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ABSTRACT
Fuzzy hashing algorithms provide a convenientway of summarizing
in a compact form the content of files, and of looking for similarities
between them. Because of this, they are widely used in the security
and forensics communities to look for similarities between binary
program files; one version of them, ssdeep, is the de facto standard
to share information about known malware.

Fuzzy hashes are quite pervasive, but no study so far answers
conclusively the question of which (if any) fuzzy hashing algo-
rithms are suited to detect similarities between programs, where
we consider as similar those programs that have code or libraries in
common. We measure how four popular algorithms perform in dif-
ferent scenarios: when they are used to correlate statically-compiled
files with the libraries they use, when compiled with different flags
or different compilers, and when applied to programs that share
a large part of their source code. Perhaps more importantly, we
provide interpretations that explain the reasons why results vary,
sometimes widely, among apparently very similar use cases.

We find that the low-level details of the compilation process,
together with the technicalities of the hashing algorithms, can
explain surprising results such as similarities dropping to zero with
the change of a single assembly instruction. More in general, we
see that ssdeep, the de facto standard for this type of analysis,
performs definitely worse than alternative algorithms; we also find
that the best choice of algorithm to use varies depending on the
particularities of the use case scenario.
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1 INTRODUCTION
Fuzzy hashes1 were introduced in the computer security field more
than a decade ago. Unlike cryptographic hashes (e.g., MD5 or
SHA512), fuzzy hashes can be compared to find similar pieces
of data. The need for comparable hashes came mainly from two
different, yet related, problems. The first one, historically speaking,
is spam detection: Spamsum [29] and Nilsimsa [8] compute email
signatures that are compared against known unsolicited messages
to label emails accordingly. The second problem comes from the
forensic community, where fuzzy hashes are used to correlate foren-
sics artifacts. In this scenario, comparable hashes can be used to
locate incomplete file fragments in disk or memory dumps, or to
raise red flags if files similar to known suspicious ones are present.

Fuzzy hashing is a simple and cheap solution that can be applied
to arbitrary files, requires few computational resources, and pro-
duces results in a compact text format. This convenience, combined
with some early promising results in binary analysis [21], is proba-
bly the main reason why ssdeep, one of the earliest fuzzy hashing
algorithms, is widely adopted in the cyber security industry.

While fuzzy hashing for binary comparison is undoubtedly wide-
spread on the industrial side, there is no academic consensus on its
merits. Some works [1, 10, 19, 21, 27, 30] measure the effectiveness
of different fuzzy hashing algorithms to identify similar binaries
and malicious files, often with contradictory conclusions: one study
may suggest that tlsh is completely ineffective for binary com-
parison [30] while another finds it to be one of the best available
solutions for this problem [1]; these studies generally focus on un-
derstanding if a given algorithm works in a certain setting, but do
not investigate why—thus missing the opportunity to fully under-
stand this phenomenon and generalize their findings beyond the
samples used in their experiments.

Other studies [6, 16, 17, 31] have instead focused on developing
alternative solutions that often provide higher accuracy in exchange
for a loss in convenience in terms of generality (e.g., only being
applicable to binaries for a given hardware architecture, requiring
dynamic analysis of the samples, or assuming each binary can be
successfully disassembled) and/or needed computational and stor-
age resources. Maybe because of these limitations, these solutions
have not yet been largely adopted by the security industry.

From the existing literature, one can understand that fuzzy hash-
ing can sometimes be an easy and effective solution for binary
analysis problems, and yet it is unsatisfactory in many other cases;
in a malware analysis scenario, fuzzy hashes seem to identify quite
consistently the similarities between samples of certain malware

1We use the “fuzzy hashing” and “approximate matching” terms interchangeably.
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families, and fail to capture any similarity for other families. Un-
fortunately, in a given practical setting, it is difficult to understand
whether fuzzy hashing would be useful, or if one should rather
need to use more sophisticated approaches.

To overcome these limitations, we propose a comprehensive
analysis of how the main fuzzy hash families behave in three binary
analysis case studies. Our first main contribution is to go beyond
simply comparing and clusteringmalware samples: we discuss other
common problems such as identifying statically-linked libraries,
recognizing the same software across various releases, or detecting
the same program across recompilation (with different flags or
different compilers altogether). Our second main contribution is
to avoid performing yet another large scale experiment on fuzzy
hashing, which could provide useful statistics but does not allow
for a manual inspection and verification of the results. Instead, we
focus on few selected test cases with the goal of pinpointing the
reason behind the individual results and provide practical examples
of when each algorithm succeeds or fails at a given task.

Our experiments shed light on the low-level details that can com-
pletely overturn the similarity between binary files. For example,
we found that the similarity is not just a consequence of the size
of the change. So, a single assembly instruction modified at the
right position in the program is sufficient to reduce the similarity
to zero. Similarly, and against the common belief in the security
community, it can also be enough to replace a URL with one that
contains few more characters to destroy the similarity as captured
by current fuzzy hash algorithms.

More in general, different algorithm families are based on distinct
concepts of file similarity, and distinct problems are better solved
with algorithms of different families. We find that CTPH—the con-
cept behind ssdeep, the de-facto industry standard—is not very
well suited to binary analysis in general. Depending on the prob-
lem, approaches based on n-grams (such as tlsh) or on statistically
improbable features (such as sdhash) are definitely preferable.

2 BACKGROUND
Fuzzy hashes are instances of the locality-sensitive hashes (LSH)
family [12]. While for traditional hashes the only meaningful oper-
ation is checking for equality, comparing LSH hashes yields non-
binary similarity values, such that similar data will have similar
hashes. Fuzzy hashes apply the LSH concept to arbitrary strings or
files. Depending on the particular use case in which fuzzy hashes
are used, different definitions of file similarity may be better suited.
We identify three families of fuzzy hashing algorithms, which es-
sentially differ on the concept of similarity they apply; in our ex-
perimental section, we measure how these approaches fare when
they are used in the context of different binary comparison tasks.

Context-Triggered Piecewise Hashing. Context-Triggered Piece-
wise Hashing (CTPH) considers two files similar if they have some
identical sub-parts. A naïve way to apply this concept would be
breaking files in fixed-size blocks, hash them, and then look for col-
lisions. Unfortunately, this simple approach is not resilient to shifts
in block boundaries: for example, prepending a single byte to a file
could generate different hashes for each block, hence resulting in
zero similarity. This problemwas first solved in the Low-Bandwidth
network File System (LBFS) [20]. To find identical file chunks (and

avoid unnecessary network traffic), LBFS computes the hash of
n-bytes “context” sliding windows, and places block boundaries
where the firstm bits of the hash are zeroes: since block boundaries
only depend on the surrounding n bytes, inserting or deleting short
strings of bytes only changes the hashes of few file blocks, leaving
the others unchanged. Rabin fingerprints [23] were used because
they are efficient to compute on sliding windows, andm is the most
important parameter to tune the expected block size.

In 2002 Spamsum [28] adapted the LBFS approach to classify
spam. The Spamsum fuzzy hash chooses two consecutive values of
m such that each file is split in around 64 blocks; for both values
ofm, Spamsum encodes via base64 the least significant 6 bits of
each block hash. Therefore, two spamsum hashes can be compared
only if they have compatiblem values (i.e., they represent files of
similar size); the similarity between the two files is a function of the
edit distance between the two hashes with the samem. To avoid
false positives, 0 is returned if the two hashes don’t have at least a
7-character substring in common. In 2006, Kornblum proposed to
apply his Spamsum implementation, ssdeep, to forensics applica-
tions such as altered document and partial file matching [18]. This
proposal was very successful and today ssdeep is used in a wide
variety of cases to discover similar files.

Over the years, various improvements to ssdeep have been pro-
posed. For example, MRSH [26] still uses CTPH to divide files, but
encodes the set of hashes in Bloom filters and evaluates similarity
as a function of the number of bits in common between them; this
implementation obtains a better trade-off between the hash size
and the quality of comparisons. mrsh-v2 [2], which is evaluated
experimentally in this work, is an improved version of MRSH. An-
other approach proposes Cuckoo filters [14] to further improve on
hash compression at constant quality.

In general, while technical details may change, CTPH approaches
are all based on the concept of recognizing identical blocks in a
file. Therefore, if even small differences are widespread through
the files, CPTH-based approach often fail to identify any similarity.

Statistically Improbable Features. Based on the realization that
many files have frequent sequences of bytes in common (e.g., head-
ers, zero padding, frequent words in text documents, etc.), Roussev
proposed a new approach through sdhash, which looks for statisti-
cally improbable sequences of 64 bytes (features); a file’s feature set
file is represented in Bloom filters as done in MRSH. Since sdhash
considers as related files with peculiar 64-byte substrings in com-
mon, it is particularly effective in finding cases where some parts
are copied from the same source but it is less likely to detect files
that have some sort of structural similarity but no longer strings in
common (e.g., text files written in the same language).

N-Grams. Another approach to fuzzy hashing is based on the fre-
quency distribution ofn-grams (substrings ofn bytes in a file), based
on the idea that similar files will have similar n-gram frequency dis-
tributions. A first approach in this direction is Nilsimsa [8], which
was proposed, like spamsum, to identify spam. Nilsimsa takes in con-
sideration all the 5-grams in a file, and for each of them it generates
the 3-grams that are sorted subsets of it (e.g., “ace” is generated
from “abcde”). Each of these 3-grams is hashed into a value be-
tween 0 and 255 and an array called accumulator holds the counts
for each of these hashes. A Nilsimsa hash is a bitmap of 256 bits



(32 bytes) where a bit is set to 1 if the corresponding value of the
accumulator is larger than the median; similarity between files is
computed as the number of bits in common between their bitmaps.
Oliver et al. proposed tlsh [22], which is specifically designed for
binary analysis and which we include in our experimental analysis.
The main differences with Nilsimsa are that tlsh uses 2 bits per
hash value of the accumulator (using quartiles rather than medians),
a 1-byte checksum is used to recognize completely identical files,
and the file length is encoded in the hash.

Summary. The approaches to fuzzy hashing described here de-
fine file similarity at a different and decreasing granularity. CTPH
hashes blocks that are relevant subsets of the whole file; two files
will result as similar if and only if they have rather large parts in
common (e.g., a chapter in a text file). The statistically improbable
features of sdhash are 64-byte strings; hence, sdhash will recog-
nize files having such segments in common (e.g., a phrase in a text
file). Finally, the n-gram approach of tlsh looks at the frequency
distribution of short byte sequences; it will for example put in rela-
tions text documents that have the same or similar words, such as
files written in the same language. For a more complete overview
of fuzzy hashing algorithms and their applications we point the
reader to the available surveys on the topic [3, 15].

3 A HISTORICAL OVERVIEW
All major fuzzy hashing algorithms were initially tested on binary
files. For instance, Kornblum [18] (ssdeep) performed two simple
experiments using a mutated Microsoft Word document and the
header and footer of a picture in a file carving operation. Rous-
sev [24] (sdhash) used a more comprehensive corpus with six file
types (Microsoft Word and Excel, HTML, PDF, JPEG, and TXT)
taken from the NPS Corpus [11]. However, none of these experi-
ments was performed on program binaries.

In 2007, the year after ssdeepwas first published, ShadowServer
published the first study testing the algorithm’s ability to detect
similarities between malicious binaries [21]. The study included
experiments with goals such as identifying packers, the same bi-
nary packed with different packers, or malware samples belonging
to the same family. The authors concluded that ssdeep is neither
suitable to detect similar malicious code using different packers nor
to identify different programs using the same packer. However, they
noticed that ssdeep can identify malware binaries belonging to the
same family and therefore suggested other malware researchers
and companies to share ssdeep hashes to make this comparison
possible. Maybe as a result of these initial findings, over the years
the security industry adopted ssdeep as the de facto standard fuzzy
hash algorithm used for malware similarity. For example, today
VirusTotal, VirusShare, Malwr, VirusSign, Malware.lu, Malshare.com,
and vicheck.ca all report ssdeep hashes for their malware sam-
ples. However, the ShadowServer results were extracted from a
small number of samples belonging to only two malware families.
Moreover, the authors noticed that while for some binaries ssdeep
performed well (even when compared across packed versions), for
others the similarity was always zero. Unfortunately, they did not
investigate the reason behind this phenomenon.

In 2011, Roussev published the first systematic comparison be-
tween ssdeep and his own sdhash [25]. Roussev considered three

forensically sound scenarios: embedded object detection, single, and
multiple common-blocks file correlation. His work also includes
a second experiment using real world files from the GovDocs cor-
pus [11].While these experiments did not focus on program binaries
or malware samples, sdhash outperformed ssdeep in all cases.

In the following year (2012), French and Casey [10] performed a
first large scale evaluation of fuzzy hashing for malware analysis,
using 10M PE files from the CERT Artifact Catalog. This study is
particularly important because the authors look for the first time at
the internal structure of Windows PE binaries to truly understand
the results of the similarity. In particular, the authors distinguish
changes to the code and to the data of an executable. For the code
segment, the authors recognize that “minor changes in the original
source code may have unpredictably large changes in the resulting
executable” because the compilation process can permutate, reorder,
and even remove pieces of code. On the other hand, for changes to
the data segment the authors conclude that “the expected changes to
the resulting executable file are directly proportional to the amount of
data changed. Since we only changed the values of data—not the way
in they are referenced”. As we will see in Section 7, this conclusion
is not correct, and even a 1-byte change in the data of a program
can completely destroy the similarity between two files.

Based on their reasoning, French and Casey divided malware
families in two groups: the ones whose samples only differ for their
data (generative malware) and the ones where there is difference in
the code (evolutionary malware). Using experiments on 1500 sam-
ples from 13 families, the authors concluded that ssdeep achieved
a perfect classification for some families, but an almost negligible
association for others; however, it never exhibited any false positive.
On the other hand, sdhash was better at detecting files in the same
family, at the price of a small false positive rate. Sadly, the authors
did not examine the cases in which fuzzy hashing worked (or in
which it did not) to understand if the reason was indeed the changes
localized to the data or code part of the malware sample.

In 2013, Breitinger et al. [5] proposed a framework for testing
fuzzy hashing algorithms. For the sensitivity & robustness tests, they
adopted some of the experiments previously proposed by Rous-
sev [25] as well as new ones like the random-noise-resistance test,
which shows how many bytes of an input file have to be changed
to result in a non-match file. The results strongly support sdhash
over ssdeep. Following their framework guidelines, Breitinger and
Roussev [4] tested sdhash, ssdeep, and mrsh-v2 on a real dataset
of 4 457 files (unfortunately again containing no program binaries)
and found that ssdeep generated less false matches, while sdhash
provided a better trade-off between precision and recall.

With their proposal of tlsh in 2013, Oliver et al. evaluated their
algorithm on binary files from different malware families, as well
as HTML and text documents [22]. These experiments showed that
tlsh consistently outperformed both ssdeep and sdhash.

In 2014, Azab et al. [1] tested four fuzzy hash algorithms ac-
cording to their ability to perform malware clustering. Using two
variants of the Zeus malware family, the authors noticed that both
ssdeep and sdhash “barely match binaries for the same version”.
However, when used in conjunction with k-NN, both sdhash and
tlsh provided good clustering results. Again, the authors did not
discuss neither investigate why the tested algorithms provided
results that were acceptable in certain settings and bad in others.



2015 was again a prolific year for the debate on the use of fuzzy
hash in binary analysis. Li et al. [19] conducted another study on
fuzzy hashing for malware clustering. Interestingly, they found
that all algorithms perform better when applied to the sole code
segment of the binary, instead of the entire file. The same paper
also proposes three custom fuzzy hash algorithms that provided
better clustering results than ssdeep and sdhash; unfortunately,
two of them are file-dependent, and for none of them a public
implementation was available at the time of writing.

Again in 2015, Soman presented a study in which ssdeep and
sdhashwere used to successfully correlate many APT samples [27],
with zero false positives. Soman also found relationships among
samples with differences in the code, disproving the common belief
at the time and French and Casey’s conclusions [10].

Finally, Upchurch and Zhou [30], tired of the inconsistent re-
sults reported by previous studies, introduced a manually verified,
reproducible Gold Standard Set for malware similarity testing. On
this dataset, the authors measured the performance of several simi-
larity algorithms, including three of the ones studied in this paper:
ssdeep, sdhash and tlsh. The paper highlights strong inconsisten-
cies between the performance published in previous papers and the
performances of the same algorithms on this new dataset (which
are tipically much worse). While the authors say that the reason for
this inconsistency is unknown, they point to dataset quality as the
likely cause of the wide range of results. As we discuss in Section 7,
this is indeed a fundamental problem—which however cannot be
solved by having a Gold Standard Test, but by looking beyond the
simple precision and recall values to understand how the similarity
reported by fuzzy hash algorithm is tied to the type of malware
family and the change in the PE files. Upchurch and Zhou also
report two interesting findings about the algorithms tested in this
work. First, they find that both ssdeep and sdhash provide better
results at the minimum possible threshold (i.e., similarity larger
than 0)—something that our own evaluation confirms. Second, this
is the first independent study to compare tlsh with other fuzzy
hashing algorithms on program binaries—and the results are ex-
actly the opposite of what was reported by Oliver and Azab [1, 22],
placing tlsh far behind ssdeep and sdhash.

Summary. The security community invested a considerable ef-
fort to understand if, and to which extent, fuzzy hash algorithms
can identify similarities between program binaries. However, re-
sults were often contradictory; it seems that each algorithm can
provide interesting results in some tests, while failing completely
in other experiments.

French and Casey [10], in a report which was sadly often ig-
nored by other works, got closer to the root of the problem. They
understood that the compilation process can introduce unexpected
changes after modifying even small parts of the program code.
However, they felt that changes in the application data should not
have this side-effect, and thus are more suitable to be captured by
fuzzy hashes. Our results show that this is not the case.

To date, it is still not clear what users can expect from fuzzy
hashes for binary analysis and classification. As a consequence,
even academic papers have resorted to these techniques without
fully understanding the consequences of their choice [7, 9, 13]. Our

study attempts to bridge this gap through our experiments in three
different case studies, as discussed in the following sections.

4 SCENARIOS AND EXPERIMENTAL SETUP
Similarity hashes are often used to identify smaller objects included
in a larger one, or to detecting if two objects share a considerable
part of their content. Putting these two cases in the context of binary
analysis, we propose three scenarios: [I] library identification in
statically linked programs, [II] comparing the same applications
compiled with different toolchains and/or compiler options, and
[III] comparing different versions of the same application.

Scenario I is a typical binary reverse engineering task; Scenario II
is a common use case for embedded systems and firmware analysis,
and Scenario III corresponds to the classic example of detecting
malware evolution or samples belonging to the same malware fam-
ily. We selected our scenarios and experiments with two main goals:
1) to test uses of fuzzy hashes in binary analysis beyond the tradi-
tional malware similarity problem; 2) to go beyond precision/recall
and true/false positive measures, and describe for the first time the
intricacies of similarity matching applied to binary files and the
reason behind the results of the different tests.

All tests were performed on a Debian Testing box equipped with
an Intel Core i7-3770, running Windows 7 in a virtual machine for
the experiments on PE files. The compiler toolchains used were
the most recent version available at the time of the experiments:
gcc-5.4.1, gcc-6.3.0, clang-3.8.1 and icc-17.0.0. To com-
pute fuzzy hashes we used ssdeep 2.31, sdhash 3.4, mrsh-v2
and tlsh 3.4.5, all compiled from sources.

Unlike the other algorithms, which output results between 0 (no
similarity) and 100 (highest similarity), tlsh returns values that
start at 0 (identical files) and grow indefinitely. To ease comparison
with other algorithms, we adopt the approach of Upchurch and
Zhou [30], re-normalizing tlsh scores to the [0, 100] range.2

No packing or obfuscation was applied to the binaries used in
the experiments. These transformations heavily alter the binary
destroying the similarity picked up by fuzzy hashing algorithms,
and we consider them outside the scope of this work.

5 SCENARIO I: LIBRARY IDENTIFICATION
The goal of this first scenario is to understand if fuzzy hashes can be
used to recognize object files embedded inside a statically linked bi-
nary. This task is an application of the embedded object detection test
proposed and already analyzed by the forensics community [25].

Since static linking is much more common in the Linux environ-
ment than in Microsoft Windows, we evaluate five popular Linux
libraries (libcapstone, libevent, libjpeg, libm and libtsan).
Static libraries are ar archives of relocatable object files (22 to 453
in our case). We linked each library against a small C program,
obtaining five different executables.3

5.1 Object-to-Program Comparison
In the first test, we compute the similarity score by comparing
each executable against all the individual object files contained
in the static libraries. We repeated the test twice, once using the
2We renormalize a score x to y = max{0, (300 − x )/3}.
3By default, the linker only includes files required by symbols and functions imported
by the program; for this test, we forced including the object files of tested libraries.



Table 1: Library identification: true/false positive rates.

Algorithm
Entire object .text segment

TP% FP% Err% TP% FP% Err%

ssdeep 0 0 - 0 0 -
mrsh-v2 11.7 0.5 - 7.7 0.2 -
sdhash 12.8 0 - 24.4 0.1 53.9
tlsh 0.4 0.1 - 0.2 0.1 41.7

entire .o ELF files, and once matching only their .text segments
(which does not take into consideration other sections and file
headers that are not linked in the final executable). Table 1 shows the
results of the two tests. We considered a successful match if ssdeep,
sdhash, or mrsh-v2 returned a similarity of at least 1 over 100 and
tlsh returned a value lower than 300 (before the re-normalization
described in Section 4).4 The “Err” column reports instead cases
in which the data was insufficient to even compute the fuzzy hash.
The results were computed over 647 individual object files and false
positives were computed using the same threshold, this time by
matching the object files of libraries not linked in the executable.

These results show that not even the best algorithm in this case
(sdhash) can link the individual object files and the corresponding
statically-linked executables reliably enough. The worst performing
one (ssdeep) always returned a score equal to zero, making it
completely unsuitable for this scenario. In the next tests, we explore
the factors that contribute to these negative results.

5.2 Impact of Library Fragmentation
In our experiments, statically-compiled binaries were larger than
1MB while the average non-empty library object file was smaller
than 13KB: this difference makes the task of locating each fragment
very difficult. CTPH solutions need files with comparable sizes;
previous studies show that ssdeep works only if the embedded
chunk is at least a third of the target file size [25].

Since size difference is certainly a major obstacle for this task,
one may think that this problem can be mitigated by matching all
object files at once, instead of one at a time. Even if the correct order
is unknown, the presence of multiple fragments should improve
the overall matching process - as this setup would shift the problem
from the detection of a single embedded object to the easier problem
of matching multiple common blocks [25].

To test if this is indeed the case, we concatenated all the library
objects and all their .text sections in two different files, and then
matched these files against the statically linked binaries. The ex-
periment was repeated 100 times, each using a different random
order of object concatenation. The best results were obtained by
concatenating the full objects (probably due to strings stored in the
data section). For example, in the case of libjpeg, fuzzy hashes
were unable to match 59% of the individual object files and for the
remaining sdhash (the best solution) gave an average score of 21.
By concatenating all the object files and matching the resulting
blob, sdhash returned 14. While this score could still be sufficient to

4We experimented with higher threshold values, but—confirming the findings of
Upchurch and Zhou [30] discussed in Section 3—these values performed best.

identify the library, remember that this is a best-case scenario as all
the library object files were forcefully linked to the final executable.

To confirm whether the same result can also be obtained in a
more realistic setting, we downloaded and statically compiled two
real world programs, one using libjpeg, which had a 14 similarity
score in the concatenation approach—and the other using libevent,
which did not match at all in the same experiment. In this case,
the sdhash similarity score decreased to 9 for libjpeg, while it
remained zero for libevent.

5.3 Impact of Relocation
Relocation is the process, applied by the linker or by the dynamic
loader, of adjusting addresses and offsets inside a program to reflect
the actual position of symbols in memory. Static libraries contains
relocatable objects, which means that the code of those object files
contains several place-holders that are later filled by the linker
when the file is included in the final executable.

Statically-Linked

Binary

Original Obj Relocated Obj

tlsh avg= 0
sdhash avg= 11
mrsh-v2 avg= 4

tlsh avg= 0
sdhash avg= 53
mrsh-v2 avg= 24

tlsh avg= 37
sdhash avg= 14
mrsh-v2 avg= 4

Figure 1: Average similarities after linking/relocation.

To understand the impact of relocation on similarity scores, we
extracted the .text segments of library object files from the final
binaries after relocations were applied by the linker. This version,
which we call relocated obj, has the same size of the original object
file, but in different bytes spread across its code a relocation was
applied to a pointer. We used these files to perform two different
comparisons, which are presented in Figure 1: the first is between
the relocated and the non relocated versions of the same object, while
the second is between the relocated object and the final executable.

On average, sdhash returns strong similarities between relocated
objects and final binaries; this is in line with the embedded object
detection results by Roussev [25], who showed that sdhash can
detect files embedded in targets that are up to 10 times bigger than
them. However, sdhash fails to recognize similarities between the
relocated and not relocated versions of the same object file—thus
showing that the relocation process is the main culprit for the poor
results of sdhash. This confirms the random-noise-resistance test
conducted by Breitinger and Bayer [5], who found that sdhash
assigns scores greater than 10 only if less than 1% of the bytes are
randomly changed. In our tests, the relocation process changes on
average 10% of the object bytes, thus causing sdhash to fail.

Interestingly, for tlsh the behavior is the opposite. In fact, tlsh
assigns high similarity to the two versions of the .text section
(relocated and not relocated), but it is unable to match them against



the final program, suggesting that in this case relocation is not the
main obstacle. Figure 1 does not report results for ssdeep because
it always returns a zero similarity in all tests.

Overall, we can summarize the results of the three tests we
performed in this Scenario by stating that matching a static library
to a statically linked binary is a difficult task, which is complicated
by three main factors: 1) the fact that libraries are broken in many
object files and only a subset of them is typically linked to the
final executable; 2) the fact that each object file is often very small
compared with the size of the statically linked binary; and 3) the
fact that the content of the object files is modified (with an average
byte change-rate of 10%) by the linker. Some classes of fuzzy hash
algorithms are able to cope with some of these problems, but the
combination of the three factors is problematic for all solutions.
In fact, the n-gram approach of tlsh falls short when recognizing
similarities between the (small) relocated object and the (large)
statically-linked binary and the statistically improbable features
recognized by sdhash get broken by the relocation process.

6 SCENARIO II: RE-COMPILATION
The goal of the second scenario is to recognize the same program
across re-compilations—by evaluating the effect of the toolchain on
the similarity scores. In particular, we look at the separate impact
of the compiler and of the compilation flags used to produce the
final executable. There are no previous studies about this problem,
but researchers have commented that changes to the compilation
process can introduce differences that hamper fuzzy hashing algo-
rithms [10]. This scenario is also relevant to the problem of identi-
fying vulnerable binary programs across many devices, even when
libraries or software have been compiled with different options.

We test this scenario on two different sets of programs. The first
one (Coreutils) contains five popular small programs (base64, cp,
ls, sort, and tail) having size between 32K and 156KB each, while
the second dataset (Large) contains five common larger binaries
(httpd, openssl, sqlite3, ssh, and wireshark), with sizes ranging
between 528KB and 7.9MB. All the experiments were repeated on
four distinct versions of each program, and the results represent
the average of the individual runs.

6.1 Effect of Compiler Flags
Since the number of possible flags combinations is extremely high,
we limited our analysis to the sets associated to the optimization
levels proposed by gcc. The first level (-O0) disables every optimiza-
tion and is tipically used to ease debugging; the next three levels
(-O1,-O2 and -O3) enable increasing sets of optimizations. Finally,
-Os applies a subset of the -O2 flags plus other transformations to
reduce the final executable size. Each test was repeated twice, once
by comparing the whole binaries and once by comparing only the
.text section. The first provides better results, and therefore for
the sake of space we will mainly report on this case.

Results are shown inmatrix plots (Figures 2 and 6–8). Histograms
below the diagonal show the individual results distributions (with
similarity on the X axis and percentage of the samples on the Y
axis). For each algorithm, the threshold was chosen as the most
conservative value that produced zero false matches. Values above
the diagonal show the percentage of comparisons with a similarity

greater than the threshold value. All the similarity scores used in
the figure are between true positives.

We find that neither ssdeep nor its successor mrsh-v2 can reli-
ably correlate Coreutils programs compiled at different optimization
levels. However, neither algorithm ever returned a positive score
when comparing unrelated binary files: hence, any result greater
than zero from these tools can be considered a true match. sdhash
returned low similarity scores in average (in the range 0-10) but by
setting the threshold to 4 the tool generated zero false matches and
was able to detect some of the utilities across all optimization levels.
Finally, tlsh deserves a separate discussion. From a first glance
at the matrix plot, its performance may appear very poor; this is
because the graph was generated by setting the threshold at zero
FP. To better understand its behavior we increased the threshold
leaving 1%, 5% and 10% FP rates. Figure 6 presents the results: tlsh
matches programs compiled with -O1, -O2, -O3 and -Os but cannot
match programs compiled with -O0. This is reasonable as -O0 has
zero optimization flags while -O1 already uses more than 50.

The picture changes slightly when testing the Large dataset
programs. In this case, sdhash clearly outperforms all the other
algorithms, always returning zero to unrelated files and always
giving a score greater than zero to related ones.

A closer look at the data shows that all algorithms perform
better using the entire file because data sections (e.g., .rodata)
can remain constant when changing compiler flags. By looking
at the .text section only one program was matched: openssl,
which was constantly recognized also across optimization levels.
We investigated this case by comparing all functions using the
radiff utility, and found thatmany functionswere unchanged even
with very different compilation flags. The reason is that openssl
includes many hand-written assembly routines that the compiler
has to transcribe and assemble as-is, with no room for optimization.

6.2 Different Compilers
In this test we compiled each program in the Large dataset us-
ing all five optimization flags and using four different compilers:
clang-3.8, gcc-5, gcc-6 and icc-17 - the Intel C compiler. The
compilation process resulted in 100 distinct binaries. We then per-
formed an all-to-all comparison with all fuzzy hash algorithms,
considering as true positives the same programs compiled with
a different compiler and true negatives different programs inde-
pendently to the compiler used. Figure 3 summarizes the results
using the matrix plot format already introduced for the previous
experiment. Thresholds are again specific for each algorithm and
computed to obtain a zero false positive rate.

Even if the results are better than in the previous experiment,
ssdeep still performs worst. sdhash, tlsh and mrsh-v2 success-
fullymatched all programs between gcc-5 and gcc-6 except sqlite
(this is the reason why they all have 96% detection). This is because
the sqlite version used (sqlite-amalgamation) merges the entire
sqlite codebase in one single large (136k lines long) C file. This
results in a single compilation unit, which gives the compiler more
room to optimize (and therefore change) the code. We again show
tlsh’s behavior using different false positive rates in Figure 9.
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Figure 2: Coreutils compiled with different optimization levels. Red bars represent scores equal to 0, yellow bars
scores below the threshold (chosen to have 0% false positive rate), green bars scores above the threshold.

7 SCENARIO III: PROGRAM SIMILARITY
Our third scenario explores one of themost interesting and common
use cases for fuzzy hashing in binary analysis: the ability to correlate
similar software artifacts. In our experiments we consider three
types of similarity (all computed by maintaining the compilation
toolchain constant): 1) binaries that originate from the same exact
source code, but to whom few small changes have been applied at
the assembly level; 2) binaries that originate from sources that are
only different for few instructions, and 3) binaries compiled from
different versions of the same software. Finally, we will compare
between malware belonging to the same families to understand
why fuzzy hashes work in some cases but not in others.

7.1 Small Assembly Differences
We start by assessing the impact of small-scale modifications at
the assembly level, to understand their macroscopic impact on the
similarity of binary programs. We apply this test to the stripped
version of ssh-client, a medium-size program containing over
150K assembly instructions. We consider two very simple trans-
formations: 1) randomly inserting NOP instructions in the binary,

and 2) randomly swapping a number of instructions in the pro-
gram. These transformation were implemented as target specific
LLVM Pass which run very late during the compilation process.
The results, obtained by repeating the experiment 100 times and
averaging the similarity, are presented in Figures 4 and 5. To ease
plot readability, we smoothed the curves using a moving average.

At first, the curves may seem quite counter-intuitive. In fact, the
similarity seems to drop very fast (e.g., it is enough to randomly
swap 10 instructions out of over 150K to drop the sdhash score to
38 and ssdeep to zero) even when more than 99.99% of the program
remains unchanged. Actually, if the plots were not averaging the
results over multiple runs, the picture would look much worse. For
example, we observed cases in which the similarity score went to
zero when just two NOP instructions were inserted in the binary.
By manually investigating these cases, we realized that this phe-
nomenon is due to the combination of three factors: the padding
introduced by the compiler between functions, the padding added
by the linker at the end of the .text section, and the position in
which the instruction is added. In the right conditions, just few
bytes are enough to increase the overall size of the code segment.
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Figure 3: Large programs compiled with different compilers.

Figure 4: Inserting NOPs in random points of the program.

As a side-effect, the successive sections are also shifted forward.
The most relevant in our case is .rodata, which is located just after
the .text section in memory. Shifting down this section triggers a
large chain reaction in which all references in the code to global
symbols are adjusted, introducing a multitude of changes spread
over the .text section. Moreover, a substantial number of other
sections needs to be adjusted: for example, consider the case where

Figure 5: Swapping instructions.

the same .rodata contains a jump table with relative offset to the
code. Being 16 bytes farther, all these offsets needs to be adjusted as
well. Another example is .data, which contains pointers to rodata.
In total, adding two NOPs generated changes over 8 distinct sections.

To confirm this phenomenon, we wrote a linker script to increase
the padding between .text and .rodata. This way, increases in
the .text section size don’t impact the position of .rodata. With



this modification, the same two NOPs have a more limited effect,
and all four algorithms are able to match the two binaries.

This effect is more pronounced in Linux than in Windows bi-
naries. In fact, in Linux the default settings for gcc align both
functions and sections at 16 bytes. In Windows the picture is quite
different: we analyzed PE files downloaded from Internet and part
of the Windows Server 2012 R2 and Windows 7 installations. While
some executables don’t have padding between functions, others -
similarly to Linux - align functions to 16 bytes. On the other hand,
the offset inside the file of every section has the lower 9 bits cleared,
which effectively aligns each Section to 512 bytes. This makes Win-
dows binaries more ‘resistant’ to small instructions insertion.

The only algorithm that does not seem to be affected by these
microscopic changes is tlsh, which thanks to its frequency-based
nature is able to maintain a high similarity even when 10K NOPs
are inserted or instructions are swapped.

7.2 Minor Source Code Modifications
We now examine more traditional changes between programs,
through small modifications to the source code of ssh-client.
We intentionally selected changes that do not add or remove lines
of code from the program:

• Different comparison operator. This can modify the binary in very
different ways. For example, after changing a “<” to a “≤”, scores
remained high since the difference between binaries was just one
byte. At the other end of the spectrum, compilers can statically
detect that some branches are never taken and remove them from
the code; in these cases, the ssdeep score was always 0.

• New condition. Again, results are quite unpredictable. Compilers
can generate a few additional instructions to perform the added
check, and the macroscopic effect of those instructions depends
on their location and on the padding of functions and sections.

• Change a constant value. Effects are again hard to predict. For
example, setting constants to zero can change the resulting as-
sembly instructions (to zero a variable compilers typically emit
an xor rather than a mov). Size also plays a role since the Intel
instruction set offers different encodings depending on it.

Table 2: Similarity ranges for manual changes to openssh.

Change ssdeep mrsh-v2 tlsh sdhash

Operator 0–100 21–100 99–100 22–100
Condition 0–100 22–99 96–99 37–100
Constant 0–97 28–99 97–99 35–100

Table 2 shows the similarity score ranges for the three experi-
ments. Again, tlsh is immune to these small changes. In fact, while
a single change to the source file may result in widespread changes
through the binary, it is very unlikely to modify significantly the
n-gram histogram. Other algorithms provides inconsistent results,
ranging from perfect matches to poor ones (or no match at all for
ssdeep) due to the chain effects described above.

7.3 Source Code Modifications On Malware
Our final experiment uses two real-world malware programs: Grum
and Mirai. We chose those two malware families because: 1) the
source code for both is available online, allowing us to compile
different “variants” of each, and 2) they cover bothWindows (Grum)
and Linux (Mirai) environments. This experiment lets us test in a
real setting the insights we gained previously.

Table 3: Manual modifications applied to malware. “M” and
“G” stand respectively for “Mirai” and “Grum”.

Change
ssdeep mrsh-v2 tlsh sdhash

M G M G M G M G

C&C domain (real) 0 0 97 10 99 88 98 24
C&C domain (long) 0 0 44 13 94 84 72 22
Evasion 0 0 17 0 93 87 16 34
Functionality 0 0 9 0 88 84 22 7

We selected again three types of changes, reflecting differences
we can expect between malware samples of the same family:

• New C&C Domain: we changed the Command and Control (C&C)
server that the bots contact to fetch commands. Since in both
cases the C&C had a default value, we decided to set it to one
domain associated to the real Mirai Botnet (real domain in Ta-
ble 3) or to an 11-character longer domain name (long domain in
Table 3). In both malware, C&Cs are defined inside the code and
not read from a configuration file, so we are sure the modification
affects the compiled binary.

• Evasion: this modification uses real anti-analysis tricks to detect
the presence of a debugger or if the sample is running inside a
virtual machine. The implementation of the anti-VM function is
based on timing measurements, while the anti-debugging mecha-
nism is built around theWindows API IsDebuggerPresent from
Grum and ptrace from Mirai. The cumulative sizes of these two
functions is 110 bytes for Grum and 80 bytes for Mirai.

• New Functionality: in this case we added a malicious functionality
to collect and send to the C&C the list of users present on the in-
fected system. For Grumwe used theWindows API NetUserEnum
to retrieve the users, while for Mirai glibc’s getpwent was used.
In terms of size, Grum’s functionality adds 414 bytes to the bot
binary, while Mirai’s one added 416 bytes.

Results are presented in Table 3. As expected, the introduction
of a longer domain name had a larger impact on the similarity. In
particular this is the case for Mirai, which is statically compiled.
In this case, the linker combined in the final .rodata both the
data from Mirai itself and the glibc one. The C&C string, in both
experiments, is placed towards the end of the .rodata part reserved
for Mirai, but growth is absorbed by the padding and is not enough
to move the libc .rodata. This means that the only references that
needs to be adjusted are those of Mirai, while the libc blob remains
the same. The longer domain was instead larger than the padding
between the “two” .rodata, causing the libc’s .rodata to shift
down and impact all the glibc’s references.



A second observation is that in this experiment Windows vari-
ants have lower similarity than their Linux counterparts. While this
seems to contradict the results presented in the previous test, the
reason is that the Linux binary is statically compiled and therefore—
despite the changes to the botnet code—the two binaries share big
chunks of glibc code. At a closer look, we confirmed that the “Eva-
sion” binary shares exactly the same section offsets (and thus have
a good similarity score), while in the “Functionality” binaries (lower
similarity) the sections are shifted down by 512 bytes.

Finally, as already shown in the previous experiments, the ability
of ssdeep to compare binary files is very limited.

7.4 New Insights on Previous Experiments
In this final test we take a closer look at a malware dataset used
in a previous study, to test if what we learned so far allows us to
better understand the results of past experiments. Intrigued by the
good results scored by ssdeep in the recent work by Upchurch and
Zhou [30], and thanks to the fact that the authors shared the MD5s
of the 85 samples used in their dataset, we retrieved the same set of
files and use it for this final test. The samples, all manually verified
by the authors [30], belong to eight different families.

We manually investigated all cases in which ssdeep was able
to capture the similarity between files of the same family (it was
the case for five of them) and found some interesting results. In
two cases, the similarity was the consequence of the fact that differ-
ent dropper files contained exactly the same second-stage program
embedded in their data. In another family, 17 out of 19 files have
exactly the same .data and .text sections, and 10 of them only
differ in a few padding bytes at the end of the file, in what is com-
monly called the file overlay. However, since the overlay counter
was zero in the PE header, it is possible that this files just contained
few additional bytes because of the way they were acquired. A
similar phenomenon affected also another family, in which 3 out of
6 matches were identical files except for the very last byte.

Overall, ssdeep was indeed able to match some different mal-
ware samples, but this happened on files that either differed only
for cosmetic aspects or had large common files embedded in them.

The last and most interesting case was a family in which all
similar samples had the same rdata section and all the section start
at the same address/file offset (and therefore have the same size).
In this case, a manual analysis revealed that samples shared large
chunks of their code, with the only differences in the .text section
located in parts that did not contain valid instructions (so probably
related to some form of packing mechanism). In this case, due to the
perfect match of the remaining part and on the fact that no offset
or instruction was modified among the files, ssdeep successfully
captured the similar malware samples.

7.5 Scenario III Findings Summary
In this third and last scenario we studied why it can be difficult to
capture program modifications through fuzzy hashing algorithms.
If we assume the compilation process is maintained constant among
consecutive versions (we discussed its impact in the previous sce-
narios) we can now distinguish two cases.

If the programmer only modifies the application data (such as
strings, URLs, paths and file names, global numerical constants,
domain names or IP addresses) then we can expect a high similarity

if the data size is not changed (e.g., if the new URL contains the
exact same characters of the previous one). Otherwise, the impact
depends on the number of references from the code section to data
stored after the one that has been modified. In the worst case, for
CTPH-based approaches and, to a minor extent, for sdhash, it can
be enough to change few bytes in a filename to completely destroy
any fuzzy hash similarity between the two versions.

It is also worth mentioning that not all “data” is part of the
traditional data sections. PE files can also have overlays—i.e. bytes
appended at the end of the file after all sections—and malware can
embed entire files inside them. In these cases fuzzy hashes shine, as
they can reliably capture the similarity between different binaries.

If the programmer modifies instead the code of the application,
then the factors that affect the similarity are the size of the modifi-
cation, how distributed it is on the entire code section, the function
alignment used by the compiler, and the segment alignment used
by the linker. Again, our experiments show that it is possible to
have entirely new functions that barely modify the similarity, as
well as cases in which just two NOPs can bring down the similarity
computed by CTPH algorithms to zero.

Unlike the previous case, whichwas largely dominated by sdhash,
tlsh shines in this scenario. In this case, the small changes applied
to the assembly or source code have a very minor impact over the
statistics about n-gram frequencies that tlsh uses.

8 CONCLUSIONS
This study sheds light on how fuzzy hashing algorithms behave in
program analysis tasks, to help practitioners understand if fuzzy
hashing can be used in their particular context and, if so, which
algorithm is the best choice for the task: an important problem that
is not answered conclusively by the existing literature.

Unfortunately, we found that the CTPH approach adopted by
ssdeep—the most widely used fuzzy hashing algorithm—falls short
in most tasks. We have found that other approaches (sdhash’s
statistically improbable features and tlsh’s n-gram frequency dis-
tribution) perform way better; more in particular, we have found
that sdhash performs well when recognizing the same program
compiled in different ways, and that tlsh is instead very reliable in
recognizing variants of the same software when the code changes.

Instead of blindly applying algorithms to recognize malware
families and collecting difficult to interpret results, our evaluation
looked at the details of both hashing algorithms and the compilation
process: this allowed us to discover why fuzzy hashing algorithms
can fail, sometimes surprisingly, in recognizing the similarity be-
tween programs that have undergone only very minor changes.

In conclusion, we show that tlsh and sdhash consistently out-
perform ssdeep and should be recommended in its place (tlsh is
preferable when dealing with source code changes, and sdhash
works better when changes involve the compilation toolchain);
our analysis on where and why hashing algorithms are or are not
effective sheds light on the impact of implementation choices, and
can be used as a guideline towards the design of new algorithms.
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9 APPENDIX

Figure 6: tlsh behavior on Coreutils while varying
thresholds: from top to bottom, 1%, 5% and 10% false

positives.
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Figure 7: Programs included in the Large dataset, compiled with different optimization levels.

Figure 8: tlsh on the Large dataset, varying optimization levels and thresholds: from left to right, 1%, 5% and 10% false positives.

Figure 9: tlsh on the Large dataset, varying compilers and thresholds: from left to right, 1%, 5% and 10% false positives.
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