors also use the underground
black markets to purchase code signing certificates. Ac-
cording to prior work [14], the certificates are being
sold at $350–$1,000 for a code signing certificate and at
$1,600–$3,000 for an EV code signing certificate. Also,
they reported that about 60% of the compromised certifi-
cates in their data sets used to sign malware within the
first month after its issue date. They claimed this finding
as a new evidence of the growing prevalence of certifi-
cates issued for abuse.
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2.2 Revocation Process

Certificate revocation is the primary defense against the
abuse of code signing. CAs are responsible for revok-
ing certificates for reasons such as: the private key as-
sociated with a certificate is made public, the entity be-
hind the certificate becomes untrusted, the certificate is
used to sign malware even if the source is unknown, or
if a certificate is erroneously issued [12]. The revocation
process consists of three roles: (1) promptly discovering
compromised certificates, (2) performing an effective re-
vocation of the certificate, and (3) disseminating the re-
vocation information.

Discovery of potentially compromised certificates. It
is not clearly stated in the requirements [3] who is
responsible for discovering compromised certificates.
However, the notification of abuse often comes exter-
nally, from Anti-virus (AV) companies, researchers or
the companies that own the certificates. Once notified,
the CAs, who have issued the certificates, are required to
promptly investigate and revoke the abused certificates.
The delay between the initial discovery (td) and the time
when the revocation information is made public (i.e., re-
vocation publication date (tp)) should be as short as pos-
sible. Figure 1 depicts the case where the discovery hap-
pened after the expiration (te). Due to trusted timestamp-
ing, the revocation should be performed even after the
expiration date of the certificate. The revocation delay
can be defined as tp − td .

Setting the revocation date. Once the CAs confirm the
abuse, in collaboration with the certificate owners, they
have to decide the effective revocation date (tr) due to
the trusted timestamping. The effective revocation date
determines which binaries will be impacted. Suppose
we have a code signing certificate valid between ti (is-
sue date) and te (expiration date). We sign a binary with
the certificate during its validity period. If a certificate
is found to be compromised in some way at td (detection
date), it must be revoked. At this point the CA also must
set tr (effective revocation date) for the certificate. As
shown in Figure 1, any binary signed by the certificate
after tr, regardless of the trusted timestamp, will become
invalid. However, a binary signed with a trusted times-
tamp before tr remains valid.

Dissemination of revocation information. CAs must
then disseminate the revoked certificate information. Un-
like the discovery and setting the revocation date, CAs
are solely responsible for this part of the revocation pro-
cess. The two predominant ways to disseminate certifi-
cate revocation information are (1) Certificate Revoca-
tion List (CRL) [4] and (2) Online Certificate Status Pro-
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Figure 1: An example of (i) an effective revocation date
(tr) that determines the validity of signed malware and
(ii) a revocation delay (tp - td) (ti: issue date, te: expira-
tion date, tr: effective revocation date, tb: signing date of
a benign program, tm: signing date of malware, td : detec-
tion date, and tp: revocation publication date). When an
effective revocation date is set at tr, the malware signed
at tm1 validates continuously as it was signed before tr.

tocol (OCSP) [24].
• CRLs contain the revocation information (certificate

serial numbers, (effective) revocation date, revocation
reason) of certificates that have been revoked. Each
CRL is updated based on their CA’s issuance policy;
for example, they can be issued when a new revoked
certificate is inserted, or a specific time of day or a
day of month. The location of the CRL is specified
at CRL Distribution Point (CDP) of the X.509 certifi-
cate. Clients have to periodically download the entire
CRL (not just recent changes) to check the latest revo-
cations.

• OCSP was introduced to resolve the network overhead
problems of CRL. Clients can simply query an OCSP
server for a certain certificate, which helps mitigate the
network overhead at the server as well as clients. Au-
thority Information Access (AIA), an extension field
in a X.509 certificate specifies OCSP point for each
certificate.

The TLS CAs are typically not responsible for providing
the revocation status of expired certificates. The code
signing CAs, however, must maintain and provide the
revocation information of all certificates that they have
issued including expired certificates due to the trusted
timestamp [3, 20]. Since the trusted timestamp extends
the life of a signed binary, CAs must maintain the CRLs
and OCSP in perpetuity to make revocation information
always-available for clients.
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2.3 Effectiveness of Revocation Process
In this sub-section we discuss the revocation process. We
break this part into four sub-questions:

Q1. How many certificates are being used to sign mal-
ware? The revocation process starts from the discovery
of compromised certificates. We begin our study by esti-
mating the magnitude of the current threat that should be
the target of the revocation process.

Q2. How prompt is the revocation process? When
alerted to a certificate problem, CAs have to begin inves-
tigating the reports within 24 hours and revoke the com-
promised certificates and publish the revocation infor-
mation within seven days or get reasonable cause from
the owner of the certificate to delay [3]. The date when
the revocation information is available to the public (i.e.,
added to the CRL or OCSP), is defined as revocation
publication date (tp). There are currently some report-
ing mechanisms in place to allow an outside party, such
as an AV company or researcher, to report misuse of cer-
tificates to CAs [3]. Due to this adhoc process, there may
be delays from initial evidence of compromise (td) to the
revocation published date (tp).

Q3. Are effective revocation dates set properly?
When revoking a certificate, the CA must set the date
when the revocation should be considered active (effec-
tive revocation date (tr)). Because of the trusted times-
tamp, any binary signed with the certificate before the
effective revocation date (tr) is still considered trusted,
while any file signed and timestamped after the effec-
tive revocation date (tr) is considered untrusted. Two
strategies are used, hard revocation where tr = ti, and
soft revocation where ti < tr ≤ te. Hard revocation has
the advantage that all malicious signed files are un-
trusted, but the side effect is that all benign files also
become untrusted. Soft revocation tries to match the
date more closely to the date when the certificate was
compromised, which means some benign files will still
be trusted. If this date is not set correctly, then signed
malware (i.e., malware is signed before the date, tm < tr)
may still exist and continue to be trusted as the example
shown in Figure 1.

Q4. Is revocation information served properly?
Client-side platforms (e.g., Windows) check the valid-
ity of both leaf and intermediate certificates used to sign
program code. According to the specification [3], a bi-
nary should be considered unsigned when it is not possi-
ble to check the revocation status. Suppose that a client
platform does not follow the specification, but instead
applies a soft-fail revocation checking policy; the soft-
fail revocation checking policy is for client platforms to

trust certificates when revocation information is unavail-
able. In this setting, all signed malicious files can remain
valid even after the certificate is already revoked if the
revocation status information is unavailable. Therefore,
it is important to check if the revocation information is
properly maintained and disseminated by CAs.

2.4 Our Goal and Non-Goal

In the Web’s PKI (e.g., TLS), the security issues of cer-
tificate revocation have been well-understood [6, 19, 30].
In contrast, little is known about code signing certifi-
cate revocation: in particular, the revocation process (1)
promptly discovering compromised certificates, (2) re-
voking the compromised certificates effectively, and (3)
disseminating the revocation information. In this paper,
our goal is to systemically measure the problems in the
revocation process and new threats introduced by these
problems. Our non-goals include fully characterizing (1)
CA’s internal infrastructure problems, (2) their internal
revocation policies, and (3) Windows platforms internal
revocation checking policies.

2.5 Challenges for Measuring Revocation

In our study, the challenges for measuring code sign-
ing certificate revocation are (1) visibility and (2) timing.
Visibility is an issue because, unlike on the open Inter-
net, there is no easy way to identify all the certificates
that are actively being used in the wild. Instead, we have
to find data from sources that provide as wide a view of
the ecosystem as possible. Timing is a problem because
if we observe only a single version of the CRL, we can
only see the effective revocation date (tr), which helps
define which files should be untrusted, but not when the
trust was lost. To see the revocation publication date (tp),
when a certificate appears on a revocation list, we must
actively monitor the CRLs over an extended period of
time.

3 Data Collection

There are no publicly available datasets that are used to
perform research on code signing certificates. In this sec-
tion we describe our data collection methodology and
how we measure the revocation process for code signing
certs.
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Malsign Malcert Symantec WINE Total*

PKCS #7 2,171 801,995 149,840 11,108 965,114

CS certs.** 2,106 1,121 145,411 1,137 145,582
CRL URLs 55 60 403 49 413

OCSP URLs 24 24 130 16 131

Table 2: Summary of the fundamental data. (*: total
number of unique data, **: CS stands for code signing –
some certificates have parsing errors.)

3.1 Fundamental Data (D1 – D2)

The code signing certificates are the seed to collect addi-
tional information since they include the revocation dis-
tribution points (CRLs and OCSP points) and other in-
formation that we monitor. Here we describe how we
collect the code signing certificates and the revocation
information. Table 2 shows the breakdown of the funda-
mental data.

Code signing certificates (D1). There is a publicly avail-
able corpus of TLS certificates at Censys.io 2, collected
by scanning all IPv4 network address. In contrast, there
is no large public corpus of code signing certificates ob-
served in the wild. We use multiple data sets that are
publicly released from prior research [1,5,13] and a pro-
prietary repository of binary samples. The data sets are:
• Malsign. Kotzias et al. [13] evaluated signed mali-

cious PE files and they publicly released the 2,171 leaf
code signing certificates used to sign the PE files.

• Malcert. Alrawi et al. [1] examined 3.3 million sam-
ples collected from a commercial feed of a private
company, and they shared 801,995 signed PE sam-
ples. The reason for the large reduction from PKCS
#7 to CS certs for Malcert in Table 2 is that most of
the PKCS #7 files were duplicate code signing certifi-
cates used to sign binaries with different hashes.

• Symantec data set. Symantec has an internal reposi-
tory of binary files, from which they extracted a sam-
ple of 149,840 PKCS #7 files for analysis.

• Samples from WINE [5] and VirusTotal. To get more
code signing certificates, we also select around 300
PE files for each CA from WINE (c.f., Section 3.3)
and download the samples from VirusTotal using the
download API; 11,108 PE samples are collected. The
details of VirusTotal will be explained in Section 3.3.

A PKCS #7 [11] file includes code signing certificate
chains, TSA certificate chains, a signature, and a hash
value of a PE file. The data sets consist of PKCS #7 files
except for the Malsign data set that provides only leaf

2https://censys.io

CA Leaf Certificates

Verisign 44,014 (30.23%)
Thawte 26,884 (18.47%)
Comodo 24,780 (17.02%)
GlobalSign 12,079 (8.30%)
Symantec 8,913 (6.12%)
DigiCert 8,300 (5.70%)
Go Daddy 7,376 (5.07%)
WoSign 3,796 (2.61%)
Certum 1,874 (1.29%)
StartCom 1,830 (1.26%)

Other 4,281 (2.94%)

Total 145,582 (100%)

Table 3: Top 10 Code signing Certificate Authorities.
The top 10 CAs account for 97% of the certificates in
our data set (D1).

code signing certificates. First, we extract only a leaf cer-
tificate from each PKCS #7 file by filtering out interme-
diate certificates and TSA certificates, and we select only
code signing certificates using the keyword of “Code
Signing” in the extendedKeyUsage extension field. We
are unable to parse 1,989 leaf certificates due to parsing
errors. 145,582 unique leaf code signing certificates (ex-
tracted from 965,114 binary samples) legitimately issued
from CAs remain after we remove duplicate leaf certifi-
cates (85.2% leaf certificates are duplicate) and two self-
signed certificates. Table 3 shows the number of code
signing certificates for the top-ten most popular CAs in
our data set (D1).

The D1 data set is used for (1) the trend of revocation
setting policy (Section 5.1), (2) the certificates without
CRL and OCSP (Section 6.3), (3) the inconsistent re-
sponses from CRLs and OCSP (Section 6.3), and (4) the
unknown or unauthorized responses from OCSP (Section
6.3).

Revocation information (D2). The CRLs and OCSP
points (URLs) are specified at the CRLDistributionPoints
and AuthorityInfoAccess extensions respectively. We
extract the CRL and OCSP points from 145,582 leaf
code signing certificates that we find in the four data
sets. Most (137,027, 94.1%) certificates contain both
CRL and OCSP points; only CRL points are specified in
7,794 (5.3%) certificates and only OCSP points are ex-
pressed in 98 (0.06%) certificates. We observe a total of
413 unique CRLs, however CRLs can be used for other
purposes such as TLS. Therefore, we manually search
Censys.io for each CRL and filter out CRLs used for
other purposes. Eventually, 215 CRLs that are used only
for code signing remain. We observed 131 unique points
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for OCSP. This D2 data set is used to examine the prob-
lems in effective revocation date setting (Section 5.1), the
transient certificates in CRLs (Section 6.3), and the no
longer updated CRLs (Section 6.3).

3.2 Revocation Publication Date List (D3)

A CRL contains the serial numbers of revoked certifi-
cates, revocation date, and reason code. The revocation
date field is effective revocation date (tr) (c.f., Section
2.2) that determines the validity of signed program code.
In other words, the revocation information in CRLs does
not contain the date on which the certificates become re-
voked. Therefore, we devise a system, called revoca-
tion publication date collection system that collects re-
voked serial numbers once a day from our CRL data set
in order to detect the revocation publication date (tp),
when the certificate is added to CRL or OCSP servers.
This information can be used to measure the revocation
delay between a malicious signed binary appearing in
the wild and a CA revoking the compromised certificate.
From the 215 CRLs, we observe 2,617 unique certifi-
cates added to the CRLs between Apr. 16th, 2017 to
Sept. 10th, 2017. This D3 data set is used to examine the
revocation delay (Section 4.2).

3.3 Binary Sample Information (D4 – D6)

Among our measurements, there exist several research
questions which require information about the signed bi-
naries. For example, to measure the malware which is
still valid due to the ineffective revocation date setting,
we need a view of the binaries signed with a revoked cer-
tificate and information to determine their maliciousness
and their signing date. Therefore, we collect information
about the signed binaries from three data sets: WINE,
Symantec, and VirusTotal.

Worldwide Intelligence Network Environment
(WINE) (D4). WINE [5] provides security telemetry
submitted from 10.9 million Symantec customers around
the world that opt into this data sharing. Among the
various data sets in WINE, we use the binary reputation
data that contains metadata of binary files that are seen
on endpoints. We extract the following information
from this data set: the SHA256 hash value of the
file, the server-side timestamp, and the names of the
publisher and the CA which are extracted from the code
signing certificate. Note that detailed information of the
certificate (e.g., a serial number of the certificate, CRL)
is not provided in WINE. Also, WINE does not provide
the actual binary. This D4 data set is used to examine the

problems in revocation date setting (Section 5.1).

Symantec metadata telemetry (D5). For the revoked
certificates observed by our revocation publication date
collection system, we also received meta information
about the binaries signed by the 2,617 code signing cer-
tificates from Symantec, using the serial numbers of the
certificate to identify the set of the affected binaries. The
information is similar to WINE, but for a more recent
time period than what is in WINE (from Jan. 1st, 2016
to Sept. 10th, 2017) so that we could observe informa-
tion related to more recent certificates and revocations
that we track in D3. The data consist of the serial num-
ber of the signing certificates, the SHA256 hash of the
binary, the first seen timestamp. Symantec provided us
ground truth for identifying malware among these signed
binaries as well. With the ground truth, we identify the
certificates used on signed malware. This D5 data set is
used to estimate malware signing certificates in the wild
(Section 4.1), and to examine the revocation delay (Sec-
tion 4.2).

VirusTotal (D6). Because the previous two data sets do
not provide actual binaries, we use VirusTotal [27] to find
specific binaries and to perform further analysis. Virus-
Total provides a service that analyzes potentially mali-
cious binary files and URLs using up to 63 different anti-
virus engines. The analysis is triggered when a sample
is submitted, the report is kept in a database and exposed
externally via an API. We use the private API to collect
the following information from these reports: the signed
date of the binary, the number of AV engines detected
the file as malicious, and the first submission timestamp
to VirusTotal.

VirusTotal also allows users to apply rule-based
matching on the incoming submissions, which can help
researchers find a specific type of malware. This plat-
form is called VirusTotal Hunting 3, and it uses YARA
4 to define rules. We write a YARA rule that triggered
when a binary was signed and at least 10 AV engines con-
vict the binary. From each report, we extract the SHA256
hash of the binary, the first submission date, and the se-
rial number of the leaf code signing certificate. The data
collection began on Apr. 18th, 2017. The extracted data
set is used in the estimation of malware signing certifi-
cates (Section 4.1), and to examine the revocation delay
(Section 4.2).

We also use the VirusTotal download API to download
the actual binary of a given hash when necessary (e.g., to
collect the certificate to extract the CRL/OCSP informa-
tion).

3https://www.virustotal.com/#/hunting-overview
4http://virustotal.github.io/yara/
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3.4 CRL/OCSP Reachability History (D7)

CRL reachability history. For the list of CRLs we have
in our data set, we check the reachability of the CRLs
daily from Aug. 10th, 2017 to Sept. 10th, 2017. If a
CRL is unreachable, we record the timestamp and the
reason of failure to the log. This D7 data set is used for
measuring the unreachability of CRLs (Section 6.2).

OCSP reachability history. Similar to the reachability
checker for CRLs, we also develop an OCSP reachabil-
ity checker. The checker tests the reachability of each
OCSPs we found from the four data sets every 30 min-
utes. Rather than simply pinging the domain, it queries
each OCSP points with the certificates that contain the
OCSP point over the OCSP protocol using Openssl. Sim-
ilarly, the timestamp and the reasons are logged if not
reachable. It has been running with 131 unique OCSP
points from Aug. 10th, 2017 to Sept. 10th, 2017. This
D7 data set is used for measuring the unreachability of
OCSP points (Section 6.2).

4 Discovery of Potentially Compromised
Certificates

There are many reasons for revoking a code signing cer-
tificate, and in general it is difficult to determine whether
and when a certificate should have been revoked. How-
ever, one situation warrants a prompt certificate revoca-
tion: when the corresponding private key has been used
to sign malicious code [3]. We therefore compute a con-
servative estimate of the number of certificates used to
sign malware in the wild, and we compare it with the
coverage of a major security company to assess the odds
of discovering all the potentially compromised certifi-
cates (Section 4.1). Furthermore, after a signed malware
sample has been discovered, the information must reach
the principal responsible for revoking the code signing
certificate, and the principal must add the certificate to
Certificate Revocation List (CRL). We therefore ana-
lyze the delay between the time when this information
is available to the community and the time when the cer-
tificate appears on a CRL (Section 4.2).

4.1 Mark-recapture Population Estima-
tion

The process of revocation starts from discovering the cer-
tificates used in malware. To understand how effective
the discovery phase is, we need to answer our first re-
search question, Q1. How many certificates are used
to sign malware in the wild? However, there exists no

official repository for code signing certificates and the
signed binaries. To overcome this problem, we employ
the mark-recapture analysis [15]. This technique was
originally developed for measuring wildlife populations.
The goal of mark-recapture is to estimate the size N of a
population that cannot be observed in its entirety. In our
case, N is the number of certificates employed by digi-
tally signed malware. The technique requires two sepa-
rate samples drawn, with replacement, from the popula-
tion. The first sampling results in the capture of n1 sub-
jects. These subjects are marked and released in the wild.
The second sampling results in the capture of n2 subjects,
among which p bears the marks from the previous sam-
pling. In other words, p is the size of the intersection of
the two samples, denoting the subjects that have been re-
captured. An estimator N̂ for the total population N can
then be computed as:

N̂ =
n1n2

p
(1)

We apply the mark-recapture technique to the malware
signing certificates from two different data sets: Syman-
tec telemetry (D5) and VirusTotal (D6). We consider that
each data set is a sample of the total population of po-
tentially compromised certificates. Specifically, n1 and
n2 represent the numbers of certificates that should have
been revoked, as they are known to sign malware, from
the Symantec and VirusTotal data sets respectively.

Assumptions and interpretation. Mark-recapture
makes three assumptions about the population and the
sampling process that may not hold in our case. First,
the subjects in the population should have an equal
chance of being captured; in other words, the population
is homogeneous. However, the certificate population is
unlikely to be homogeneous. For example, a certificate
used by a popular software company would have a higher
chance of appearing in our datasets. Second, the samples
from the population should be independent. That is,
the initial capture should not affect the likelihood of
recapture. This assumption ensures that the proportion
of recaptured subjects in the second sample p/n2 is
the same as the proportion of marked subjects out of
the total population n1/N, which leads to Equation 1.
However, security companies share malware feeds with
each other, which raises the probability of recapture for
the potentially compromised certificates captured in the
first sample. Third, the population should be closed.
A population is closed when its size does not fluctuate
due to the birth and death of its members. However, our
population changes over time, as certificates are issued
and revoked.
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Figure 2: (a) Trend in malware signing certificates
(mark-recapture estimation as red and observed number
as blue) over time (b) comparison between the estimation
and the total number of newly revoked certificates during
(4/18/17−9/10/17) (the label starts from 4/17 since it
is the start of that week).

To minimize the impact of the last issue, we estimate
N̂ separately for each day. We set the birth date for each
certificate as the first seen timestamp in the Symantec
telemetry and the first submission date for VirusTotal, as
this is when they join the population of potentially com-
promised certificates. Using the same reasoning, we con-
sider that a certificate leaves the population on its revo-
cation publication date (tp). Because CRLs are updated
daily, our population of interest is approximately closed
within each day.

To mitigate the impact of a non-homogeneous popu-
lation, we compute our daily estimates between 4/18/17
and 9/10/17, the collection period for D6. While the two
data sets include certificates issued before April 2017,
malware signed with these older certificates may have a
lower probability of occurring in the VirusTotal Hunting.
Furthermore, some certificates may have a low preva-
lence, for example because they are only used in targeted
attacks and may not occur in either data set. The exis-
tence of such certificates would imply that N̂ underes-
timates the real population N. Similarly, dependencies
between the two data sets would lead to an increase of
the intersection p, which would also result in an under-
estimation of N. Our estimation in this section should be
interpreted as a lower bound for the true population of
potentially compromised certificates.

Results. Figure 2(a) shows the average of our daily es-
timations N̂, for each week during our measurement pe-
riod. We also compare these estimations with the number

of potentially compromised certificates that we actually
observe, which is the union of the sets of certificates ob-
served daily from the Symantec telemetry (D5) and from
VirusTotal (D6). Excluding the last week (9/4–9/10), we
estimate that at least 1,004–1,786 code signing certifi-
cates were used to sign malware in the wild and had not
been revoked by the date of the estimation.5 On aver-
age, the estimated population is 2.74× larger than the
observed number of certificates. This suggests that even
a major security company like Symantec and an infor-
mation aggregator like VirusTotal do not observe a large
portion of the potentially compromised certificates.

To illustrate the effect of the inefficient discovery pro-
cess on the revocations, in Figure 2(b) we compare the
mark-recapture estimation on all the certificates observed
during the measurement period (4/18–9/10/17) with the
actual number of newly revoked certificates, which re-
vocation publication date (tp) is between 4/18/17 and
9/10/17, from data set D3. The number of the estimated
population of potentially compromised certificates dur-
ing this period represents 95.1% of the code signing cer-
tificates added to the CRLs. While the CRLs do not in-
dicate the reason for the revocations, our close estima-
tion could indicate that most revocations are done in re-
sponse to the discovery of signed malware. We note that,
because our estimation is a lower bound, the number of
potentially compromised certificates may be much larger
in reality. However, even if all the certificates that sign
malware in the wild are eventually revoked, this does not
imply that the security threat is mitigated effectively, as
the revocations may correspond to older discoveries. We
next investigate the delay between the discovery of po-
tentially compromised certificates and their revocation.

4.2 Revocation Delay
Kim et al. [12] estimated that 80% of the compromised
code-signing certificates remain a threat for over 5.6
years after they are first used to sign malware. Their
estimation included certificates that were never revoked
and used an approximation for the revocation publica-
tion date. We take a data driven approach to explore the
revocation process. As discussed in Section 2.3, CAs
must revoke a certificate within seven days after they are
alerted that the certificate has been used to sign malicious
code. Therefore, our second research question is Q2. Af-
ter the signed malware is discovered, how promptly is the
corresponding certificate revoked?

5Because the Symantec telemetry dataset was collected starting
from the certificates we observed on CRLs (D3), all the certificates in
D5 were revoked by the end of our observation period. During the last
week n1 = 1, which prevents us from making an accurate estimation.
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Figure 3: Revocation delays between the dates on which
the malware signed with compromised certificates and
the dates on which CAs revoke the compromised certifi-
cate.

To answer this question, we need an accurate estima-
tion of the revocation publication date (tp). This is pro-
vided by our revocation publication date collection sys-
tem (D3). We focus only on certificates that have been re-
voked; D3 includes 2,617 code signing certificates, with
tp between Apr. 16th, 2017 and Sept. 10th, 2017.

Our next challenge is to determine the discovery date
for the corresponding signed malware. We use Syman-
tec metadata telemetry (D5) to identify a set of hashes
for binaries files that are signed with the revoked cer-
tificates from D3. Of the 2,617 revoked certificates, we
find 468 (17.9%) revoked certificates in the D5 data set,
and 146,286 hashes signed with the revoked certificates.
Since Symantec does not collect these binaries we rely
on VirusTotal (D6) and AVClass [25] to get a report of
the binary and label the signed malware using consen-
sus results. From the VirusTotal reports we also retrieve
the first submission timestamp of the binaries. In to-
tal we find 19,053 unique samples in VirusTotal, and
254 unique certificates used to sign the samples.

For each certificate, we use the earliest detection date
of a signed malware sample as the discovery date (td). As
multiple anti-virus vendors were aware of the abuse, this
represents a conservative estimate for the date when the
security community started suspecting that the certificate
was likely compromised. We compute the revocation de-
lay (tp − td) as the difference between this date and the
revocation publication date (tp), when the certificate was
added to its CRL.

Results. The revocation delay ranges from one day to
1553 days; Figure 3 shows a cumulative distribution. The
average delay is 171.4 days (5.6 months) (std 324.9 days,
median 38 days). The long delays imply that CAs either
do not receive the information in a timely manner or do
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Figure 4: Effective revocation date setting trends: Num-
ber of revoked certificates (stacked).

not strictly follow the minimum requirements set by the
CA/Browser Forum Code Signing Working Group [3].
In consequence, users remain exposed to this threat for
over five months, on average, after the discovery of the
signed malware.

5 Setting the Revocation Date

Even if potentially compromised certificates could be
discovered efficiently, the CA must determine a proper
revocation date (we call this the effective revocation date)
to cover the period when trust in the certificate is com-
promised.

5.1 Problems in Revocation Date Setting

To have an effective revocation process, the next ques-
tion we have to answer is Q3. Are effective revocation
dates set properly? As described in Section 2.3, CAs
must set revocation dates when revoking the certificates
that they have issued. CAs can set tr (effective revoca-
tion date) to ti (issue date), called hard revocation. On
the other hand, tr can be set to any date between ti and
te (expiration date), called soft revocation. The trust in
a signed binary depends on the effective revocation date,
and so a CA generally tries to set tr (effective revocation
date) close to the oldest tm (the date on which the certifi-
cate signed malware). We examine CAs’ revocation date
setting policies to better understand how the CAs set the
effective revocation date (e.g., hard or soft), and how the
trend is changed over time, using our data set (D1). We
also identify the security problem led by the wrong ef-
fective revocation date setting in soft revocation.

Trend of effective revocation date setting. We examine
how the CAs set the effective revocation date when they
revoke the certificates using our collected 145,582 code
signing certificates (D1). First, we check the certificate’s
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< ti = ti ≤ te > te Total

Comodo 0 426 1,437 17 1,880
Thawte 0 74 1,055 39 1,168

Go Daddy 2 14 672 18 706
Verisign 2 59 430 51 542
Digicert 1 161 323 3 488
Starfield 0 3 153 2 158

Symantec 0 33 89 1 123
Wosign 0 57 17 0 74

Startcom 0 0 47 0 47
Certum 0 1 9 0 10

Other 0 96 117 1 214

Total 5 924 4,349 132 5,410

Table 4: Effective revocation date setting policy for top
10 CAs (ti: issue date, te: expiration date).

revocation status using CRL points, specified at its cer-
tificate extension field. Table 4. shows the breakdown of
the effective revocation date setting policy. We observe
that 5,410 (3.7% out of 145,582 certificates) certificates
are explicitly revoked. Of those, 96% (5,196) certificates
have been issued by the top 10 CAs; most (1,880, 34.8%)
revoked certificates are issued by Comodo, followed by
Thawte (1,168, 21.6%). Most (4,481, 82.8%) revoked
certificates take soft revocation while only 17.2% certifi-
cates perform hard revocation.

Most CAs apply both hard revocation and soft revo-
cation when revoking a certificate. Soft revocation is
more common than hard revocation in all CAs except for
Wosign; in particular, Startcom has never performed hard
revocation in our observation. Interestingly, three CAs
(Go Daddy, Verisign, and Digicert) set the effective re-
vocation date to before their certificates’ issue date. The
two certificates of Go Daddy were set to one day before
their issue date, and the one certificate of Digicert was
set to five days before its issue date. However, other two
certificates of Verisign were set to around five months
and nine months respectively before their issue date. It is
considered hard revocation; therefore, there are no secu-
rity threats to clients. Figure 4 presents the total number
of soft and hard revocations. The total number of revo-
cation has made a drastic increase since 2012. It is also
worth noting that the numbers for 2016 and 2017 are not
yet final, as we have already seen in the previous section,
due to revocation delay these numbers should continue
to grow in the future.

Ineffective revocation date setting. So far we have seen
the dominance of soft revocation among the CAs. As
mentioned in Section 2.3, soft revocation may result in
the survival of signed malware even after a certificate has
been revoked if a CA sets the wrong effective revocation
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Figure 5: CDF of the revocation date setting error (tr −
tm): difference between the effective revocation date and
the first malware signing date of a certificate.

date. As shown in Table 4, most CAs have set the ef-
fective revocation dates even after its certificate expira-
tion date. In this case, the effective revocation dates be-
come ineffective. In other words, the revoked certificates
should not affect any properly signed and timestamped
sample including malware should remain valid.

We measure how many CAs erroneously set effective
revocation dates, and how many signed malware still re-
mains valid even after the certificates used to sign are
revoked. To examine the erroneous effective revocation
date problems, the information (e.g., signing date) of bi-
nary samples signed with the revoked certificates is nec-
essary. We use WINE data set (D4), and query Virus-
Total with the 12,351,946 signed hashes from WINE.
Only 4,729,023 (38.3%) samples have sigcheck informa-
tion in its VirusTotal report; and the 4,729,023 samples
are signed with 45,613 unique certificates. We are un-
able to directly obtain the effective revocation dates of
the 45,613 certificates because of the following two rea-
sons. First, the search index service of VirusTotal sup-
ports only 80TB of data, or about a month of samples
so that we cannot query VirusTotal for all old samples.
Second, the VirusTotal reports contain neither CRLs nor
OCSP points to check the revocation status and to ob-
tain effective revocation dates. Therefore, we query the
CRLs we have collected (D2) to check whether or not the
certificate is revoked and to obtain effective revocation
dates (tr) if revoked. This process gives us 1,022 revoked
certificates (out of 45,613 certificates).

We find that CAs applied the soft revocation policy
to revoke 891 (87.2%) certificates. Of those, the effec-
tive revocation date (tr) of 45 (5.1%) certificates were
erroneously set by CAs. The affected CAs are summa-
rized in Table 5. We also measure how many malware
signed with the certificates are still valid due to the in-
effective revocation dates. We first use AVClass [25] to
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label malware using the VirusTotal reports. For the la-
beled malware sample, we extract the signed date tm. If
we find a signed malware with tm < tr, we say the effec-
tive revocation date is erroneously set and the malware
remains valid. We find that 250 malware (5.3% out of
the 4,716 malware) signed with the 45 certificates still
remain valid. The still-valid signed malware should be
revoked, but due to the CAs’ error, they remain valid
and a security threat to clients. The number of still-valid
signed malware is relatively small in our data sets, but
we believe that more still-valid signed malware can be
found in the wild since our data sets are limited, and do
not cover all samples in the wild. Figure 5 shows the dif-
ference between the effective revocation date (tr) and the
oldest signing date of signed malware (tm) of the certifi-
cate. The shortest difference is one day, and the longest
difference is 1019 days (2.8 years). Clients may execute
or install the still-valid malware because the executions
of the malware do not trigger any warnings for clients
even though its certificate is already revoked.

6 Dissemination of Revocation Informa-
tion

After compromised certificates are properly revoked and
the appropriate effective revocation dates are decided,
the next step for CAs is to make the revocation public
and maintain its availability. We first take a look into
the enforcement of the Windows platforms6 since clients
can be affected depending on the enforcement policies in
client-side platforms for checking revocation status in-
formation. Then, we examine the security problems in
dissemination of revocation status information and try to
answer our last research question Q4. Is revocation in-
formation served properly?

6.1 Enforcement in Windows

Client-side platforms must check the validity of code
signing certificates when a signed binary is encountered.
When there is a failure or inconsistent state at some
point in the revocation infrastructure, it matters how the
endpoint, where the binary is being executed, handles
that failure. Windows considers binary samples signed
with revoked certificates as unsigned samples and dis-
plays “unknown publisher” in a security warning mes-
sage. Windows also typically follows the soft-fail policy

6According to Net Market Share (https://www.
netmarketshare.com), since more than 75% of Windows clients use
Windows 7 and Windows 10, we focus on only these two platforms.

to allow execution with no prompts unless the revoca-
tion is explicitly found, for all unknown and unexpected
cases the assumption is that it is safe to proceed. We ob-
served that some of the problems in the revocation infor-
mation dissemination, when combined with the enforce-
ment policy of Windows, could allow binaries with re-
voked certificates to be executed without security warn-
ing messages.

6.2 Unavailable Revocation Information

In the code signing PKI, CAs must maintain the revoca-
tion information indefinitely since the trusted timestamp
extends the life of the certificate for an unknown length
much longer than the certificates lifetime. This is an im-
portant difference between code signing and Web’s PKI.
This means that revocation status information has to be
always-available and updated much longer than the life
of the certificates [20]. There are several cases when the
revocation status information for a certificate is not avail-
able for clients. The results and affected CAs are sum-
marized in Table 5.

Certificates without CRL and OCSP. The first problem
arises when there are no CRL or OCSP points embedded
in certificates. Code signing certificates that follow the
X.509 v3 standard must include CRLs and OCSP points
for clients to check revocation status. However, we ob-
serve that 788 (0.5% out of 145,582) certificates contain
neither CRLs nor OCSP points from the corpus of leaf
code signing certificates (D1). This means that clients
have no way to check the revocation status for these
certificates. Of the 788 certificates that contain neither
CRLs nor OCSP points, most (676, 85.8%) were issued
by Thawte, and they were issued before 2003. Recently,
in 2014, iTrusChina issued a code signing certificate to
Huawei without revocation information; thus, the prob-
lem does persist. The 788 certificates with no CRLs and
OCSP points have already expired. Therefore, no new
binaries can be signed with these certificates. However,
old binaries (including malware) already signed with the
certificates can be valid as long as it contains a trusted
timestamp.

We also examine how it affects the Windows plat-
forms. We download several samples signed with the
certificates from VirusTotal. We then inspect the certifi-
cate of the samples on Windows 7 and 10 to observe how
the Windows platforms check the validity of the sample.
In both versions of Windows, a message saying “The re-
vocation function was unable to check revocation for the
certificate” is displayed if you manually inspect the cer-
tificate (seen in Figure 6 in the appendix), but the certifi-
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Ineffective revocation date      # # # # #
Certs. without CRLs and OCSP points #  # # # # # # # #
Unreachable OCSP or CRLs points  # #  # # # #   
Inconsistent responses from CRLs and OCSP # #  # #  # # # #
Unknown or Unauthorized OCSP response # # # # # # # # #  
Transient certs. in CRLs  # # #  # # # #  

 = Issues found, # = Issues not found

Table 5: Mismanagement issues found across the top 10 CAs.

cate appears trusted due to the soft-fail revocation check-
ing policy of Windows. In fact, when clients attempt to
execute such a file, the prompt presents a normal trusted
file as seen in Figure 7 in the appendix even though the
revocation status information of the certificate is unavail-
able (at worst, it might be compromised and already re-
voked).

Unreachable CRLs and OCSP server. We now exam-
ine the unreachability of the CRLs and OCSP points in
our data set. Recall that we record the unreachability
of the CRLs (D7). During our observation period (Apr.
16th, 2017- Sept. 10th, 2017), we observe that 55 CRLs
are unreachable at least in one day. However, a few
times, there were networking issues for our institution’s
network which caused issues that were probably local-
ized to our monitoring system. After removing the CRL
URLs that were generally reachable, we are left with
13 CRLs that were never available during our observa-
tion period.

Of the 13 CRLs, 5 (38.4%) CRLs are unreachable
due to HTTP 404 Not Found Error. For example, two
CRLs points (http://crl.globalsign.net/ObjectSign.crl,
http://www.startssl.com/crtc2-crl.crl) produce HTTP
404 error, which indicates that the CA has removed the
CRL from the address but a server still exists at that
domain.

One domain has been bought by a domain reseller,
which means the CRL point is no longer available. The
certificates with this CRL were issued by a certificate
reseller; however the reseller shut down that part of its
business and let the related domain lapse. We do not
provide too many details because at this time the domain
can still be purchased, which could have serious impli-
cation; either explicitly revoking all certificates for this
CA or never revoking them even if they are used to sign
malicious files. We suggest that for this case, the root or

intermediate CAs should take over and maintain CRLs or
OCSP servers if their resellers are no longer operated.

We also measure the unreachability of OCSP severs
(D7). As we have experience some network and stor-
age problems on our institution internal infrastructure,
we have unreachable 15 OCSP URLs operated by eight
CAs (AOL, Verisign, Comodo, StartSSL, WoSign, Glob-
alTrustFinder, Certum, and GlobalSign) after removing
the affected OCSP URLs. The unreachability can be
caused by bad hostname, timeout, forbidden, and method
not allowed. For example, in the case of bad hostname,
AOL used to be a CA, and operate both one CRLs and
two OCSP servers. However, the AOL’s servers are cur-
rently no longer maintained, and its clients who try to
verify program code signed with the certificates are un-
aware where to query for revocation status information.

Unreachable CRLs and OCSP points are common,
since there are many valid reasons to not have a network
connection, and so Windows handles these failures qui-
etly. However, this means that when the CRL and OCSP
are permanently gone, then the failure also happens qui-
etly. Any binary, including malware, signed with this
type of certificate can remain valid due to the Windows
soft-fail revocation checking policy.

6.3 Mismanagement in CRLs and OCSPs

Here we highlight some mismanagement issues we
found while observing the CRLs and OCSPs during the
period from Apr. 16th, 2017 to Sept. 10th, 2017. The
affected CAs are summarized in Table 5.

No longer updated CRLs. Recall that CRLs should
be re-issued at least once a week, and the next update
timestamp at the nextUpdate field should be less than ten
days from thisUpdate field [3]. We examine how often
they update and re-issue their CRLs. Of 215 CRLs,
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57 CRLs are never updated at all since their nextUpdate
timestamps are not changed in the observation period of
our revocation publication date collection system. Most
(34 of 57, 59.6%) CRLs are issued by Shanghai Elec-
tronic CA, and well-known CAs’ CRLs are not found in
the 57 CRLs. Moreover, most (130, 89.7% out of 145
CRLs except for unreachable CRLs and not-updated-
CRLs) CRLs are updated and re-issued every day. It in-
dicates that CAs re-issue their CRLs when revoked serial
numbers are added.

Transient certificates in CRLs. Recall that code sign-
ing CAs must maintain and provide the revocation status
information of all certificates including expired ones be-
cause of the trusted timestamp. However, we find that
278 certificates are added and then later removed from
18 CRLs. The CRLs are maintained by ten different
CAs including GlobalSign, Certum, Entrust, Digicert,
and Comodo. Most removed serial numbers are never
re-added to its CRL. However, one serial number of Dig-
icert is re-added to the CRL after 106 days.

We reach out to the CAs to try and understand the fac-
tors that go into a decision to remove a revocation from
the CRLs. One CA replied that they had a flaw in their
revocation system that removes certificates after the cer-
tificate expired, and they fix the flaw to keep the certifi-
cates on the CRL indefinitely thanks to our report.

The disappeared serial numbers from CRLs are un-
likely to affect the Windows platforms as long as cer-
tificates have both CRLs and OCSP points since in Win-
dows, OCSP is always preferred over CRL to check re-
vocation status. However, when code signing certificates
contain only CRL points, Windows must rely on only the
CRL mechanism. In our data set (D1), the 28,386 leaf
code signing certificates (19.4% out of 145,582) con-
tain one of the 18 CRL points that have experienced se-
rial numbers disappearance. Most certificates (82.8%)
have both the CRL and OCSP points, but the 4,878
(17.2%) certificates issued by GlobalSign include only
CRL. Therefore, the Windows platforms must rely on
only the specified CRL points to check revocation sta-
tus. If revoked serial numbers are removed from CRLs,
any program code including malware signed with one of
the 4,878 certificates can remain valid even though the
certificate is already revoked.

Inconsistent responses from CRLs and OCSP. Since
CAs are distributing revocation information through
CRLs and OCSP, and one is a fallback mechanism for
the other. We expect that the state in the CRL and OCSP
would be consistent; for example, when the serial num-
ber of a revoked certificate is found in a CRL, the cor-
responding OCSP will also return that the certificate is

revoked.
We observe that 19 certificates have inconsistent re-

sponses from CRLs and OCSP from our data set (D1); the
certificates are valid according to the OCSP, but are re-
voked in the corresponding CRLs 7. To examine how the
inconsistency between OCSP and CRLs affects the Win-
dows platforms we download the binary samples signed
with these certificates from VirusTotal and check its re-
vocation status in the Windows platforms. These down-
loaded samples are classified as malware by most AV
vendors and their certificates are explicitly revoked in
the CRL. Therefore, the samples must be invalid and not
be executed. However, the Windows platforms present
these signed malware as valid, due to the inconsistency
between OCSP and CRLs. The Windows policy is to
first check the OCSP. If the response from the OCSP in-
dicates the certificate is valid, then Windows does not
double-check the status using CRLs. To prevent this sort
of threats caused by mismanagement issues, Windows
should double-check certificate revocation status using
both OCSP and CRLs.

The 19 certificate were issued by Go Daddy; three
certificates were issued by Starfield Technologies (re-
lated to Go Daddy). We believe that Go Daddy and
Starfield Technologies may share the same infrastruc-
tures for revocation information repositories; the infras-
tructures may cause the inconsistency problem. It indi-
cates that CAs must keep monitoring the consistence be-
tween CRLs and OCSP responses.

Unknown or unauthorized responses from OCSP. Ac-
cording to the OCSP specification, the OCSP respon-
ders (servers) should return three statuses for a certifi-
cate; good, revoked, and unknown [24]. The unknown
state indicates that the responder is unaware of the sta-
tus of the certificate being requested. Surprisingly, in our
data set (D1), the three OCSP servers (Certum, Shanghai
Electronic CA, and LuxTrust) respond that they are un-
aware of the status of their 669 certificates; almost all of
the certificates (658, 98%) are issued from Certum; the
rest of them (2%) are issued by Shanghai Electronic CA
and LuxTrust.

OCSP responders may also respond with an error
message. The error message has the five types; mal-
formedRequest, internalError, tryLater, sigRequired,

7We consider only this case where the responses from OCSP in-
dicate the certificates are valid, but revoked in CRLs since only this
case can lead to security threats where Windows users are allowed to
execute the binary samples with revoked certificates. However, the re-
versed inconsistent responses (revoked in OCSP and valid in CRLs)
do not affect Windows in terms of security as Windows believes cer-
tificates are revoked when the responses from OCSP indicate revoked,
and it displays warning messages for Windows users.

864    27th USENIX Security Symposium USENIX Association



and unauthorized. The unauthorized response means
that; (1) the client is not authorized to query the OCSP
server, or (2) the OCSP server is unable to respond au-
thoritatively [24]. In the OCSP server-side case, OCSP
responders return an unauthorized error message when
(1) they are not authorized to access the revocation
records for the certificate, or (2) when they remove the
revocation records of expired certificates and are unable
to locate the records for requested certificates. We exam-
ine how many OCSP servers return the error messages
for the requested certificates that they have issued. In our
data set (D1), we observe that 2,129 certificates (1.5% out
of 145,582) have the unauthorized error messages; most
certificates (1,515, 71.2%) are issued by Go Daddy. To
figure out whether client or server-side causes the prob-
lem, we check the revocation status of the certificates
through OCSP using OpenSSL, and using SignTool on
the Windows platforms. Both tools receive the unautho-
rized error messages, which indicates that this problem
results from the server-side, not the client-side.

The unknown or unauthorized responses from OCSP
may not affect Windows platforms in terms of secu-
rity since they also check CRLs if they receive those
responses. However, it indicates that CAs improperly
maintain their OCSP servers.

7 Limitation

Data sets collection. Due to the nature of how signed bi-
naries are distributed (various distribution mechanisms),
there is no easy way to collect all signed binaries and
code signing certificates in the wild. For example, some
binaries come directly from websites, but others come
after running installers or updaters or from external stor-
age. More importantly malicious binaries often are tar-
geted and the samples are hard find or only available for
a short time. This is an important difference between the
code signing PKI and the Web’s PKI as it relates to mea-
surement studies. TLS certificates collected through net-
work scanners provide a view of the publicly accessible
Web’s PKI, however our collected code signing certifi-
cates may not be representative of the entire code signing
PKI ecosystem as the collected data sets do not cover all
certificates and signed samples in the wild. Therefore,
we attempt to collect the broadest view of code sign-
ing certificates, and also try to approximate how large
compromised code signing certificates are with the mark-
recapture estimation.
Mark-recapture population estimation. As we dis-
cussed in Section 4.1, the characteristics of the data vi-
olates the assumptions of Mark-recapture algorithm: 1)

the population should be homogeneous, 2) the samples
should be independent, and 3) it should be a closed pop-
ulation. It results in underestimating the true population
of the potentially compromised certificates. Therefore,
the actual severity of the threat might be much more
significant. However, the results suggest that even with
the underestimation, the number doubles the number of
malware-signing certificates observed by Symantec and
VirusTotal combined (which is a precise measurement,
not an estimate). This puts the challenge of discover-
ing compromised certificates into perspective, as a major
security company and an information aggregator cannot
see most of these certificates. Additionally, it provides
a possible explanation for the long revocation delays we
report.

8 Discussion

The findings from our measurement study (Section 4–6)
suggest the current revocation systems based on CRLs
and OCSP are facing several problems including (1) dif-
ficulties in discovering compromised certificates, (2) re-
vocation delay, (3) ineffective revocation dates, and (4)
improper maintenance of the revocation information. We
discuss several preliminary recommendations for the ef-
fective code signing PKI and how a new design could
address the current problems in revocation.

Recommendation. We suggest the following properties
for the revocation system:
• Publicize the issuances of certificates and signed bi-

naries. As depicted in Section 4, CAs have difficulties
in discovering compromised certificates that they have
issued due to the nature of the code signing PKI. If
CAs or owners of certificates are informed and aware
that their certificates are abused, CAs would promptly
and properly revoke the compromised certificates. For
this goal, similar to TLS certificate transparency [18],
we suggest a new certificate transparency system for
the code signing PKI. In this system, CAs should log
the issuances of code signing certificates when issuing
new certificates. The distinct feature from TLS certifi-
cate transparency is that publishers are required to log
the history of when/what binaries (to be publicly dis-
tributed) are signed with their private keys. Along with
code signing certificates, the hash values of signed bi-
naries are logged in the proposed system. The system
should be available to the public so that anyone can
audit and monitor the logs. Using the logs, CAs and
owners are able to know the first date of when a certifi-
cate becomes compromised, which results in a proper
effective revocation date.
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• Better dissemination of revocation information. The
CAs should better understand the code signing PKI
and properly maintain their revocation systems (CRLs
and OCSP servers) to have better availability and con-
sistency that can help clients correctly check the re-
vocation status of certificates. Moreover, rather than
maintaining their own separate infrastructures only for
dissemination of revocation information, they may use
our proposed code signing certificates transparency to
log their revocation information.

• More conservative Windows’ checking policy. Win-
dows should double-check the revocation status of
code signing certificates for the inconsistent responses
from OCSP and CRLs. Moreover, Windows should
apply the hard-fail revocation checking policy for bet-
ter security.

9 Related Work

We discuss related work in two key areas: identifying the
code signing PKI abuse and measuring revocation prob-
lems in the Web’s PKI.
Code signing PKI abuse. Sophos [28], Kotzias et
al. [13], and Alrawi et al. [1] examined the signed ma-
licious PE files. They found that the most malicious PE
files were PUP, and they were signed with code signing
certificates legitimately issued from CAs. On the con-
trary, Kim et al. [12] focused on the breaches of the trust
in the code signing PKI ecosystems; many certificates as-
sociated with stolen private keys were used to sign mal-
ware. These studies briefly introduced a few of the re-
vocation problems, but they did not make a distinction
between the effective revocation date (tr) and the revoca-
tion publication date (tp) and only measured the former.
This may result in an inaccurate estimation of the revo-
cation delay. In contrast, we measured tp by periodically
collecting CRLs. Additionally, we analyzed the revoca-
tion process from end-to-end and we report new findings
regarding the discovery of compromised certificates and
the dissemination of revocation information.
Revocations problems in the Web’s PKI. Compared to
the code signing PKI, the Web’s PKI ecosystems has
been well studied since many network scanners have
been introduced to collect data: e.g., Zmap [7]. Zhang
et al. [30] and Durumeric et al. [6] have found that the
number of revocations increased after the Heartbleed
announcement. However, the majority of the compro-
mised certificates were not revoked even after new cer-
tificates were re-issued. Liu et al. took a close look
at the TLS certificate revocation [19]. They found that
a large fraction of TLS revoked certificates are served.

Web browsers often failed to check the revocation status
due to the expensive revocation status checking in terms
of bandwidth and latency. Kumar et al. [16] measured the
mismanagement of OCSP and CRLs in the Web’s PKI:
specifically endpoint availability, uptime, and error re-
sponses.

10 Conclusion

Certificate revocation is the primary defense against the
abuse in the code signing PKI. An effective certificate re-
vocation process consists of three roles: (1) discovering
compromised certificates, (2) revoking the compromised
certificates with a meaningful date, and (3) disseminat-
ing the revocation information. However, we found that
the revocation processes can have security problems, and
new security threats can be introduced by the problems.
In the discovery phase, CAs take on average 5.6 months
to revoke the compromised certificates after the certifi-
cates was used to sign a known malicious binary. The
mark-recapture estimation of compromised certificates
point to the fact that it is difficult to find abusive cer-
tificates in the wild. The validity of a signed sample
is determined by the effective revocation date, but CAs
improperly set effective revocation dates. The inaccu-
rate effective revocation dates mean that signed malware
remains valid even after its certificate is revoked. Al-
though CAs properly and promptly revoke the compro-
mised certificates, clients can be exposed to signed mal-
ware attacks due to CAs’ mismanagements of CRL and
OCSP. There are many cases that we have seen where
clients are unable to check certificate revocation status
due to (1) missing CRLs and OCSP points, (2) unreach-
able CRLs and OCSP points, (3) CRLs that are no longer
updated, (4) revoked certificates that are mistakenly re-
moved from a CRL, (5) inconsistent responses from CRL
and OCSP, and (6) unknown or unauthorized responses
from OCSP. These discoveries highlight various proper-
ties of the code signing PKI and its revocation process
that should be monitored more actively due to the secu-
rity implications that they create.
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Appendix

A Screenshots

Figure 6: Screenshot of Windows 10 when a certificate
without revocation information.

Figure 7: Screenshot of the prompt displayed in Win-
dows 10 when executing a signed binary file with miss-
ing certificate revocation information. In this case, nor
CRL or OCSP information is provided in the certificate.

868    27th USENIX Security Symposium USENIX Association


	Introduction
	Problem Statement
	Code Signing PKI
	Revocation Process
	Effectiveness of Revocation Process
	Our Goal and Non-Goal
	Challenges for Measuring Revocation

	Data Collection
	Fundamental Data (D1 – D2)
	Revocation Publication Date List (D3)
	Binary Sample Information (D4 – D6)
	CRL/OCSP Reachability History (D7)

	Discovery of Potentially Compromised Certificates
	Mark-recapture Population Estimation
	Revocation Delay

	Setting the Revocation Date
	Problems in Revocation Date Setting

	Dissemination of Revocation Information
	Enforcement in Windows
	Unavailable Revocation Information
	Mismanagement in CRLs and OCSPs

	Limitation
	Discussion
	Related Work
	Conclusion
	Screenshots

