
RiskTeller: Predicting the Risk of Cyber Incidents
Leyla Bilge

Symantec Research Labs
leyla_bilge@symantec.com

Yufei Han
Symantec Research Labs
yufei_han@symantec.com

Matteo Dell’Amico
Symantec Research Labs

matteo_dellamico@symantec.com

ABSTRACT
The current evolution of the cyber-threat ecosystem shows that no
system can be considered invulnerable. It is therefore important
to quantify the risk level within a system and devise risk predic-
tion methods such that proactive measures can be taken to reduce
the damage of cyber attacks. We present RiskTeller, a system that
analyzes binary file appearance logs of machines to predict which
machines are at risk of infection months in advance. Risk prediction
models are built by creating, for each machine, a comprehensive
profile capturing its usage patterns, and then associating each pro-
file to a risk level through both fully and semi-supervised learning
methods. We evaluate RiskTeller on a year-long dataset containing
information about all the binaries appearing on machines of 18
enterprises. We show that RiskTeller can use the machine profile
computed for a given machine to predict subsequent infections
with the highest prediction precision achieved to date.

1 INTRODUCTION
Over the last two decades, the cyber-threat ecosystem faced dra-
matic changes. On the one hand, attackers now use sophisticated
tools and techniques to breach systems [32]; on the other hand,
the stakes at risk become larger every year. Experian reports that
almost half of business organizations suffer at least one security
incident per year [8]; despite the efforts in developing and defend-
ing secure systems, hardly anybody in the industry – especially in
large organizations – can feel that their infrastructure is invulnera-
ble. Rather than wondering if they would be victims of malicious
actions, IT administrators are shifting towards trying to understand
when it will happen, and what the consequences will be.

Since malware infections may be unavoidable, the problem of
predicting the risk becomes fundamental: understanding which are
the most risky parts of a given system allows to act proactively, and
focus on hardening them; estimating the infection risk is funda-
mental in the rapidly growing area of cyber-insurance [27]. Cyber-
insurance ensures that organizations and private users alike can
mitigate the cost of otherwise potentially devastating attacks, but
an efficient cyber-insurance market is only feasible if effective ways
of estimating and predicting risk exist.

To date, the research community extensively studied various
aspects of the malware problem mainly focusing on three topics:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS 2017, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134022

analysis, detection and prevention. However, only a few works
presented prediction models [4, 16, 19, 30, 37, 38] that could allow
proactive measures to be adopted to avoid the damage. These works
analyzed the users’ demographics [16, 38], network connectivity
behavior [38], web browsing behavior [4, 38], website features [30],
networkmismanagement details [19] and historical incident reports
of organizations [19, 37] to predict cyber incidents. We instead
employ a dataset that provides fine graned information about the
security posture of each enteprise machine and allows us to achieve
higher prediction accuracy than previous works.

We present RiskTeller, a system that analyzes per-machine file
appearance logs to predict which machines are at risk of getting
infected by malware. The data is collected from 600K machines
belonging to 18 enterprises. During our analysis, these machines re-
ported a total of 4.4 billion binary file appearance events, resulting
in the largest dataset used for risk prediction to date. We use this
data to generate, for each machine, a profile of 89 features. Features
are based on the volume of events, their temporal patterns, applica-
tion categories, rarity of files, patching behavior, and past threat
history. These features give us a comprehensive synthesis of each
machine’s usage patterns, and a good sense of the security aware-
ness of its users. All together, these features play a fundamental
role for the quality of the results produced by RiskTeller.

Our ground truth is based on observing malicious files and infec-
tion records according to the end point protection software installed
in the period that follows feature extraction: we built it carefully,
avoiding to create labels due to mislabeled files. In an ideal scenario
where the labeled data is sufficiently comprehensive to capture
all clean and risky machine profiles in the wild, supervised ma-
chine learning algorithms can achieve the best accuracy assuming
that the features are selected appropriately. However, such an ideal
ground truth is nearly impossible to obtain as no malware detection
solution can attain perfection due to the known arms-race with the
cyber attackers. Our ground truth leverages a large set of labeled
files (to our knowledge the largest ground truth used so far with
over 1B labeled files) which gives us the confidence that our results
are reliable; we nevertheless question the quality of our ground
truth and investigate whether there is still room for improvement.
To address this problem, in addition to a traditional supervised
machine learning algorithm, we devise a semi-supervised algorithm
that attributes fuzzy labels to unknown user profiles based on their
similarity to the labeled ones; this choice allows us to leverage on
full information available in the dataset and enrich the ground truth
when it is imbalanced or limited in size.

In summary, the contributions of our paper are as follows:

(1) We propose RiskTeller, a system that leverages both su-
pervised and semi-supervised learning methodologies to
predict which machines are at risk with highest accuracy
achived to date.

Session F2: Insights from Log(in)s CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1299

https://doi.org/10.1145/3133956.3134022

(2) We design 89 features that are extracted from per-machine
file appearance logs to producemachine profiles, which cap-
ture the machine’s patterns of usage and security aware-
ness of enterprise users.

(3) We design a semi-supervised machine learning algorithm,
which leverages on profile similarity to infer fuzzy labels
for unlabeled machines based on similar labeled machines
to enrich the ground truth.

(4) We perform a comprehensive evaluation that shows how
RiskTeller can predict which machines will get infected
with high precision, and that the former two steps are
fundamental in getting high-quality results.

2 WHY CYBER RISK PREDICTION?
For around a decade, the security community has been warning
about an imminent “cyber crime era”; the constant stream of news
about cyber security incidents, often reaching the front pages of
mainstream media, shows that the cyber crime era finally arrived.
Unfortunately, facing cyber attacks is now the norm rather than an
exception, and it is hence necessary to set up proactive defenses.
Businesses need to be prepared to minimize damage when attacks
eventually strike; to this end, they need to deploy multiple layers
of security including managed security services, trusted security
advisors, employee training programs etc. in addition to traditional
cyber threat defense mechanisms. Since this can be very expensive,
businesses may need to prioritize; predicting the entities that are
more likely to get attacked and ultimately infected is an important
element on the prioritization step. For example, a special security
training could be provided to the employees that are at higher risk
of cyber attacks through malware sent via email, such that when
they receive mail from attackers they do not open the attachment.

Recently, several security companies started to incorporate cyber
insurance into their multi-layer cyber security approach, to ensure
that the recovery after cyber attacks is less painful. Due to the high
demand for cyber insurance, the market has been steadily grow-
ing and putting the insurance companies in a great competition to
assess and predict the risk the most accurately. Typically [2], risk as-
sessment for cyber insurance uses underwriting tools whose main
goal is to assess the risk of a company through questionnaires with
the least possible questions, or via publicly available data (obtained,
e.g., through active scanning or by looking for the IP addresses
of a company in blacklists). In both cases, the information avail-
able to accurately assess a company’s security posture is limited;
hence, insurance companies have a significantly lower accuracy
than what can be achieved using internal security telemetry. Simi-
larly, in other insurance fields the accuracy of risk assessment that
has been widely adopted is quite low [7, 10, 28] (around 70% predic-
tion accuracy); this is why insurance companies have been seeking
for better risk prediction methodologies that leverage private infor-
mation obtained from the insured entities (e.g., fitness tracking data
for health insurance, driving habits data collected through special
hardware for car insurance, etc.). In our work, we analyze internal
telemetry collected from companies to predict which computers are
most at risk, and thanks to the profiles we build for each computer,
we are able to achieve high prediction accuracy.

We need to emphasize that predicting future events is a different
and more difficult problem than detecting current malicious events.
For detection, false positives can be very expensive (e.g., a user
may not be able to perform their job if an essential software is
erroneously recognized as malware); the goal is hence maximising
the true positive ratio while keeping the false positives very low. On
the other hand, for prediction the main goal is quite the opposite:
an enterprise would want to know all the machines that could
be infected, to apply appropriate hardening measures or provide
security training to users; compared to the detection domain, false
positives are more difficult to avoid, but the cost of false positives is
lower. Previous works in the prediction field produced more than
20% false positives to predict over 95% of the incidents correctly [19];
these numbers are perfectly acceptable for insurance companies.
However, the competition in the market raises the bar and asks for
lower false positives. Our work aims at meeting this expectation.

3 DATASET
Our work builds its foundations by mining large-scale data that
helped us discover interesting behavioral differences between clean
machines and those that are more likely to get infected by malware.

The first dataset we employ consists of reports for the appearance
of new binary files (e.g., due to file downloads or in-house file
creations after compilation), generated by enterprise customers of
a large antivirus company who opted in to share their data, such
that through large-scale data analysis new methodologies can be
developed to increase the existing malware detection capabilities.
To protect customer identities, all sensitive information such as
customer id, IP addresses, and enterprise names are anonymized.

The binary file appearance logs are collected from more than
100K enterprises. Every day, the data centers receive reports about
around 100M file appearances of 14M distinct binaries.Wewere able
to obtain only a subset of this data, covering 4.4B binary appearance
logs of 600K machines belonging to 18 enterprises: even if its size
is considerably smaller than the full dataset processed by the AV
company, our results show that it is sufficient to model the file
appearance patterns of Internet users and to accurately predict
cyber threats several months in advance.

The fields we are particularly interested in from the binary file
appearance logs are: (a) (anonymized) enterprise and machine iden-
tifiers, (b) SHA2 file hash, (c) file name and directory, (d) file version,
(e) timestamps for the first appearance of the file on the machine
(local timezone) and for the time when it was reported to the data
centers (PST), and (f) file signer subject in the certificate.

3.1 Data Preprocessing
As discussed earlier, the data fields we include in our analysis are
enterprise and machine identifiers, file hash, name, directory, and
version, timestamps for file appearance and report, reputation and
name of the file signer. To extract better value from this information,
we perform some data normalization and cleaning.

We normalize file and directory names to identify those likely to
perform the same functions. We remove version numbers through
simple regular expressions (version numbers in general appear
in filenames as groups of numerical characters separated by dots
with occasional alphabetical characters, e.g., “v2.45.7r5”), and

Session F2: Insights from Log(in)s CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1300

also remove suffixes generally appended to duplicate files, such as
numbers wrapped inside brackets (“()”, “[]”, and “{}”).

Unfortunately, our datasets do not include specific information
about which applications binary files belong to: we therefore resort
to directory name to infer them. In Windows systems, applications
use the CSIDL (Constant Special Item Id List)1 to identify the name
of special folders in each Windows installation, and our datasets in
a majority of the cases include normalized directory names (we nor-
malize the remaining following the guidelines of CSIDL) rather than
the full path including variable information such as drive identifiers,
usernames, and OS-specific strings. Applications are installed in
the CSIDL_PROGRAM_FILES directory, and our heuristic to identify
an application is to use depth-3 paths starting from that directory
to identify applications; for example, the directory corresponding
to Google Chrome is \CSIDL_PROGRAM_FILES\google\chrome.
This is the string that we use to recognize applications.

3.2 Ground Truth
We split our datasets in two consecutive periods: a first feature
extraction period from which we compute features that will be fed
to our classifier, and a labeling period from which we identify a
ground truth of “clean” and “infected” machines. Riskteller performs
prediction in a temporal sense, meaning that the classifier only uses
features from the feature extraction period to predict labels that
are based on events happening in the successive labeling period.

In addition to the binary appearance logs dataset, we leverage
three more datasets that we use to build our ground truth. As we
discuss in Section 5, our predictive model leverages supervised and
semi-supervised machine learning techniques to differentiate the
clean machines from those that are likely to encounter malware
infections. As the quality of machine learning techniques strongly
depends on the quality of the ground truth, we endeavor to de-
fine clean and risky machine profiles in a way that minimizes the
probability of errors.

We build our ground truth using three different datasets:

(1) A labeled dataset we obtained from the AV company at the
end of 2015, consisting of 16M known benign and 214M
known malware file hashes; note that this dataset is up-
dated continuously whenever new labels are acquired.

(2) A dataset of file hashes that were identified as malware
according to the AV product, and that has never been man-
ually exonerated (i.e., marked as false positive) by users.
By the end of 2015 the AV telemetry dataset, which con-
sists of detailed reports about the type of malware the files
are associated with, contained 800M hashes. The fact that
these files were never marked as false positives gives us
confidence that very few of these files are actually benign.

(3) A dataset of malware infections detected through the net-
work activity of machines. For example, if the machine
initiates a command-and-control activity with known Zeus
C&C servers, the machine is flagged as infected. We ob-
tain the network-based infection data from the telemetry
dataset generated by the IPS product of the company.

1https://msdn.microsoft.com/en-us/library/windows/desktop/bb762494(v=
vs.85).aspx

In Section 6.1.2 we describe in more detail how we define thresh-
olds to identify clean and risky profiles; here we limit ourselves to a
brief summary. We define as “clean” a machine with a very limited
number of unknown files, zero files known to be malware, and no
infection record. On the other hand, we consider “risky” a machine
that, during the labeling period, has multiple known malware files
in its file appearance logs and/or records of infections according to
the IPS telemetry dataset.

4 BUILDING THE MACHINE PROFILES
As the main goal of our work is to be able to predict which machines
are most likely to get infected, we perform an in-depth investigation
on the binaries appearing on machines, with an effort to identify
specific behaviors that predict future infections. We do not seek to
pinpoint the exact causes of infections, but rather characteristics
that are correlated with them and that are useful to represent how
the machine is used; hence, many features we analyze are chosen
to represent the security awareness of the machine’s users, and
the usage patterns of those machines. For example, we extract
a number of features about the patching behavior with respect
to a limited number of applications. While the direct cause of a
particular infection could be a vulnerability of an application which
is not included in our analysis, a higher-level explanation would be
that the user(s) of the machine do not patch existing vulnerabilities
promptly enough.

As mentioned before, the binary appearance logs consist of meta-
data collected from the end-hosts regarding all new binaries that ap-
peared during the period of analysis. While in general a majority of
these binaries are downloaded from various sources, some of them
could be generated on the host itself: some benign examples are
binaries compiled on the system by users who are application devel-
opers, or those created by specific applications such as web servers.
Unfortunately, our datasets do not allow us to distinguish which
binaries are downloaded or copied from other sources, and which
ones are created on the computer; however, our category-based fea-
tures (Section 4.1.4) allow us to distinguish machines based on the
type of applications installed, capturing implicitly the main reason
of binary appearance. For the sake of brevity, hereinafter, we will
refer to all binary downloads/installations/compilations/creations
as binary appearance events, or simply events.

In the following, we explain how we preprocess data to prepare
for the feature extraction step and provide details about the features
we use for prediction.

4.1 Feature Discovery
After the data preprocessing step, we obtain a list of events, each
representing the appearance of a new binary on a machine dur-
ing our analysis window. For each machine, we create a profile
consisting of 89 different features synthesized from these events,
which we use to predict each machine’s risk of future infection.
Table 1 provides a comprehensive list of these features, grouped by
categories. In the following, we describe each category.

4.1.1 Volume-Based Features. Our first category of features cov-
ers general statistics calculated from new binaries appeared during
our analysis window. We include the total number of events (i.e.,

Session F2: Insights from Log(in)s CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1301

https://msdn.microsoft.com/en-us/library/windows/desktop/bb762494(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb762494(v=vs.85).aspx

Table 1: RiskTeller features for predictive modeling.

Feature Category Feature # Features

Volume-based
(§ 4.1.1)

1–3 # of events, # of distinct file hashes/filenames
4–6 fraction of events from top signers/top file hashes, average # of events per active day
7–12 # of distinct applications, quartiles of per-application fraction

Temporal (§ 4.1.2)
13–17 fraction of events during daytime/evening/night/weekdays/weekends
18–19 diurnal # of events: median/standard deviation
20–21 monthly # of events: median/standard deviation

Vulnerabilities/patching
(§ 4.1.3)

22–24 # of patched vulnerabilities/applications, the most patched application
25–29 quartiles of CVSS scores for patched vulnerabilities
30–34 quartiles of the vulnerability window length for patched applications
35–37 # of vulnerabilities, unpatched applications, app with highest vulnerability count
38–42 quartiles of CVSS scores for unpatched vulnerabilities
43–47 quartiles of the vulnerability window length for unpatched applications

Application
categories (§ 4.1.4)

48–52 top-5 application categories with most events
53–57 fraction of events per top-5 category
58 fraction of system diagnostics tools
59 fraction of system administration tools
60 fraction of attack tools

Infection history 61–63 fraction of events for malicious/benign/unknown files(§ 4.1.5)

Prevalence-based
(§ 4.1.6)

64 fraction of events with singleton signers
65–69 fraction of events with prevalence [1, 10]/[11, 100]/[101, 1000]/[1 001, 10 000]/[10 001,∞) signers
70 fraction of events with signers seen in only one enterprise

71–74 fraction of events with signers seen in [1, 10]/[11, 100]/[101, 1 000]/[1 001,∞) enterprises
75 fraction of prevalence-1 files

76–79 fraction of prevalence [1, 10]/[11, 100]/[101, 1 000]/[1 001,∞) files
80 fraction of files seen only in one enterprise

81–84 fraction of files seen on [1, 10]/[11, 100]/[101, 1 000]/[1 001,∞) enterprises
85 fraction of files seen only on one machine

86–89 fraction of files seen on [1, 10]/[11, 100]/[101, 1 000]/[1 001,∞) machines

appearance of a new binary on a machine), of distinct binaries (rec-
ognized through SHA2 file hashes), filenames, and of applications
on each host.

We identify the most popular software vendors and the most
frequently appearing binaries by identifying the 50 most frequently
appearing file signers and 150 most frequent file hashes respectively
querying the whole data; we then compute the fraction of events
pertaining to these top signers and hashes. To capture the level of
activity while the machine is used, we also compute the average
number of binary appearance events during each day in which
events were generated.

Previous work has shown that people with abundant and varied
browsing behavior suffer higher risks [4]: to identify similar pat-
terns with respect to binaries appearing on machines, we compute
the percentage of events generated by each application (identified
as described in Section 3.1), and synthesize these values through
6 values: the number of distinct applications, plus the 5 quartiles
of the per-application percentage of events: minimum, maximum,
median, plus 25th and 75th percentiles.

4.1.2 Temporal Behavior. We aim to understand whether longer
working hours or working outside the official working hours is
correlated with facing higher risk to encounter malware infections.
Our hypothesis is that people who generally use their machines
during weekends or in the evenings are more likely to use their
machines for personal, more varied purposes in addition to work-
related ones, possibly engaging in riskier activities that might result
in malware infections. As we will show in the following, it is indeed
the case that machines with more binary appearance events during
night time are more risky.

The features we extract are the fraction of events that happen
during the day, evening, night, weekdays and weekends (notice that
the timestamps we use correspond to local time, therefore timezone
differences do not affect the accuracy of these features). We consider
daytime as the 06:00–18:59 interval, evening as 19:00–00:59, and
night as 01:00–05:59. According to the customs of the majority of
the world, we define weekdays as Monday to Friday, and weekends
as Saturdays and Sundays. Additionally, to capture the regularity
or irregularity of machine usage in time, we compute the median

Session F2: Insights from Log(in)s CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1302

Table 2: Applications with vulnerable versions identified.

Vendor Product # CVE IDs

Adobe
Air 128
Flash Player 3 708
Reader 261

Google Chrome 806

Microsoft
Internet Explorer 1 018
Silverlight 36
Skype 28

Mozilla Firefox 9 536

Oracle MySQL 108

and standard deviation for the number of events observed each day
(diurnal) and each month (monthly).

4.1.3 Vulnerabilities and Patching Behavior. Based on the history
of binaries that appear on each machine, we can infer when they
have installed vulnerable application versions, and extract features
about the severity of vulnerabilities and the vulnerability windows:
time intervals during which machines are running software with
known vulnerabilities. As common sense suggests, the vulnerability
patching behavior and the severity of existing vulnerabilities on
machines can be highly correlated with the probability of future
malware infections. Indeed, our results support this, as we find
that not patching vulnerabilities, besides indicating low security
awareness, is a very good predictor of future infection risk.

Our analysis includes known vulnerabilities for 9 different ap-
plications, described in Table 2. As discussed in the following, the
process of matching vulnerability information with data from na-
tional vulnerability database (NVD) and our file appearance logs
data requires a non-negligible manual effort; therefore, we focus on
applications which are widely installed, and often exploited through
vectors such as drive-by-downloads, e-mail attachments, etc. [23].
A comprehensive overview of all vulnerable applications installed
on a machine would be essentially unfeasible with the datasets we
have; we consider, however, that identifying the patching behavior
with respect to the widely used applications listed in Table 2 is
sufficient to understand and capture user behavior, and that their
patching behavior for other applications is likely to be similar to
the one for the applications we consider.

Following the spirit of the work by Nappa et al. [22], we first
identify software through a manually defined leading filename com-
bined with information about the file signer (e.g., we consider that
Google Chrome is identified by binaries named chrome.exe and
signed by Google); we then obtain file version information from the
file logs and/or VirusTotal.2 We obtain information about vulnera-
bilities through the NIST’s National Vulnerability Database (NVD).3
By parsing NVD data, we obtain information about vulnerable file
versions and the severity of each vulnerability through the CVSS

2https://www.virustotal.com/
3https://nvd.nist.gov/

Aug ’15
Sep ’15

Oct ’15
Nov ’15

Dec ’15
Jan ’16

Feb ’16
0%

10%

20%

30%

40%

50%

Vu
ln

er
ab

le
m

ac
hi

ne
s

0

1

2

3

4

5

6

7

8

9

10

S
ev

er
ity

Figure 1: Fraction of vulnerable machines and their sever-
ity for a single company. In this period, a large fraction of
severe vulnerabilities were due to Adobe Flash.

(Common Vulnerability Scoring System) score,4 which ranks vul-
nerabilities through scores between 0 and 10, where high-severity
vulnerabilities have scores of at least 7. We manually resolved in-
consistencies between version numbers in the file appearance logs
or VirusTotal and those in the NVD database.

Thanks to this process, we are able to identify the software
versions installed on each machine and known vulnerabilities of
those pieces of software. In many cases, severe vulnerabilities on
widely installed software (e.g., Adobe Flash) result in large numbers
of vulnerable machines, and vulnerable software versions often
require up to months to become updated (see Figure 1).

Once we are able to identify vulnerable versions of applications
together with the time they were installed and updated, we extract
26 features about the severity of patched and unpatched vulnerable
applications we observe in the log, the time it takes for the user to
patch known vulnerable applications and the window of exposure
for the remaining unpatched vulnerabilities. Details about each
feature can be found in Table 1: we remind that with quartiles, we
refer to minimum, maximum, median, plus 25th and 75th percentiles.

4.1.4 Application Category-Based Features. We extract a set of
features related to the categories of applications seen on machines,
based on the intuition that these categories can be used for machine
profiling, and different machine profiles suffer different risk levels
from cyber-threats. Some previous works have already touched
upon machine profiling in other contexts: [36] assessed the risk of
different job profiles with respect to targeted attacks; [22] focused
on the vulnerability patching behavior of three user profiles (soft-
ware developers, professionals, security experts); [24] described a
correlation between cyber-attacks and three predefined user pro-
files (professionals, software developers and gamers). Motivated
by these works, we perform a detailed analysis to obtain a set of
machine profiles corresponding to the type of applications installed:
our goal is to understand which specific machine profiles are more
4https://nvd.nist.gov/cvss.cfm

Session F2: Insights from Log(in)s CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1303

https://www.virustotal.com/
https://nvd.nist.gov/
https://nvd.nist.gov/cvss.cfm

prone to encounter cyber-attacks, and whether features including
the most downloaded application categories on machines can be
useful for our predictive model.

Table 3: Application categories.

Category # of Apps

Architecture 59
Asset Management 574
Automobile 172
Bank 166
Business 1 266
Chat 87
Chemical 29
Construction 371
Sales 1 050
Data / DB 254
Education 101
Engineering 73
Finance 1 206

Category # of Apps

Government 142
Health 1 243
HR 796
Insurance 246
IT 353
Legal 547
Logistics 146
Oil 145
Point of Sale 251
SDK 490
Secretary 100
Security 294
Statistics 71

We first match application categories to the files downloaded
on each machine: to this end, we create a ground truth of over
10K applications that fall into 26 different categories. Table 3 lists
the details about the application categories we incorporated to
our analysis; we obtained this comprehensive ground truth that
covers different types of job roles by manually querying Capterra5
to retrieve the list of most popular applications in each category.

Our dataset, unfortunately, does not provide information about
application names; therefore, we follow a simple heuristic, which
we validated through manual checking. For each application, Cap-
terra provides a vendor name together with an application name: to
match these applications within our dataset, we matched through
regular expressions the application name with the installation di-
rectory, and the vendor name with the file signer subject. Through
this matching, we are able to identify the 5 application categories
representing most events on each machine, and their frequency.
We use this data as features.

In addition to the aforementioned job-related application cate-
gories, we also include three application categories that are often
abused by attackers formalevolent purposes such as gathering infor-
mation about compromised hosts, cracking passwords, exfiltrating
sensitive data, etc. We focus on these (legitimate) applications due
to a growing number of advanced threats that incorporate system
administration or diagnosis tools in various stages of their attacks:
for example, in an attack worth millions of dollars of stolen credit
card data from the Target supermarket chain, the attackers used
popular network sniffers to steal credit card data, and other legiti-
mate tools such as ftp and scp to exfiltrate it [15]. Motivated by
such cases, we give a closer look at the machines that have tools
that can be useful for attackers, and understand whether having
these tools could be correlated with the risk of future infections.

5http://www.capterra.com/

Based on online documentation about cyber attacks similar to
the aforementioned Target case, we collected a list of 115 applica-
tions used by attackers or similar to them. For example, knowing
that ftp is used for data exfiltration, we also add sftp, scp, pscp
and winscp to our list since they can be used in the same way.
The first category of applications include 18 system diagnosis tools
such as ping, netstat, diskinfo, tcpview, whois, dig, etc. The
second category consists of 64 system administration tools such as
data transmission tools, device scanners, IP port scanners, pene-
tration testing tools, remote access applications and sniffers. The
last category, attack tools, includes applications that are either di-
rectly attack-related or can help the attacker achieve more than the
previous two category of applications. For example, pass-the-hash
attack tools, man-in-the-middle attack tools, password crackers,
exploitation tools, hijacking tools, tools to perform dictionary at-
tacks belong to this category. We identify these tools employing the
same heuristic discussed before for the other type of application
categories. Once we identify the files that belong to these criti-
cal category of applications, we keep the fraction of files in each
category as features.

4.1.5 History of malware and goodware events. As discussed
earlier, we split our year of data in a period for feature extraction
and a subsequent one for labeling; in the latter labeling period
we derive our ground truth to distinguish “clean” and “infected”
machines. It is reasonable to imagine that past infection history
is correlated with future events; to evaluate that, we include a set
of features about hashes of known benign/malicious files in the
feature extraction period. Perhaps surprisingly, our results show
that these features are within the least informative ones.

4.1.6 Prevalence-Based Features. If one looks at the binaries in-
stalled on a single machine, a majority of them are in common with
many other machines, and they are signed by a rather small num-
ber of different vendors. Indeed, low-prevalence files and signers
are an indicator of file suspiciousness: while there are legitimate
and benign reasons they can be generated even in large numbers
(e.g., files compiled on a given machine), malware tends to have
lower prevalence than benign software. Moreover, one of the best
ways to label an unknown file is to consider it similar to the files it
co-occurs with [5, 34]: for low-prevalence files this is intrinsically
difficult, since the low number of machines they are installed on
causes low confidence on results. In particular, it is very difficult to
clearly label prevalence-1 (or “singleton”) files, which occur exactly
once on a single machine. In our context, the fact that a machine
has a large number of low-prevalence files gives us reasons to be
suspicious about that machine.

For each event, we compute (i) the number of events and en-
terprises in which the file signer is seen, (ii) the number of events
in which the file hash is seen, (iii) the number of enterprises and
machines in which the file hash is seen. Based on this information,
we bucket these values and create 26 features as reported in Table 1.
As we shall see in the following, a larger number of files that are
rare or created by rare signers entails a larger risk.

Session F2: Insights from Log(in)s CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1304

http://www.capterra.com/

0.0 0.2 0.4 0.6 0.8 1.0

1. Fraction happening during weekends.

0.00

0.25

0.50

0.75

1.00

E
C

D
F

All
Risky
Clean

0.0 0.1 0.2 0.3 0.4

2. Fraction from the 150 most common files.
0 1 2 3 4 5 6

3. Applications with patched vulnerabilities.

0 2000 4000 6000 8000 10000 12000

4. Total number of events.

0.00

0.25

0.50

0.75

1.00

E
C

D
F

0 2 4 6 8 10

5. Max CVSS score of patched vulnerabilities.
0 50 100 150

6. Total number of applications.

0 1000 2000 3000 4000 5000 6000

7. Distinct files.

0.00

0.25

0.50

0.75

1.00

E
C

D
F

0.0 0.5 1.0 1.5 2.0

8. Total number of unpatched applications.
0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

9. Fraction with signer in [11, 100] enterprises.

Figure 2: Empirical cumulative distribution functions (ECDFs) for the numerical features considered asmost significant in the
feature selection step, ranked by decreasing importance. We differentiate user profiles marked as risky, clean, and the overall
feature distribution. “Fraction” refers to the fraction of events per machine having the given property.

4.2 A Look at the Dataset
We now observe the feature distribution of our dataset; for obvious
space reasons, it is impossible to report them for all the 89 features
listed in Table 1. In Figure 2, we show the overall cumulative distri-
bution functions (CDFs) of the 9 most relevant features reported
in Table 5, along with the distribution observed for machine pro-
files marked as either risky or clean; the feature labeled as 1 is
the most important. We remark that these are not necessarily the
9 features that exhibit the most differences between infected and
clean users but rather the ones that, when considered together, best
allow separating infected machines from clean ones.

In general, the overall distribution and that of clean profiles are
similar; on the other hand, infected users behave differently: hence,
we can see the “signature” of risk in the behaviors that are more
consistent with risky users.

From plot 4 in Figure 2, we infer that risky users install substan-
tially less binaries on their machines than other users. Plots 2 and 6
corroborate this by showing that, on machines with risky profiles,
many files are very common and the total number of applications
is lower: it appears that machines that remain unused are more at

risk. Machines at risk are also updated very rarely, if ever: even
if the number of vulnerabilities on machines with risky profiles
is comparable to others (plot 8), those vulnerabilities are almost
never patched on machines with risky profiles (plots 3 and 5). Two
other characteristics associated with risk are higher usage during
weekends(plot 1), and a small but significant fraction of cases where
files are signed by entities appearing in few enterprises (plot 9).

The overall picture that emerges from this analysis is that risk
is strongly correlated with machines that are likely to be installed
and then forgotten, sitting unused with vulnerable and unpatched
operating systems and/or applications. Other risk patterns we ob-
serve are higher usage during weekends, and in some cases “weird”
files signed by rarely seen vendors.

This picture corroborates the idea that our feature can distinguish
features that can help us isolate the characteristics of risky behavior.
In the following, we describe the algorithms we designed to assign
risk scores to machines.

Session F2: Insights from Log(in)s CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1305

5 PREDICTIVE ANALYTICS
The features defined in the previous section result in machine
profiles that are the inputs of our machine learning algorithms. The
first algorithm is a commonly used supervised machine learning
classifier: Random Forest Classifier. The second algorithm performs
semi-supervised learning such that even with ground truths that are
unbalanced and/or limited in size we can still predict futuremalware
infections. Before going into the details of these two algorithms,
we note that we transform the category-based features that are not
numerical through one-hot (or one-out-of-k) encoding. A categorical
feature having the ith of k possible values becomes a set of k binary
features where the ith value is set to 1, and all others are set to 0.

5.1 Random Forest Classifier
Random Forest Classifiers (RFCs) are ensemble learning machines
consisting of several decision trees which output a weighted vote
of the decision output of each individual tree [3, 11]. The classifier
aims at reducing the variance of the learning model through bias-
variance trade-off. We use RFCs due to the following merits:

(1) RFCs can handle categorical and numerical features and
do not require feature normalization.

(2) They behave well with new and previously unseen testing
data, providing unbiased estimates of the generalization
error; hence, they give a good approximation to the true
classification boundary. As reported onmany datasets, they
produce accurate regression and classification outputs.

(3) Trees are helpful to provide an intuitive understanding on
how the prediction is made.

(4) The output of RFCs is an intrinsically well-calibrated prob-
ability that the model assigns to belonging to a given class.

(5) Most importantly, RFCs are intrinsically scalable and run
very efficiently on large-scale datasets similar to ours.

We run the RFC with 800 trees, chosen, as Liaw and Wiener [18]
advise, as the threshold where improving the number of trees does
not improve classifier accuracy.

5.2 Semi-Supervised Learning
While supervised machine learning algorithms perform better with
balanced ground truths having enough labeled elements, semi-
supervised learning (SSL) algorithms excel when the ground truth
datasets are unbalanced and/or small. Preparing a good ground
truth in many cases requires manual labeling or relies on some
automated tools that might result in faulty labels. The results of
previous works [21, 25, 29, 33] on several security problems demon-
strated SSL’s promising performance in reducing manual labeling
overheads and preserving classification accuracy.

We propose a novel SSL-based inductive learning engine for
RiskTeller, which conducts classifier training to estimate ground
truth and improve the classifier’s prediction accuracy at the same
time. Our SSL module is fed with n-dimensional feature vectors
{Xi ∈ Rn : i ∈ 1, . . . ,m} describing user-behavioral profiles onm
machines. Without loss of generality, we assume that the first l of
them are labeled: Ri = 0 if profile Xi is risky, Ri = 1 otherwise.
Here, we show how we build a risk prediction model F such that
the risk score F (Xi) quantifies the infection risk for machine i .

We establish our design of the risk score on two principles. First,
risk scores are bounded in [0, 1] and continuous: a value of 1 indicates
that an unquestionable evidence of infection is detected on the
machine; a value of 0, conversely, indicates that the machine is free
from any potentially malicious files, because only known benign
files have been observed on the machine. Between these extreme
situations, risk score measures the likelihood of infection on a
machine for which we do not have conclusive evidence of being
either clean or infected: those with larger scores are more likely
to be, or eventually become, infected. The second principle is that
similar user profiles yield close risk scores: if two feature vectors Xa
and Xb are close to each other in the feature space, we infer that
those machines are used in a similar way, and hence they will have
similar risk scores.

We define the risk score as Pi = P (infection|Xi), the posterior
probability of becoming infected given the feature vector Xi . Being
a probability, this value is bounded in [0, 1] and continuous, with
extreme values corresponding to unquestionable indicators of in-
fection or cleanliness; higher values correspond to higher infection
risks, consistently with the first principle outlined above.

We implement the second principle through an optimization
framework. We seed the system through the “clean” and “infected”
labels of Section 6.1.2, which we use as a priori knowledge by
assigning to them risk scores of respectively 0 and 1; we then
propagate risk scores to all user profiles based on similarity between
feature vectors, optimizing an objective function

CP =
∑
i, j

wi, j
(
Pi − Pj

)2
+ α

∑
i
(Pi − 0.5)2 (1)

constrained by Pi = Ri for the labeled profiles i ∈ 1, . . . , l , and
wherewi, j is the similarity between feature vectors Xi and X j . The
first term of Equation 1 enforces that the risk scores of similar pro-
files should be as close as possible, enforcing our second principle.
The last term regularizes the risk score distribution, according to
maximum entropy theory [31]: it encourages risk scores to be as
distributed as possible on the [0, 1] axis while respecting the first
term and the constraints on labeled items, avoiding degenerate
solutions where all or most Pi items are close to 0 or 1. Our chosen
P∗i values are therefore those that minimize CP ∗ :

P∗ = argmin
P

CP s.t. Pi = Ri∀i ∈ 1 . . . l . (2)

We solve this problem using the alternative minimizing pro-
cedure [31]: we introduce a pseudo-variable {Qi } (i = 1, . . . ,m)
resulting in a joint optimization problem with respect to P and Q :

P∗,Q∗ = argmin
P,Q

∑
i, j

wi, j
(
Pi −Q j

)2
+ α

∑
i
(Pi − 0.5)2

s.t. Pi = Qi = Ri∀i ∈ 1, . . . , l .
(3)

Our solution is to update Pi and Qi where i > l alternatively
until convergence, giving an iterative procedure composed by two
successive steps shown in Equations 4 and 5.

Qn
i =

∑
j,i wi, jP

n−1
j∑

j wi, j
if i > l ,Ri otherwise. (4)

Pni =

∑
j,i wi, jQ

n
j∑

j wi, j
if i > l ,Ri otherwise. (5)

Session F2: Insights from Log(in)s CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1306

The starting scores are

P1i = Q
1
i = Ri if i ⩽ l , 0.5 otherwise. (6)

We finally learn function F through a random forest classifier
consisting of 800 trees. We train the classifier to fit F such that P∗i is
the sample weight of the corresponding unlabeled user profile Xi .
From Equation 5 we see that, if profile i is not labeled, we set it as a
weighted average of the other valuesX j , where closer values have a
higher impact. To guarantee that the output of F is in the [0, 1] range,
we adopt the soft-voting based probabilistic output of the random
forest, which is the mean predicted class probability of all the trees
in the forest. As such, given the usage profiling features Xi of each
user, F (Xi) is the final risk score that we derive. It is noteworthy
that the probabilistic output of the random forest doesn’t require
additional calibration, unlike support vector machines or boosting.
It is defined as the mean predicted class probability for each tree
in the forest. For each tree, the class probability is the fraction
of samples of that class that drop into the same leaf. When the
training set is large enough, the output probability asymptotically
approaches the true probability of class membership.

6 EXPERIMENTS AND RESULTS
We evaluate RiskTeller through an extensive set of experiments.
First, we analyze RiskTeller’s parameters (Section 6.1) to choose
the best settings; then, we evaluate its ability to predict machine
infection (Section 6.2). We then study the significance of features
and feature categories (Section 6.3), and the significance of the
semi-supervised risk prediction algorithm we propose, in particular
when few items are labeled for the ground truth (Section 6.4).

6.1 RiskTeller Parameters
RiskTeller has two key sets of parameters that we evaluate here: the
first regardsM and N , the length of the periods we use for feature
extraction and labeling; the second regards the thresholds used for
setting the ground truth labels. Here, we show the effects of these
parameters, and how we set them for the rest of this analysis.

6.1.1 Feature Extraction and Labeling Period Length. We use our
data for two different goals: feature extraction and assigning labels.
Since our goal is predicting infections that occur after we extract
features, we separate data in two consecutive periods: the feature
extraction period, based on which we create the machine profiles
described in Section 4, and the labeling period, based on which
we extract the ground truth labels that we attempt to predict with
RiskTeller through the machine profile information.

We fragment our year of data in two consecutive periods, where
the feature extraction period lastsM months and the labeling pe-
riod lasts N months. As our dataset has one year of data, we are
constrained byM+N ⩽ 12; whenM+N < 12, we prepare different
datasets starting at the beginning of each month. For example, for
M = 6 and N = 4, we create three different datasets with feature
extraction (labeling) periods of respectively January–June (July–
October), February–July (August–November), and March–August
(September–December).

We aim to investigate the impact ofM and N on risk prediction
performance, and to choose their optimal setting; we organize the
experiment as follows. For each (M,N) pair such thatM + N ⩽ 12,

1 2 3 4 5 6 7 8 9
Labeling period N (months)

1

2

3

4

5

6

7

8

9

10Fe
at

ur
e

ex
tra

ct
io

n
pe

rio
d
M

(m
on

th
s)

0.75

0.80

0.85

0.90

0.95

1.00

AU
C

scores

Figure 3: AUC scores obtainedwith differentMandNvalues.

we recover the datasets created above and identify a ground truth
of clean and risky profiles based on their behavior in the labeling
period. We split the labeled users into a labeled training set L and a
validation setV . We then build the risk prediction model using both
L and all the unlabeled user profiles U , as described in Section 5.
After that, we apply the prediction model on the validation set
V to test accuracy. We repeat the split of L and V as a 10-fold
cross-validation process.

Figure 3 shows how AUC varies as a function ofM and N . We
can see that, in general, longer values of both M and N lead to
higher AUC scores: larger time windows improve the stability of
the statistical summary of user profiles and accumulate more solid
evidence for identifying the ground truth labels, which in turn
leads to higher AUC scores. Nevertheless, if more months are used
for feature extraction, less months are used to identify the ground
truth labels; as a result, the identified ground truth labels are more
likely to miss some challenging and ambiguous user profiles, which
are located near the classification boundary. Although the AUC
score grows if these ambiguous user profiles are excluded from
the training / testing process, this carries the risk of over-fitting
in our risk prediction model. We remark that AUC scores are high
and rather stable for N ⩾ 5 and 6 ⩽ M ⩽ 8: this corroborates a
conclusion stating thatM and N should be similar in size, because
a largerM increases the stability of feature extraction, and larger N
increases the stability and quality of the labeling process. Therefore,
in the remainder of our experiments we will setM = N = 6, which
consistently provides good results.

6.1.2 Thresholds for the Ground Truth. Our ground truth relies
on the detection capabilities of existing anti virus and intrusion
prevention products of the AV company, hence we have to take
into account the error rate of the identified infections, and the fact
that sometimes the same file is detected multiple times (e.g., cases
where users decide not to delete a file marked as malicious). Adding
a machine profile to the set of risky ones because the machine was
detected as infected a few times during the labeling period (e.g.,
6 months) might result in wrong assessments. Here, we show the

Session F2: Insights from Log(in)s CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1307

Table 4: AUC varying the ground truth thresholds.

Tinf Tgrey AUC Machines
Risky Clean

10 0 0.965 21 690 10 332
3 0.968 14 638

50 0 0.978 16 393 10 332
3 0.981 14 638

100 0 0.981 14 272 10 332
3 0.983 14 638

impact on results of the thresholds we use to identify clean and
risky profiles for our ground truth.

As discussed in Section 3.2, our ground truth comes from three
large datasets including known malware files and list of malware
infection records from IPS telemetry. We behave conservatively,
avoiding to add machines to the ground truth if there are any
reasons to doubt about the fact that they’re either infected or clean.

We define a machine as clean if it has neither any infection
records in the IPS telemetry dataset nor any files known to be
malware. To avoid misclassifications, we also consider as clean a
machine that has at most Tgrey unlabeled files. As seen in Table 4,
we used very strict thresholds to decrease the likelihood of labeling
an infected machine as clean due to false negatives in our data. We
behave in an analogously conservative way to label risky users:
we mark a profile as risky only if it is associated with at least
Tinf malicious events. To limit the risk of false positives, we again
experiment with conservative values in Table 4. We achieve the best
classification accuracy withTgrey = 3 andTinf = 100, the thresholds
we use for the remaining experiments.

6.2 Prediction Results
Once the main parameters are set, we evaluate the quality of Risk-
Teller’s predictions through our random forest classifier; we have
set a number of 800 trees as larger sizes do not improve neither the
stability nor the quality of results. Our classifier was run on the
dataset that includes file appearance logs from the machines of 18
enterprises. In Figure 4 we show the ROC curve obtained after a
10-fold cross validation. As the figure depicts, RiskTeller can predict
95% of the to-be-infected machines with only 5% false positives.
This is a significant improvement over the related work [19] which
had over 20% false positives for the same point in the ROC curve.

In addition to the cross-validation test, we conduct an experi-
ment to demonstrate the forecasting capability of RiskTeller. We
randomly select 50% of the to-be-infected machines to build the
prediction models processing the first six months of training pe-
riod. Then, we apply the models on the following 6 months to test
whether the remaining 50% of the machines that got infected could
be identified. We repeated this step 10 times to reduce the impact
of the random machine selection. The resulting AUC score is 0.95;
this validates our claim about RiskTeller’s prediction capabilities.

0	

20	

40	

60	

80	

100	

0	 5	 10	 15	 20	 25	 30	 35	 40	

Pr
ed

ic
'o

n	
Ra

te
	(%

)	

False	Posi'ves	Rate	(%)	

Figure 4: ROCs derived on the datasets

6.3 Feature Significance
To list the most discriminative features, we employ the mean de-
crease impurity methodology provided by the random forest clas-
sifiers. When training the trees in the random forest classifier, we
compute how much each feature decreases the weighted impurity
in the trees. Once the forest is built, we average the impurity de-
crease from each feature and rank them to identify the features that
contribute the most to the classification accuracy. In Table 5 we
list the strongest features among the 89 that RiskTeller processes,
and Figure 5 presents the mean decrease in impurity per feature
category. While all of the features do contribute to the ultimate
classification results, the temporal file download/creation behav-
ior of the users and the volume/diversity of file creation activities
observed on the machines have the highest impact on distinguish-
ing clean machine profiles from the risky ones. Surprisingly, the
infection history features are not as correlated. Previous work on
forecasting cyber security incidents [19] also found out that the
historical threat data is not as useful for prediction and therefore,
employed features about network misconfiguration details of the
enterprises. Unlike that work, RiskTeller works at a finer granular-
ity providing predictions at the machine level rather than at the
enterprise level, and the prediction accuracy is larger.

6.4 Semi-Supervised Label Propagation
In this section, we perform additional experiments with semi-su-
pervised learning (SSL) to highlight its merits. To this end, we
manipulate our ground truth to simulate two issues commonly
witnessed in real-world: the lack of balance between the sizes of
classes in the labeled data and inadequate number of labeled data
compared to the scale of the whole dataset. To obtain an imbalanced
ground truth that is also small in size, we randomly choose p%
of risky and q% of clean machine profiles in the ground truth to
form new ground truths. The remaining labels are hidden from the
classifier by signing them as unlabeled. Per different p and q values,
we repeat the random sampling of the ground truth 10 times and
take the average AUC and FPR values as the overall metric of the
classification accuracy.

Session F2: Insights from Log(in)s CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1308

Table 5: Most discriminative features, grouping very similar ones.

Feature Category # in Table 1 Contribution

Fraction of events in weekdays/weekend Temporal 16–17 0.075
Fraction of events from top-150 file hashes Volume-based 5 0.060
of patched apps Vulnerabilities 22 0.041
Total number of events Volume-based 1 0.026
Quartiles for CVSS scores of patched apps Vulnerabilities 25–29 0.024
Distinct app count Volume-based 7 0.023
Distinct file hashes Volume-based 2 0.021
Unpatched app count Vulnerabilities 36 0.020
Fraction of files signed by [101 − 1000] prevalence signers Prevalence-based 67 0.018
Monthly median number of events Temporal 20 0.018
Volume of downloads per app Volume-based 53–57 0.017

0	

0.005	

0.01	

0.015	

0.02	

0.025	

Vo
lum

e-B
ase
d	

Tim
e-B
ase
d	

Ca
teg
ory
-Ba
sed
		

Pre
va
len
ce
-Ba
sed
	

Vu
lne
rab
ily
-Ba
sed
	

Th
rea
t	h
ist
ory
-Ba
sed
	

Figure 5: The contribution of different feature categories to
the predictive modeling.

We set p as 20, 50 and q as 0.1, 0.5 and 1 respectively in the ex-
periments and run the RF and SSL modules of RiskTeller separately.
Table 6 illustrates the average AUC and FPR values corresponding
to each pair of p and q. As expected, the performances of the super-
vised random forest module deteriorate when the class imbalance
grows and the number of limited users decrease. In contrast, the
SSL method, which can estimate the labels of the unlabeled dataset
to enrich the ground truth, remains consistently accurate.

In our final experiment, we investigate the prediction accuracy
of RiskTeller on per-enterprise data. We stated earlier that the our
dataset comprises of data collected from 18 different enterprises.
Before initiating the classification experiments in each enterprise,
we analyzed the ground truth details of each enterprise. As Figure 6
demonstrates, the ground truths can be very imbalanced (e.g., 13K
risky and 1.6K clean profiles) or very small in size (e.g., 23 risky and
60 clean profiles). As expected, the basic random forest classifier
does not perform well here (on average 45% TPR with 5% FPR). The
SSL classifier obtains better results (on average 61% TPR with 5%
FPR); the results are still definitely not as good as those that can be
obtained when combining the data from different enterprises.

Table 6: TPR of the random forest and semi-supervised
methods when sampling labels.

p q
Random Forest Semi-Supervised

FPR 5% 10% 15% 5% 10% 15%

50% 0.1%

TPR

77% 79% 80% 90% 95% 95%
50% 0.5% 90% 93% 93% 84% 94% 96%
50% 1.0% 90% 93% 94% 88% 94% 96%
20% 0.1% 73% 83% 84% 88% 93% 94%
20% 0.5% 89% 92% 94% 84% 93% 95%
20% 1.0% 91% 95% 96% 91% 95% 96%

1	

10	

100	

1000	

10000	

1	 5	 25	 125	 625	 3125	 15625	

#	
of
	C
le
an

		M
ac
hi
ne

s	

#	of	Risky	Machines	

Figure 6: Ground Truth Size per enterprise.

7 DISCUSSION
A typical question that arises when machine learning (ML) is ap-
plied in the security domain is evasion, i.e., the possibility that
malicious actors behave to avoid being discovered by the ML sys-
tem. Luckily, in our case, this problem does not apply: RiskTeller
uses features observed when machines are used by benign users in
order to predict the risk of infections afterwards. Since features are
collected on benign usage before the attacks we attempt to predict,
evasion is not applicable to our case.

Session F2: Insights from Log(in)s CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1309

Another issue typically related to ML and security is concept
drift: the risk that, as time passes, the statistical properties of the
variable that ML models change, rendering the ML models less
and less effective: for example, a malware detection system might
lose effectiveness as malware families change over time. Instead of
characterizing attacks, Riskteller models their likely victims. Our
results —see Figure 3— show us that RiskTeller’s results are stable
over 6-month labeling periods, suggesting that characteristics of
typical cyber-attack victims change slowly over time. On longer
time frames, concept drift can be avoided by re-training our model.

Since we do not have data about the direct causes of attacks, we
cannot use our system to learn causality; however, the correlations
we observe can be interpreted to understand what are the cause
that increase the risk of attack. Our analysis in Section 4.2 provides
a clear picture of machines that are at risk of becoming infected:
those with few or no security upgrades and unusual usage in terms
of temporal patterns and binaries installed; it is quite intuitive to
understand why such machines are at higher risk.

Our results show that RiskTeller can predict infections with
variable precision depending on the dataset under consideration.
Our prediction quality is higher than typical values in the insurance
context, where prediction is a hard problem depending on human
factors and outside events that are not observable in a model; for
example, for bankruptcy prediction, see the ROC curves in the
works by [7] and [28]: predictions that are less precise than those
of RiskTeller are still useful to quantify risk and to price insurance.

We consider RiskTeller as also useful to identify machines at risk
and drive choices for proactive hardening in enterprises: machine
risk levels can be used independently and/or aggregated by orga-
nizations (e.g., departments) and job roles; these results can drive
efforts to harden systems or educate users to risk, such that more
effort is spent where it is most needed. One should not compare
these results with those obtained in the related problem of malware
detection: while detecting legitimate software as malware can some-
times make applications or machines unusable [6, 17, 20, 26, 35], a
false positive in identifying a machine as at risk would just result
in hardening that, a posteriori, could be considered not essential.

8 RELATEDWORK
In computer security, a very large amount of work has been de-
voted to approaches that attempt to determine whether machines
or systems are currently under attack, or distinguish malware from
legitimate software. By comparison, the body of work targeting the
prediction of future attacks and infections is comparably smaller.

In 1998, Korzyk [14] attempted to predict the growth in the
number of vulnerability advisories in the early days of Internet
security, using simple techniques such as time series analysis.

Some other works attempt to predict the behavior of attack-
ers and defenders with the tools of game theory: Jones et al. [13]
describe the interactions between efforts spent by attackers and
defenders to predict their optimal strategies, while Axelrod and
Iliev [1] investigate the issue of cyber-conflict timing, predicting
the moment in which cyber-weapons such as zero-days exploits
would be used. These approaches are most appropriate to describe
high-stakes interactions between few rational players, and do not

provide much insight with respect to the case of Internet security,
with billions of machines that are susceptible to attack.

The IARPA CAUSE project [12] is a recent effort to use large
amounts of Internet data together with machine learning to find
the fingerprints (e.g., system probing) that predict a future attack.
Unlike this project, our work focuses in the behavior of potential
victims rather than the one of attackers.

More similarly to our approach, six works analyze data about
users and systems to estimate the risk of cyber incidents: (a) Lalonde
Levesque et al. [16] analyze a small set of 50 users’ demographics
and web browsing features to evaluate risk factors; (b) Canali et al.
[4] perform a study that associated users to their risk through
information about their web browsing logs; (c) Soska and Christin
[30] collect features about websites to predict which ones will
become malicious; (d) Yen et al. [38] analyze user demographics
and behavioral features in a single large corporation to compute risk
factors; (e) Liu et al. [19] predict cyber-security incidents within
organizations by analyzing externally measurable features. In a
recent study, (f) Veeramachanent et al. [37] analyze the historical
incident records of enterprises to predict cyber incidents leveraging
deep learning methods. We consider these approaches as valuable
and complementary to the analysis that we carry out in this work.
All these approaches provide informative predictions, but none of
them is close to perfection: Soska and Christin obtain 66% true
positives (TPs) with 17% false positives (FPs), Canali et al. obtain
74% TPs with 8% FPs, Liu et al. have 90% TPs with 10% FPs, and
Veeramachanent et al. obtain 86.8% FPs with 4.4% TPs after being
boosted with feedback from security analysts. Lalonde Levesque
et al. and Yen et al. use logistic regression to compute risk factor
and do not report FP/TP results, but their results suggest lower
precisions. Each of these works predicts different types of incidents
and hence these numbers are not directly comparable. However,
they provide context showing that predicting incidents is a difficult
problems, and that RiskTeller’s TP/FP rates are generally better than
those observed in similar studies. Moreover, the studies by Liu et al.
and Veeramachanent et al. are inherently less granular and predict
attack only at the level of an organization, while an approach such
as ours gives more granular information, providing administrators
an actionable way to highlight the most risky components of their
infrastructure.

Semi-supervised learning has been used in the security context
by Han and Shen [9], classifying automatically email-based spear-
phishing campaigns. In this domain, the ground truth datasets are
created by human analysts, and therefore require extensive human
effort. Han and Shen propose to use a semi-supervised learning
algorithm to reduce the labeling overheads. In our work, instead,
we employ semi-supervised learning to verify the completeness
of our ground truth and to enrich it in case it is limited and/or
imbalanced in size.

9 CONCLUSION
In an era where the cyber incidents became unavoidable, cyber
defenders started to shift their interest from reactive to proactive
security, and enterprises and individuals purchase more and more
cyber insurance packages so that when the incident happens, a
part of their loss can be covered. One crucial task in both proactive

Session F2: Insights from Log(in)s CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1310

security and cyber insurance is to estimate and predict the risk
in advance. If methods for risk prediction exist, malware defense
solutions can incorporate this piece of information to harden the
systems of machines at risk such that it is harder for the attackers
to compromise them. Also, cyber insurance schemes can benefit
from risk estimates to price efficiently their offers. In this work, we
focused on addressing this gap in the cyber ecosystem by propos-
ing RiskTeller, a system that can predict the machines at risk in
enterprises with high accuracy. To date, no previous work was able
to achieve a 96% TPRs with only 5% FPRs for such predictions at a
machine-level granularity.

Despite the capabilities of RiskTeller to predict machines at risk
we believe that, in the area of prediction for cyber security, much
remains to be explored. RiskTeller predicts, in general, that a ma-
chine is at risk from malware, providing no hints about specific
malware categories. In future work, we plan to extend our work to
predict the risk of different machine profiles for threat types such
as banking trojans, advanced threats, data breaches, ransomware,
etc. Such a system requires effort from our community in terms of
automated threat categorization on large scale data: while this could
rely on AV labels, several pieces of work in the literature state that
they are in general not very reliable. Another line of research that
we wish to explore is risk prediction for individual users, whose
usage behavior is less regular compared to the enterprise users; in
future work, we plan to explore new techniques and evaluate other
datasets to better capture those users’ behavior and obtain better
prediction accuracy.

REFERENCES
[1] Robert Axelrod and Rumen Iliev. 2014. Timing of cyber conflict. Proceedings of

the National Academy of Sciences 111, 4 (2014), 1298–1303.
[2] Oleg Bogomolniy. 2017. Cyber Insurance Conundrum: Using CIS Critical

Security Controls for Underwriting Cyber Risk. https://www.sans.org/reading-
room/whitepapers/legal/cyber-insurance-conundrum-cis-critical-security-
controls-underwriting-cyber-risk-37572. (2017).

[3] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32.
[4] Davide Canali, Leyla Bilge, and Davide Balzarotti. 2014. On the effectiveness

of risk prediction based on users browsing behavior. In Proceedings of the 9th
ACM symposium on Information, computer and communications security. ACM,
171–182.

[5] Duen Horng Chau, Carey Nachenberg, Jeffrey Wilhelm, Adam Wright, and
Christos Faloutsos. 2011. Polonium: Tera-Scale Graph Mining and Inference for
Malware Detection. In SIAM International Conference on Data Mining (SDM) 2011,
Vol. 25. 131–142.

[6] Lucian Constantin. 2011. MSE false positive detection forces Google to update
Chrome. The Inquirer, http://www.theinquirer.net/inquirer/news/2113892/mse-
false-positive-detection-forces-google-update-chrome. (October 2011).

[7] J David Cummins, Martin F Grace, and Richard D Phillips. 1999. Regulatory
solvency prediction in property-liability insurance: Risk-based capital, audit
ratios, and cash flow simulation. Journal of Risk and Insurance (1999), 417–458.

[8] Experian. 2015. Data Breach Industry Forecast. https://www.experian.com/
assets/data-breach/white-papers/2015-industry-forecast-experian.pdf. (2015).

[9] Yufei Han and Yun Shen. 2016. Accurate Spear Phishing Campaign Attribution
and Early Detection. In Proceedings of the 31st ACM Symposium on Applied
Computing.

[10] G. R. Hileman, S. M. Mehmud, and M. A. Rosenberg. 2016. Risk Scoring in Health
Insurance. https://www.soa.org/Files/Research/research-2016-risk-scoring-
health-insurance.pdf. (2016).

[11] Tin KamHo. 1995. RandomDecision Forest. In Proceedings of the 3rd International
Conference on Document Analysis and Recognition. 278–282.

[12] IARPA. 2015. Cyber-attack Automated Unconventional Sensor Environment
(CAUSE). https://www.iarpa.gov/index.php/research-programs/cause. (2015).

[13] Malachi Jones, Georgios Kotsalis, and Jeff S Shamma. 2013. Cyber-attack forecast
modeling and complexity reduction using a game-theoretic framework. In
Control of Cyber-Physical Systems. Springer, 65–84.

[14] Alexander D. Korzyk, Sr. 1998. A forecasting model for internet security attacks.
In National Information System Security Conference.

[15] Aorato Labs. 2014. The Untold Story of the Target Attack Step by Step. https:
//aroundcyber.files.wordpress.com/2014/09/aorato-target-report.pdf. (Septem-
ber 2014).

[16] Fanny Lalonde Levesque, Jude Nsiempba, José M Fernandez, Sonia Chiasson,
and Anil Somayaji. 2013. A clinical study of risk factors related to malware
infections. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 97–108.

[17] John Leyden. 2010. Horror AVG update ballsup bricks Windows 7. The Register,
http://www.theregister.co.uk/2010/12/02/avgautoimmuneupdate/. (December
2010).

[18] Andy Liaw and Matthew Wiener. 2002. Classification and regression by random-
Forest. R news 2, 3 (2002), 18–22.

[19] Yang Liu, Armin Sarabi, Jing Zhang, Parinaz Naghizadeh, Manish Karir, Michael
Bailey, and Mingyan Liu. 2015. Cloudy with a chance of breach: Forecasting
cyber security incidents. In 24th USENIX Security Symposium (USENIX Security
15). 1009–1024.

[20] Declan McCullogh. 2010. Buggy McAfee update whacks Windows XP PCs.
CNET, http://www.cnet.com/news/buggy-mcafee-update-whacks-windows-
xp-pcs/. (April 2010).

[21] Yuxin Meng, Wenjuan Li, and Lam-For Kwok. 2014. Enhancing email classifica-
tion using data reduction and disagreement-based semi-supervised learning. In
Proceedings of IEEE International Conference on Communications 2014. 622–627.

[22] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and Tudor Du-
mitras. 2015. The attack of the clones: a study of the impact of shared code on
vulnerability patching. In Security and Privacy (SP), 2015 IEEE Symposium on.
IEEE, 692–708.

[23] Kartik Nayak, Daniel Marino, Petros Efstathopoulos, and Tudor Dumitraş. 2014.
Some vulnerabilities are different than others. In Research in Attacks, Intrusions
and Defenses. Springer International Publishing, 426–446.

[24] M. Ovelgonne, T. Dumitras, A. Prakash, V.S. Subrahmanian, and B. Wang. 2016.
Understanding the Relationship between Human Behavior and Susceptibility
to CyberAttacks: A DataDriven Approach. In ACM Transactions on Intelligent
Systems and Technology.

[25] Clifton Phua, Vincent C. S. Lee, Kate Smith-Miles, and Ross W. Gayler. 2010. A
Comprehensive Survey of Data Mining-based Fraud Detection Research. Com-
puting Research Repository abs/1009.6119 (2010).

[26] Emil Protalinski. 2008. AVG incorrectly flags user32.dll in Windows XP
SP2/SP3. Ars Technica, http://arstechnica.com/information-technology/2008/
11/avg-incorrectly-flags-user32-dll-in-windows-xp-sp2sp3/. (November 2008).

[27] PWC. 2016. Insurance 2020 and beyond: Reaping the dividends of cyber re-
silience. http://www.pwc.com/gx/en/insurance/publications/assets/reaping-
dividends-cyber-resilience.pdf. (2016).

[28] Alexander S Reisz and Claudia Perlich. 2007. A market-based framework for
bankruptcy prediction. Journal of Financial Stability 3, 2 (2007), 85–131.

[29] Igor Santos, Javier Nieves, and Pablo G. Bringas. 2011. Semi-supervised Learning
for Unknown Malware Detection. In Proceedings of International Symposium on
Distributed Computing and Aritifical Intelligence 2011. 415–422.

[30] Kyle Soska and Nicolas Christin. 2014. Automatically detecting vulnerable
websites before they turn malicious. In 23rd USENIX Security Symposium (USENIX
Security 14). 625–640.

[31] Amarnag Subramanya and Jeff Bilmes. 2011. Semi-supervised learning with
measure propagation. Journal of Machine Learning. Research 12 (2011), 3311–
3370.

[32] Symantec. 2016. Internet Security Threat Report Vol. 21. https://
www.symantec.com/security-center/threat-report. (April 2016).

[33] Christopher T. Symons and Justin M. Beaver. 2012. Nonparametric Semi-
supervised Learning for Network Intrusion Detection: Combining Performance
Improvements with Realistic In-situ Training. In Proceedings of the 5th ACM
Workshop on Security and Artificial Intelligence (AISec). ACM, New York, NY,
USA, 49–58.

[34] Acar Tamersoy, Kevin Roundy, and Duen Horng Chau. 2014. Guilt by association:
large scale malware detection by mining file-relation graphs. In Proceedings of
the 20th ACM SIGKDD international conference on Knowledge Discovery and Data
Mining. ACM, 1524–1533.

[35] Aaron Tan. 2007. Flawed Symantec update cripples Chinese PCs. CNET, http:
//www.cnet.com/news/flawed-symantec-update-cripples-chinese-pcs/. (May
2007).

[36] Olivier Thonnard, Leyla Bilge, Anand Kashyap, and Martin Lee. 2015. Are you
at risk? Profiling organizations and individuals subject to targeted attacks. In
Financial Cryptography and Data Security. Springer Berlin Heidelberg, 13–31.

[37] Kalyan Veeramachanent, Ignaclo Arnaldo, Alfredo Cuesta-Infante, Korrapati
Vamsl, Costa Basslas, and Li Ke. 2016. AI2: Training a big data machine to defend.
In Proceedings of the 2nd IEEE International Conference on Big Data Security.

[38] Ting-Fang Yen, Victor Heorhiadi, Alina Oprea, Michael K Reiter, and Ari Juels.
2014. An epidemiological study of malware encounters in a large enterprise. In
Proceedings of the 2014 ACM SIGSACConference on Computer and Communications
Security. ACM, 1117–1130.

Session F2: Insights from Log(in)s CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1311

https://www.sans.org/reading-room/whitepapers/legal/cyber-insurance-conundrum-cis-critical-security-controls-underwriting-cyber-risk-37572
https://www.sans.org/reading-room/whitepapers/legal/cyber-insurance-conundrum-cis-critical-security-controls-underwriting-cyber-risk-37572
https://www.sans.org/reading-room/whitepapers/legal/cyber-insurance-conundrum-cis-critical-security-controls-underwriting-cyber-risk-37572
http://www.theinquirer.net/inquirer/news/2113892/mse-false-positive-detection-forces-google-update-chrome
http://www.theinquirer.net/inquirer/news/2113892/mse-false-positive-detection-forces-google-update-chrome
https://www.experian.com/assets/data-breach/white-papers/2015-industry-forecast-experian.pdf
https://www.experian.com/assets/data-breach/white-papers/2015-industry-forecast-experian.pdf
https://www.soa.org/Files/Research/research-2016-risk-scoring-health-insurance.pdf
https://www.soa.org/Files/Research/research-2016-risk-scoring-health-insurance.pdf
https://aroundcyber.files.wordpress.com/2014/09/aorato-target-report.pdf
https://aroundcyber.files.wordpress.com/2014/09/aorato-target-report.pdf
http://www.theregister.co.uk/2010/12/02/avg_auto_immune_update/
http://www.cnet.com/news/buggy-mcafee-update-whacks-windows-xp-pcs/
http://www.cnet.com/news/buggy-mcafee-update-whacks-windows-xp-pcs/
http://arstechnica.com/information-technology/2008/11/avg-incorrectly-flags-user32-dll-in-windows-xp-sp2sp3/
http://arstechnica.com/information-technology/2008/11/avg-incorrectly-flags-user32-dll-in-windows-xp-sp2sp3/
http://www.pwc.com/gx/en/insurance/publications/assets/reaping-dividends-cyber-resilience.pdf
http://www.pwc.com/gx/en/insurance/publications/assets/reaping-dividends-cyber-resilience.pdf
https://www.symantec.com/security-center/threat-report
https://www.symantec.com/security-center/threat-report
http://www.cnet.com/news/flawed-symantec-update-cripples-chinese-pcs/
http://www.cnet.com/news/flawed-symantec-update-cripples-chinese-pcs/

	Abstract
	1 Introduction
	2 Why Cyber Risk Prediction?
	3 Dataset
	3.1 Data Preprocessing
	3.2 Ground Truth

	4 Building the Machine Profiles
	4.1 Feature Discovery
	4.2 A Look at the Dataset

	5 Predictive Analytics
	5.1 Random Forest Classifier
	5.2 Semi-Supervised Learning

	6 Experiments and Results
	6.1 RiskTeller Parameters
	6.2 Prediction Results
	6.3 Feature Significance
	6.4 Semi-Supervised Label Propagation

	7 Discussion
	8 Related work
	9 Conclusion
	References

