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ABSTRACT
In security operation centers (SOCs) of large organizations, triaging
and remediating security incidents is a tedious and error-prone job.
Incidents are generated by correlating security-related events that
may indicate attack (e.g., unblocked end-point alerts on the same
machine). In many cases, several incidents consist mainly of the
same sets of events, and they can be traced back to the same root
cause. Rather than requiring analysts to triage incidents individu-
ally or scan incident lists one by one to identify related incidents,
in our demo we provide hierarchical clustering of incidents so that
analysts can quickly identify all similar incidents and perform joint
remediation actions. The hierarchical aspect of the clustering algo-
rithm enables analysts to navigate a cluster tree, allowing them to
find the right granularity at which incidents should be grouped so
that a single remediation action can dispatch the largest possible
number of related incidents. Our user interface simultaneously pro-
vides insight into the nature of attacks on an organization, and is
also an efficient mechanism to automate response. This is a demo
paper. Our demo can be viewed at https://vimeo.com/250453752 with
password svp3267b. Should this paper be accepted we will make the
demo video public.
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1 INTRODUCTION
Security Operation Centers (SOCs) often use tools that aggregate
events generated by a variety of security devices and products, then
use rule-based engines to generate incidents, which are collections
of these events happening on the same machine and around the
same time (e.g., on the same day). An illustration of this can be
seen in Figure 1. These incidents can vary in severity and degree of
confidence whether something is actually an attack (for example,
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Figure 1: Events are generated by security products, are ag-
gregated, and then grouped into incidents based on their
proximity to each other in space and time

incidents can be triggered by anomalous network traffic patterns
that prove to be benign). Much of a SOC analyst’s time is spent
on the tedious task of triaging incidents, and either responding to
them individually, or manually recognizing sets of similar incidents
to be collectively acted upon [16].

It is not surprising that spending time on these menial tasks
affects the analysts’ productivity and happiness [15]; for this reason
we propose a tool that enables analysts to quickly dispatch sets
of related incidents with joint remediation action. The ultimate
goal is to enable analysts to spend more time on rewarding and
intellectually stimulating tasks such as investigating the root causes
behind the security incidents and securing the company’s systems
to prevent recurrences of similar problems.

We provide an interactive tool that takes as input a set of inci-
dents, and outputs a hierarchical clustering. This enables analysts
to:

• quickly discover similar new incidents and act on them to-
gether;

• associate new incidents with similar reviewed ones, and find
out how they were handled in the past;

• navigate the hierarchical structure to find the right cluster
granularity, such that collective actions can be taken on
sufficiently similar incident sets.

https://vimeo.com/250453752
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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We make the following contributions:
(1) we provide a clustering algorithm that is both scalable and

flexible, in that it allows for arbitrary distance functions on
the features of the security incidents that it clusters;

(2) the hierarchical clustering allows incident data to be ex-
plored both from the top down, to help understand the “big
picture” and composition of the incident pool, and from the
bottom up, starting from highly similar incidents and gradu-
ally expanding the incident pool;

(3) our approach does not force every single incident into a
cluster: unique incidents will remain displayed as isolated
elements;

(4) our interactive user interface provides visual cues to illus-
trate properties of incident clusters, such as cluster size and
homogeneity, incident severity and predominant incident
category.

2 SYSTEM DESCRIPTION
Our system consists of two components. The first is the clustering
component, which collects incident data and computes a hierarchi-
cal clustering on that data; the second one is an interactive user
interface that allows users to explore and take action on the results
of the clustering. We describe both in the following.

2.1 Clustering
Our choice for the clustering algorithm is dictated by a few requi-
sites:

(1) the algorithm should be flexible, so we can define an arbi-
trary distance function between our data items, to effortlessly
improve our results when the design of the distance function
improves;

(2) it should be hierarchical, to enable interactive exploration of
the dataset, with the option of “zooming” in and out between
smaller and larger clusters;

(3) it should be scalable to work on large data sizes;
(4) it should be effective where the output represents patterns

in the data.
The next section describes the design of the distance function. We
then describe the algorithm used.

2.1.1 Design of the Distance Function. Each incident consists
of a list of events happening on the same machine on a given day,
as well as contextual metadata. The clustering algorithm considers
each incident i as a vector of events Ei , where Ei,k is the number
of times the event whose identifier is k is represented in incident i .
We adopt a sparse feature representation because most incidents
contain few non-zero event counts. That is, we represent the vector
Ei as a dictionary of values in which we create entries Ei,k = v
when v , 0 and not otherwise, so that all undefined entries of
Ei,k indicate that v = 0 for event k and incident i . The additional
metadata is not used to cluster data, but it is shown to users in the
interface described in Section 2.2.

Events vary widely in terms of their severity and rarity. While
all events are collected as potentially relevant to security, some of
them represent common events (e.g., a user logged in, a user entered
an incorrect password), which are relevant only when happening

many times. Since the most common events are generally also the
least relevant ones, we adopt a TF.IDF normalization [9], and work
on vectors Ni such that Ni,k = v if event k has v times the average
number of instances across all incidents:

Ni,k = n
Ei,k∑
k ′ Ei,k ′

.

Like the Ei vectors, we represent the sparse Ni vectors using dic-
tionaries.

We finally use the generalized Jaccard distance as our distance
measure between the Ei vectors:

d(i, j) = 1 −

∑
k min

(
Ni,k ,Nj,k

)
∑
k max

(
Ni,k ,Nj,k

) .
2.1.2 Clustering Algorithm. Our clustering algorithm is inspired

by NG-DBSCAN [10], a scalable and approximated implementation
of the DBSCAN [4] density-based clustering algorithm that can
be applied to arbitrary data and distance functions. NG-DBSCAN
implements a variant of the NN-Descent [2] algorithm, and caches
the distances computed between items to feed them as inputs to the
DBSCAN algorithm. DBSCAN is well-known as an algorithm that
provides good clustering and isolates “noise” (i.e., non-clustered
items) from the actual clusters.

DBSCAN is not a hierarchical clustering algorithm, therefore
with an approach analogous to NG-DBSCAN, we run NN-Descent
to compute distances between item pairs, and feed these results to
our implementation of the OPTICS [1] tool, which is a hierarchical
generalization of DBSCAN.

OPTICS orders the data items and outputs a reachability graph,
which places ordered items on the x axis and their reachability
distance, which is a measure of an item’s distance from the previous
item in the graph, on the y axis.

In the reachability graph, data items are ordered so that similar
items are close to each other. Valleys in this plot represent clusters,
whose width represents the number of items they contain, and
whose depth indicates the degree to which the cluster differs from
other data items. OPTICS is a generalization of DBSCAN because
the clusters of DBSCAN for a parameter ε can be obtained by finding
the consecutive points in the plot for which the reachability distance
is lower than ε .

In Figure 2, we show the results of running our algorithm on a
set of incidents in a single organization: we can see how the clusters
vary in terms of both width and depth in the reachability plot. We
can also see hierarchical clustering structures that appear in the
plot as valleys within valleys. The coloring of the plot indicates
the degree to which security analysts responded to the incidents in
question: red indicates incidents with which responders interacted
(e.g., by escalating them or by indicating that they took action
to resolve the issue), while pale yellow indicates incidents that
were ignored, and which remained in the queue until they timed
out. It is clear that the amount of interaction is correlated with
the clusters that we can observe; in particular, there is a large
cluster of events which time out in most cases, while other clusters
that consistently elicit a response. The largest cluster of incidents
that is consistently ignored consists mostly of “Suspicious Traffic”
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Figure 2: The reachability plot output by OPTICS on a set of incidents for a single organization, along with the ratio of non
timed-out incidents: those on which the analysts of a company took action.

incidents. It is possible that responders did not know how to handle
this vague category of incidents.

2.2 User Interface
The graphical user interface (GUI) explores the neighborhood of
a given current incident. The GUI is sub-divided in two interde-
pendent visual components: the hierarchical clustering Tree and
the Incidents Grid, both shown in Figure 3 on the following page.
Using the Tree, SOC analysts can navigate the hierarchical clusters
generated by our algorithm. Selecting a cluster in the Tree causes
the Incidents Grid to show the cluster’s associated security inci-
dents, and for these incidents to be examined at multiple levels of
detail. We proceed by describing the Tree and Incident Grid and
conclude this section by introducing the Action Bucket feature and
a use-case scenario.

2.2.1 The Clusters Tree. The hierarchical clustering is repre-
sented by a tree, whose root contains all incidents in the queue.
Each tree node represents a cluster of similar incidents, and its child
nodes represent incident clusters that are subsets of the parent. A
node’s parent cluster is a larger cluster with lower similarity be-
tween incidents; conversely, a node’s child clusters contain fewer,
more similar, incidents. Not all nodes in a cluster are represented
in its child clusters because singleton items that are not sufficiently
similar to other incidents are not forced into any cluster.

To ease navigation, only clusters that contain the current incident
and their siblings are displayed. The current cluster (displayed
in the Incident Grid) is displayed with a yellow border, while all
other clusters that contain the current incident have a blue border.
Incidents have a type attribute which broadly categorizes them,
such as “reported malware download” or “ransomware infection”,
and each node is labeled with two values: the number of incidents in
the cluster and the number of distinct incident types in the cluster.

Each node is visualized through a geometric shape (by default, a
circle). Up-pointing triangles (△) represent clusters where at least
p% (by default, p = 70) incidents were responded to in the past by

security analysts, while down-pointing triangles (▽) represent clus-
ters of incidents having at least p% false positives in the past. Inner
node colors inform about incident severity: red nodes represent
clusters with at least p% high-severity incidents, while green nodes
represent those with at least p% low-severity ones.

2.2.2 The Incidents Grid. When a cluster is selected in the Tree,
the Incidents Grid shows a view with one row for each incident
type in the cluster. Clicking on the lens symbol for an incident type
opens a view of the individual incidents having that type, and a
listing of the security events associated with that incident, sorted
(by default) by the descending relevance of each incident (defined
as the sum of the Ni,k values for incidents i in the cluster and event
k). It is possible to perform additional sorting and filtering (e.g.,
only showing incidents that do or do not include a security event
of type k).

2.2.3 Action Buckets. Action buckets are containers suited for
incidents that should undergo a common resolution action. Users
can create and label buckets, add incidents and associate actions to
them. During cluster exploration, users can add incidents to buckets
through the “update bucket” widget; at the end of the investigation,
users can commit a common action to incidents in the same bucket.
It is worthy to notice that committed buckets can, in the following,
be regarded as a kind of ground truth for the clustering algorithm,
and drive the development of new and better distance functions,
improving our definition of Section 2.1.1. Custom filters can be
associated to each bucket, in order to hide incidents and speed up
the triaging process.

3 DEMO OUTLINE
We consider the use case where our user, a SOC analyst, is working
on an incident queue. The investigation loop starts with the user
selecting an incident and starting the investigation process. Let
us suppose that the user starts the investigation with an incident
having type Trojan XYZ ; in the following we provide an example
of the interaction.
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Figure 3: The Core graphical user interface (GUI) is composed by the Hierarchical Clusters Tree and by the Incidents Grid,
highlighted as components A and B respectively.

(1) By engaging in a bottom-up approach, the user reaches the
deepest level of the cluster hierarchy containing the current
incident and verifies that this cluster contains 16 incidents
having a single type. In this cluster, most items have high
severity (node inner color is red), but no significant actions
were taken in the past (node has a cicle shape).

(2) By clicking the node in the Tree, the contents of the cluster
are displayed in the Grid. The user conveniently assesses
the available contextual information (IP address, machine ID,
sub-network, etc.) and creates a new action bucket, Trojan
XYZ for Network XPTO, to stage relevant incidents.

(3) Following the bottom-up approach, the analyst turns their
attention back to the Tree and looks at the current node’s
parent contains 23 instances of incidents that also trace back
to the incident Trojan XYZ. Surprisingly the shape of the
cluster is an upside-down triangle, meaning that a major
percentage of the incidents within the cluster were in the past
considered false positives. Now looking at the contextual
data in the Grid, more machines from other internal sub-
network are also being targeted with the same type of Trojan.
As a consequence, the user creates a second action bucket to
accommodate the new findings.

(4) The sibling of the previous node contains 10 more incidents
of the same type which end up within a different cluster.
By examining the Grid and the incident events, the user
understands that some events differ, but the root cause is still
the same; additionally, the contextual information confirms
that these incidents share the same IP address of those found
in step 2. Hence, the analyst adds the incidents to the action

bucket created in step 2, which now contains a total of 26
incidents.

(5) The analyst can repeat the last steps and consult ancestors
and siblings of the current nodes, to find even more related
incidents. When this investigation is considered over, ap-
propriate actions are associated to the event buckets and
submitted; the user returns to the list of queued incidents
and restarts an investigation loop.

3.1 Video
Our demo is shown in a video available at https://vimeo.com/
250453752; the password needed to watch it is svp3267b. We will
release a public version of the video with the camera-ready version
of this paper.

4 VALUE AND CONTRIBUTION
We think that the valuable time of security experts should not be
wasted on repetitive and tedious tasks. The tool was designed to
enable analysts to spend more time on gratifying and productive
endeavours.

The key characteristics of our clustering algorithm are:
Flexibility. We use a generic algorithm that clusters arbitrary

data according to arbitrary distance functions. Our current
approach adopts generalized Jaccard distance on TF.IDF-
normalized vectors, but a large amount of additional meta-
data is collected, and plenty of domain-specific knowledge
could be encoded in the distance function. We plan to iterate
on our distance function design by interacting with analysts,
and encode their expertise in better distance functions; the

https://vimeo.com/250453752
https://vimeo.com/250453752
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distance function is arbitrary (e.g., we don’t require it to be a
metric), which gives us the best possible flexibility for future
improvements.

Hierarchy. Our data is naturally clustered in a hierarchical
fashion: as we can see in Figure 2 on page 3 there are clusters
within clusters of incidents. Our hierarchical visualization
allows to navigate between a big picture and close-up views
of the incident panorama, providing context and letting ana-
lysts choose the right level of granularity to operate on.

Scalability. Our algorithm inherits a computational complex-
ity of around O

(
n1.1

)
from NN-Descent [2]. This enables us

to cluster even large numbers of incidents, which is useful
when using a database of historical incidents to provide con-
text for the new incidents that analysts need to take action
on.

Density-Based Approach. Many clustering algorithms “force”
each data point into a cluster. This is not desirable in our
case, since incidents that are not naturally part of an inci-
dent cluster should not be mixed with those that are indeed
similar between each other. Density-based clustering algo-
rithms, instead, recognize that some data points are isolated
and do not put them in a particular cluster. This is of key
importance in a context where rare events that are different
from the typical workload can be a sign of advanced attacks
carried out by skilled adversaries. Additionally, the output
of density-based algorithms is explainable: one point is clus-
tered together with others only if there are at least k (k is
an algorithm parameter) other items that are close to it, and
these close points can be shown to the user.

Our User Interface (UI) is the instrument of control for the under-
lying clustering process. It moves away from the standard queuing
models where incidents are presented in a sequential fashion, and it
provides a peripheral view of the threats landscape where users can
select the exact level of granularity to act upon a given occurrence.
The key characteristics are:

Portability and Extensibility. Our interface is portable be-
cause its underlying technologies are all based on JavaScript.
Currently the prototype has been deployed as a Kibana Dash-
board, a Splunk Application and a Web SPA (Single Page
Application). Custom extra visualizations of the hierarchical
clustering were manually crafted and are also available to
better understand each clustering layer. Additionally the vi-
sual pieces involved in highlighting data-set properties can
be easily customized. For example: defining which properties
and thresholds are involved when describing a high-severity
cluster.

Usage Telemetry. The analyst’s navigation of the cluster tree
and incidents grid are recorded to enable tuning of the clus-
tering algorithm and user interface, and to assess whether
our interface improves the consistency with which incidents
are handled.

5 RELATEDWORK
In this Section, we discuss related work in two areas: clustering for
security-related events and visualization of hierarchical clustering.

Clustering Security-Related Events. Various pieces of work are
devoted to the problem of clustering security-related data. We dis-
cuss some work that target the clustering of security events, but
remark that our approach clusters security incidents, which consist
of multiple security events of various types, whereas the prior work
has focused on clusters of individual security events.

A recurring characteristic of much of the prior art is that it
requires manual effort to annotate the data in various ways. Julisch
and Dacier [6, 7] aggregate intrusion detection events according
to a manually specified hierarchical taxonomy over the attributes
of the events. Ning et al. [12] and Porras et al. [13] delegate even
more control to the domain experts that analyze the data, wherein
each cluster is formed according to a clustering constraint that is
explicitly specified by the user. The approach of Mathew et al. [11]
requires extensive hand-tuning and annotation (including modeling
of possible attacks) to enable real-time analysis of security-related
events as they unfold. Other approaches [17, 18] require that a
distance function be defined for each attribute of the analyzed
items, and a set of weights to allow fusing each of them.

Compared to the above pieces of work, we consider that our
approach has two main benefits: flexibility and hierarchical out-
put. Our clustering is flexible in that it allows a variety of custom
distance functions to be applied to each attribute, ranging from
the simple distance function described in Section 2.1.1 to distance
functions that encode domain knowledge and are iteratively re-
fined by experts. Our algorithm’s hierarchical output is important
because it allows experts to explore related incidents and the coars-
est granularity at which multiple similar incidents can be jointly
resolved.

Visualization for Hierarchical Clustering. A standard way to visu-
alize hierarchical clusters is to use dendrograms [5], i.e., a taxonomic
tree diagram with elements on the x axis and distances on the y
axis: a split on the tree at height y means that two clusters are split
at distance y. In the most general case, the leaves of the dendro-
grams are individual data items; it is therefore not surprising that
dendrograms of large datasets are difficult to read. Visualizations
have accordingly been developed to represent large hierarchical
clusters, such as treemaps [14], radial layout trees [3], and botanical
trees [8]. While each of these and other methods have their own
particular advantages, they all share the goal of densely represent-
ing large hierarchies and providing an understanding of the overall
hierarchical structure of the data. Without minimizing the merits
of these approaches, we chose to base our visualization of the clus-
tering hierarchy as a simple tree structure because we require a
visualization that is well suited to interactive exploration of the
hierarchy both from the bottom up and from the top down, relying
on the right pane of our visualization to provide an interactive
summary of the clusters themselves.

6 CONCLUSION
Security Operations Centers report high levels of analyst burnout
because the job promises to be creative and intellectually stimulat-
ing, but is instead dominated by tedious and repetitive investiga-
tions of similar security incidents [15]. We develop clustering and
incident visualization tools to eliminate redundant effort. Rather
than imposing a rigid clustering algorithm with a fixed granularity,
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we provide the first hierarchical clustering tool for security inci-
dents, thereby enabling analysts to quickly identify the context in
which a security incident has occurred and analyze and dispatch
large numbers of related security incidents at once.
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