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Abstract—The cost of computing the spectrum of Lapla-
cian matrices hinders the application of spectral clustering to
large data sets. While approximations recover computational
tractability, they can potentially affect clustering performance.
This paper proposes a practical approach to learn spectral
clustering, where the spectrum of the Laplacian is recovered
following a constrained optimization problem that we solve using
adaptive mini-batch-based stochastic gradient optimization on
Stiefel manifolds. Crucially, the proposed approach is formulated
so that the memory footprint of the algorithm is low, the cost of
each iteration is linear in the number of samples, and convergence
to critical points of the objective function is guaranteed. Extensive
experimental validation on data sets with up to half a million
samples demonstrate its scalability and its ability to outperform
state-of-the-art approximate methods to learn spectral clustering
for a given computational budget.

I. INTRODUCTION

Over the past two decades, spectral clustering has established
itself as one of the most prominent clustering methods [1], [2].
The effectiveness of spectral clustering in identifying complex
structures in data is a direct consequence of its close connection
with kernel machines [3], [4]. Because of this connection,
however, it is also apparent that spectral clustering inherits the
scalability issues of kernel machines. In spectral clustering, the
computational challenge is to determine the spectral properties
of the so called Laplacian matrix [5]. Denoting by n the number
of samples, storing the Laplacian matrix requires O(n2

) space
while calculating its spectrum requires O(n3

) computations.
Several approaches have been proposed to reduce the com-

plexity of spectral clustering, such as employing power methods
to identify the principal eigenvectors of the Laplacian [6]. While
this approach is exact in the limit of the iterations and does not
require storing the Laplacian, the complexity is dominated by
the iterative multiplication of the Laplacian matrix by vectors,
leading to O(n2

) computations. In order to further reduce
this complexity to O(n), a number of approximations are
proposed in the literature. A popular technique based on the
Nyström approximation relies on a small set of inducing points
to approximate the spectrum of the Laplacian matrix [7]. Other
recent approximations which attempt to compress the dataset
appear in [8] and [9]. These approximations recover tractability
and make it possible to apply spectral clustering to large data
sets. However, approximations can generally affect the quality
of the clustering solution, as we illustrate in the experiments.

This paper proposes a practical approach to learn spectral
clustering as follows. Denoting by L the Laplacian matrix, the

idea hinges on the possibility to cast the algebraic problem of
identifying its principal eigenvectors as the trace optimization
problem

argmin

W2Rn⇥k

⇢
Tr
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W>LW

◆�
,

subject to W>W = I .
(1)

We propose to solve the constrained optimization problem
by means of stochastic gradient optimization. In view of the
orthonormality constraint the elements of W lie on the so called
Stiefel manifold, and appealing to theoretical guarantees of
convergence of stochastic gradient optimization on manifolds,
we can prove that our proposal converges to a critical point
of the objective function in the limit of the iterations [10].
In order to simplify the tuning of the optimization procedure,
we adapt Adagrad [11] for stochastic gradient optimization
on the Stiefel manifold. The novelty of our proposal stems
from the use of stochastic linear algebra techniques to compute
stochastic gradients in O(n). This leads to computations of
stochastic gradients that require processing of a limited number
of columns of the full Laplacian matrix, motivating us to name
our proposal Mini-Batch Spectral Clustering.

The results on a variety of clustering problems with n up to
580K give credence to the value of our proposal. We can tackle
large-scale spectral clustering problems achieving the same
level of accuracy of the approach that uses the exact spectrum
of L at a fraction of the computing time. We also compare
against approximate spectral clustering methods and show that
approximations lead to faster solutions that are suboptimal
compared to what we can achieve with the proposed method,
especially for large data sets.

Summary of contributions (i) We propose adaptive stochas-
tic gradient optimization to solve the constrained optimization
problem in Eq. 1. (ii) We present a novel way of computing
stochastic gradients linearly in the number of data that does
not require storing the Laplacian matrix. (iii) We analyze the
variance of the proposed estimator of the exact gradient to
explain the impact of algorithm parameters. (iv) We make use
of Nyström approximations to speedup the convergence of
the proposed algorithm. (v) We demonstrate that our proposal
allows us to tackle large-scale spectral clustering problems by
reporting results on data sets of size up to n = 580K. Crucially,
we can achieve clustering solutions of similar accuracy and
orders of magnitude faster compared to the approach that
computes the exact spectrum of L, and higher clustering



accuracy compared to approximate methods at a comparable
cost.

II. SPECTRAL CLUSTERING

A. Background

Consider an unsupervised learning problem where X =

{x1, . . . ,xn} is a set of n samples to be clustered. The
formulation of spectral clustering introduces an undirected
graph G based on X , where the n nodes of G represent the
n input data in X , and the edges are weighted according
to a similarity measure between the inputs. The graph G is
expressed by an n⇥ n adjacency matrix A, where each entry
aij determines the weight associated with the edge connecting
inputs i and j. Typically, the elements of A are defined through
off-the-shelf kernel functions, e.g., the Radial Basis Function
(RBF) kernel [12].

Spectral clustering attempts to cluster the elements of X by
analyzing the graph G. In particular, the objective of spectral
clustering is to partition the graph so as to minimize some
graph cut criterion, e.g., the normalized cut [1]. The graph
cut problem is generally NP-hard, but its relaxation leads to
the definition of the clustering problem as the solution of an
algebraic problem [13]. In particular, following the spectral
clustering algorithm proposed by [2], the graph Laplacian is
defined as a normalized version of the adjacency matrix

L = D� 1
2AD� 1

2 , (2)

where D is the diagonal matrix of the degrees of the n
nodes. Spectral clustering represents each data point using
the corresponding component of the top k eigenvectors of
the Laplacian L, and computes the solution to the clustering
problem by applying k-means in this representation. The
difficulty in solving the graph cut problem then becomes
calculating the spectrum of the Laplacian matrix L; this requires
O(n3

) computations and O(n2
) space, making it prohibitive –

if not unfeasible – for large data sets. The aim of this paper
is to address this scaling issue of spectral clustering without
sacrificing the accuracy of the solution, as explained next.

B. Constrained optimization problem formulation

The first step to reduce the complexity in finding the top k
eigenvectors of L, is to cast this algebraic operation as solving
the constrained optimization problem in Eq. 1. This is an
optimization problem involving n⇥ k parameters representing
the n components of the top k eigenvectors of L. The objective
function rewards maximization of a score that, at convergence,
is the sum of the k largest eigenvalues. The constraint
W>W = I gives rise to the so called Stiefel manifold in
Rn⇥d; this imposes orthonormality on the columns of W
which, at convergence, represent the eigenvectors associated
with the k largest eigenvalues.

The constrained optimization problem in Eq. 1 can be solved
by formulating standard optimization algorithms to deal with
the Riemannian metric on the manifold [14], which typically
rely on search operations along geodesics. Alternative schemes,
such as the Cayley transform, have been proposed to tackle
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Fig. 1: Left: Exact gradient G and a few realizations of
stochastic gradients ˜G; the projection of these gradients onto the
tangent space TWM of a manifold M at a given W give H and
˜H , respectively. Right: Retraction scheme that approximates

the exponential map at W .

optimization problems on Riemannian manifolds [15]. All these
optimization schemes require calculating the gradient of the
objective function

G = rWTr
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This costs O(n2
) and does not require storing L anymore,

which is an improvement with respect to computing the full
spectrum of L. However, while casting spectral clustering as a
constrained optimization problem improves scalability, when
n is large it may still take a prohibitive amount of time to be
practical. In the next section we present our proposal to solve
the constrained optimization problem using iterative updates
that cost O(n) operations, with the guarantee of convergence
to critical points of the objective function in Eq. 1.

III. MINI-BATCH SPECTRAL CLUSTERING (MBSC)
The intuition behind our proposal is that it is possible to solve

the constrained optimization problem in Eq. 1 relying exclu-
sively on stochastic gradients [10]. By inspecting the expression
of the exact gradient in Eq. 3, we show how stochastic linear
algebra techniques can be employed to unbiasedly estimate
exact gradients (O(n2

) cost) with stochastic gradients at O(n)
cost.

A. Stochastic optimization on Stiefel manifolds

Stochastic gradient optimization on manifolds is based on
the notion of Riemannian gradients, which are elements of the
tangent space at a given W that determine the direction of
steepest increase of the objective function on the manifold. For
the Stiefel manifold, the Riemannian gradient is

H = (I �WW>
)G. (4)

In the case where an unbiased version ˜G of the gradient G is
available, namely E[

˜G] = G, an intuitively sensible strategy is
to perform stochastic gradient optimization on the manifold.
Formally, this would amount in moving along geodesics for a
given length based on the noisy version of the gradient. Defining
�t as the equivalent of the usual step-sizes in stochastic gradient
optimization, and expW () as the exponential map at W , the



Algorithm 1: Stochastic Riemannian gradient on Stiefel
Manifold using Mini-Batches
Htilde(L, p, Nr, W)
Initialize ˜G 2 Rn⇥k with elements equal to zero
for i = 1 to Nr do

Draw the components of ri
˜G += 1

Nr
Lrir

>
i W

end
Return ˜H = (I �WW>

)

˜G

update equation would then be W 0
= expW

⇣
��t ˜H

⌘
, where

˜H = (I�WW>
)

˜G is the unbiased Riemannian gradient of the
objective function. This approach can be shown to converge to
critical points of the objective function in Eq. 1 [10]. However,
computing the exponential map to simulate the trajectory of the
solver on the manifold requires solving potentially expensive
differential equations.

An alternative that avoids computing the exponential map
altogether is to replace this calculation with an approxima-
tion W 0

= RW

⇣
��t ˜H

⌘
that is much easier to calculate.

If the so called retraction RW satisfies the property that
d(RW (�v), expW (�v)) = O(�2), where v is an element of the
tangent space, then it is still possible to prove convergence [10].
A simple and computationally convenient retraction function
that satisfies this property is

W 0
= QRQ

⇣
W � �t(I �WW>

)

˜G
⌘

, (5)

where QRQ extracts the orthonormal factor Q of a QR

decomposition. This simple retraction moves the optimiza-
tion in the direction of the stochastic Riemannian gradient
˜H = (I �WW>

)

˜G and applies an orhtonormalization step
to ensure that the update is projected back onto the manifold.
Under this choice of retraction, we can appeal to the theoretical
results in [10] that ensure convergence to critical points of the
objective function in the limit of the iterations, similarly to
standard stochastic gradient optimization. An illustration of the
retraction scheme is provided in Fig.1.

B. Calculation of stochastic gradients in O(n)

The introduction of stochasticity in the calculation of ˜G
follows on from ideas that have been proposed to calculate
unbiased stochastic approximations to algebraic quantities, such
as traces and log-determinants [16], [17]. In particular, we
define a vector r such that E[rr

>
] = I and we rewrite the

expensive matrix product as

G = LW = LIW = LE[rr>]W = E[Lrr>W ], (6)

which suggests that we can replace the exact calculation of
LW with the estimator

˜G =

1

Nr

NrX

i=1

Lrir
>
i W . (7)

The key to making computations linear in n is to define
the components of the random vectors ri as drawn from

Algorithm 2: Mini-Batch Spectral Clustering
Input: Normalized Laplacian Matrix L 2 Rn⇥n, number

of clusters k, regularization factor "
Parameters : Step-size �, max # iterations T
Output: Cluster labels of each data points
Initialize W (0) 2 Rn⇥k as a random orthonormal matrix
Initialize M (0) 2 Rn⇥k with elements equal to zero
for t = 1 to T do

˜H(t) = Htilde(L, p, Nr, W (t�1))
M

(t)
ij = M

(t�1)
ij + | ˜H(t)

ij |2

ˆH
(t)
ij =

˜H
(t)
ij

"+
q

M
(t)
ij

W (t)
= W (t�1) � � ˆH(t)

W (t)
= QRQ(W

(t)
)

end
Apply k-means on W (T ) to get the cluster labels

the set {�p�
1
2 , 0,+p�

1
2 } with probabilities (p/2, 1� p, p/2)

respectively. It is straightforward to verify that E[rir>i ] = I ,
and p can be chosen to enforce any proportion of zeros in
the ri vectors. With this mechanism to inject stochasticity in
the calculation of the gradients, we are effectively ignoring
some columns of the matrix L whenever there is a zero in
the corresponding positions of the ri vectors. This makes it
possible to update the parameters W during the solution of the
constrained optimization problem in Eq. 1, by only selecting
a few columns of the full Laplacian. If the average number
of non-zero elements is chosen to be independent of n, the
calculation of the stochastic gradient is O(n), making the
proposed iterative solver linear in the number of samples. The
memory footprint of the algorithm is a distinctive feature of our
proposal; if the degree matrix D is precomputed, calculating
the necessary columns of L requires evaluating and normalizing
just O(n) elements of the adjacency matrix A.

Given that only a subset of the columns in L are used at
each iteration to calculate stochastic gradients, we term our
proposal Mini-Batch Spectral Clustering (MBSC). Instead of
defining a probability p to select columns and to repeat this
Nr times, we can fix the number and indices of columns
that are selected at each iteration (size of the mini-batch) to
be m = lNr and interpret p = l/n. While this is intuitively
sensible, fixing the indices of the mini-batches would violate the
property that E[rir>i ] = I . One easy way around this issue is to
constantly change the way data are split into mini-batches, e.g.,
by shuffling the data, and this recovers the property E[rir

>
i ] =

I . Even though it is not the focus of the current paper, we
envisage the possibility to develop a distributed version of
the proposed MBSC algorithm based on our formulation. The
proposed MBSC algorithm is sketched in Algorithms 1 and 2,
where, for the sake of clarity, L is assumed to be stored. For
memory constrained systems where storing the whole Laplacian
matrix is unfeasible, our proposal can easily be adapted to
avoid storing it, and we report on the performance of this



variant in the experiments.

C. Variance of stochastic gradients

Here we are interested in quantifying the impact of the
choice of p and Nr in the variance of the proposed estimator
of the exact gradients. Without loss of generality, we focus
on the variance of a given column of the stochastic gradient,
say ˜G·s = Lrr>W·s that is the one associated with the sth
eigenvector. In order to avoid cluttering the presentation of
the paper, we leave the detailed derivation of the variance
and its bound to the next section and we only report the final
expression here. We express the bound in terms of the mini-
batch size m = lNr, for which p = l/n, and when Nr vectors
ri are used to calculate stochastic gradients as in Eq. 7.

Tr

⇥
cov

�
Lrr>w

�⇤  1

Nr
G>

·sG·s +
1

Nr
Tr

�
LL>�

+

n

lNr
Tr

⇥
Ldiag(w)diag(w)L>⇤ .

This reveals that we have two ways of reducing the variance
of stochastic gradients; one is to increase Nr and another is to
increase l. Imagine that we fix the mini-batch size m = lNr; is
it better to increase l and reduce Nr, or the other way around?
For the last term it does not matter. For the first two instead,
given that they depend only on Nr, it is clear that we should
favor increasing Nr and reducing l. This entails that we should
consider averaging stochastic gradients over several subsets
of a mini-batch instead of a few large ones. This result is
interesting because in other popular mini-batch approaches
increasing the mini-batch size or the number of repetitions is
equivalent. In our proposed MBSC, because of the nonlinearity
of the estimator with respect to the vectors ri, the bound on
the variance shows an unintuitive asymmetry between Nr and
l. A further consideration we can make is that this suggestion
is most useful during the first phase of the optimization where
the gradients are likely to be large.

D. Detailed derivation of the variance of stochastic gradients

We report here a detailed derivation of the variance of a
given column of the stochastic gradient ˜G, namely the one
associated with a given eigenvector, say w := W·s. Recall that
the exact gradient with respect to w would be G·s = Lw and
assume that we use a single vector r to unbiasedly estimate
this as ˜G·s = Lrr>w. The covariance of ˜G·s is

E[(Lrr>w)(Lrr>w)

>
]� �

E[Lrr>w]

� �
E[Lrr>w]

�>
.

We are interested in analyzing the sum of the variances of
the components of the stochastic gradient:

Tr[cov

�
Lrr>w

�
] = E[(Lrr>w)

>
(Lrr>w)]

� �
E[Lrr>w]

�> �
E[Lrr>w]

�
. (8)

By expanding the first term and realizing that the second term
in the right hand side is just the norm of the sth column of
˜G, we obtain that the sum variances of the components of the
stochastic gradient is:

Tr

⇥
cov

�
Lrr>w

�⇤
= Tr

⇥
LE

⇥
rr

>
ww

>
rr

>⇤L>⇤�w

>L>Lw.

The expectation on the right hand side can be computed
analytically; its derivation is rather lengthy and, for the sake
of clarity, we just report the final expression here:

E(rr

>
ww

>
rr

>
) = 2ww

>
+

✓
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p
� 3

◆
diag(w)diag(w)+ I .

Plugging the expression of the expectation into the expression
of the variance of the components of the stochastic gradient,
we obtain the following expression:

Tr

⇥
cov

�
Lrr>w

�⇤
= G>

·sG·s +Tr

�
LL>�

+

✓
1

p
� 3

◆
Tr

⇥
Ldiag(w)diag(w)L>⇤ ,

which we can bound as follows

Tr

⇥
cov

�
Lrr>w

�⇤  G>
·sG·s +Tr

�
LL>�

+

1

p
Tr

⇥
Ldiag(w)diag(w)L>⇤ .

E. Other practical considerations

In the following, we employ a “warm start” initialization
for the proposed MBSC method by carrying out a Nyström
approximation and setting the initial W (0) to the top k
approximate eigenvectors [7]. We will illustrate the impact
of the warm start initialization in the experiments section.

Another practical consideration is that, for memory con-
strained systems where L is not stored, there is a difficulty in
computing the degree matrix D, which is required to normalize
the Laplacian (Eq. 2). We obtain an initial estimate ˆD through
the Nyström approximation, and along the iterations, ˆD is
updated whenever columns of L are computed. After one pass
through the whole dataset, ˆD = D.

F. Other valid mini-batch formulations

We note here that there are other ways to formulate a
mini-batch strategy for the optimization problem in Eq. 1.
In particular, consider the following estimator

˜G = (L �H)W , (9)

where � denoted the Hadamard (element-wise) product, and
H is a matrix such that E[H] = 11

>. One way to define the
elements of H is to pick a set of columns with probability p
and set their elements to 1/p and the rest to zero. In this way,
H acts as a “mask” matrix that selects only the columns of the
Laplacian matrix pertaining to a subset of the data. We found
empirically that the variance of the resulting stochastic gradient
is of the same order as the one that we propose, and that none
of the two approaches gives a consistently lower variance
compared to the other. A similar estimator was proposed in
[18], where the elements of H to set to 1/p were not selected
by columns, but just randomly from the whole matrix; again
the variance of the stochastic gradients is comparable to the
one we propose.
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Fig. 2: NMI versus counts of floating-point operations on the Pendigits, Shuttle and MNIST data sets. NMI for the
exact spectral clustering is shown as a constant dashed line. MBSC with the largest mini-batches runs for 3.8s, 107s and 112s
to achieve an average NMI score of 0.67, 0.48 and 0.47 on the three data sets, whereas the power method takes 20s, 935s
and 987s to get a stable clustering output. The Nyström approximation needs 1000 samples to obtain the optimal clustering
accuracy, which takes 15.2s, 198s and 211s on the three data sets.
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Fig. 3: NMI versus counts of floating-point operations on the Pendigits, Shuttle and MNIST data sets. We compare
performance of MBSC with Nyström approximation based warm start (noted as ”warmstart” in the figure) to that with random
initialization (noted as ”no warm start” in the figure)

TABLE I: Summary of the characteristics of the data sets
considered in the experiments.

Data set # samples # feat. # classes �
Pendigits 10992 16 10 223.61
Shuttle 58000 9 7 0.45
MNIST 60000 780 10 4.08

Covtype-I 100000 54 5 1.15
Covtype-II 581012 54 7 1.15

IV. EXPERIMENTS

Throughout the experiments, we make use of the Radial
Basis Function (RBF) adjacency function:

aij = exp

✓
�kxi � xjk

�2

◆
i 6= j,

where we set aij = 0 when i = j. The parameter � determines
the rate of decay of the adjacency function, which can be set,
e.g., using statistics on the distances between pairs of points
[19].

We assess clustering performance using the normalized
mutual information (NMI) score between the cluster labels and
the ground truth class labels. To reliably measure computational
cost of all methods involved in the comparison, we count the
amount of floating-point addition and multiplication operations

they require, given the affinity matrix, and we also report
running time statistics. We implemented all the algorithms in
Python using the numpy and scikit-learn packages. All
our experiments are conducted under Ubuntu Linux 14.04 with
10-core CPU and 20GB memory.

Table I summarizes the statistics of the data sets, taken
from LibSVM [20], that we consider in the experiments. To
construct the Covtype-I set, we randomly sample 14129

samples from the first two classes of the original Covtype
data set and merge the data samples of classes 4, 5 and 6 into
one single class to avoid severe imbalances between classes.
Covtype-II, instead, uses all of the original Covtype data.

We organize the experimental study in two parts. In both
parts, we aim to show the performance of the proposed MBSC
algorithm against other state-of-the-art algorithms for solving
spectral clustering. In particular, we compare our proposal
with the solution of the power iteration-based algorithm in [6]
and the Nyström approximation-based spectral clustering in
[7]. We also include results obtained by the spectral clustering
algorithm in [18], where, to ensure fairness with our proposal,
we sample the same number of non-zero entries from L and
employ Adagrad optimization. We refer to this method as
PSGD. A comparison between PSGD and MBSC is illustrated
in Figure 4

In the first part, experiments are carried out on moderately
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Fig. 4: NMI versus counts of floating-point operations on the Pendigits, Shuttle and MNIST data sets. In this figure, we
compare the clustering performance of the proposed MBSC method with PSGD. For better visualization, we only compare
PSGD with MBSC-20, MBSC-50 and MBSC-50 on the three datasets respectively, noted as PSGD-20, PSGD-50 and PSGD-50
in the corresponding figures. PSGD uses the same computational cost per iteration as MBSC.

large data sets comprising 10K, 58K and 60K samples. For
these, we can also report the performance of the spectral
clustering approach in [1] where the spectrum of the normalized
Laplacian is computed exactly (denoted as “Exact” in the plots).
In the second part, we repeat the same comparison on two
larger sized data sets, comprising 100K and 580K samples,
where we cannot compute the exact spectrum of L.

A. Comparative evaluation

We conduct a comparative evaluation of the proposed MBSC
with state-of-the-art spectral clustering algorithms on the
Pendigits, Shuttle and MNIST data sets. In the proposed
MBSC approach, we experiment with different choices of the
mini-batch size to assess its impact on performance. The warm
start initializations on the three databases are built using the
Nyström approximation, by sampling only 5 data points from
the whole dataset. To comprehensively analyze the performance
of the proposed method, the iterative stochastic gradient descent
on the manifold runs until we make one full pass through the
whole data set. In practice, the stochastic gradient descent
process can be stopped either if the difference between the
spectral embedding W derived at two successive iteration steps
is less than a threshold, or if a fixed number of iteration is
achieved. For the Nyström approximation, we report a few
choices on the number of samples selected to construct the
approximate eigenvectors, namely 10, 50, 100, 500 and 1000.

Figure 2 illustrates the NMI scores achieved by the various
methods versus the amount of floating-point operations. In the
figure, for the proposed MSBC and the Nyström approximation
we report the average plus and minus one standard deviation
of the NMI score over 10 repetitions. In Figure 3 we show the
impact of the warm start.

Recalling that m is the mini-batch size, k is the number of
top eigenvectors and the number of clusters, each iteration of
MBSC requires 2nkm+ 6nk2 � k2 floating point operations.
The power method starts by generating an n-by-k Gaussian
random matrix S, which costs O(nk) operations. It then
computes a matrix product between the n-by-n affinity matrix
and S, and iteratively applies the same multiplication for a total
cost of 4n2k � 2nk floating point operations. The final step

of the power method performs Singular Value Decomposition
(SVD) on an n-by-k matrix. Since n�k, we adopt the estimate
of SVD complexity in [21], which costs 2nk2+2k3 operations.
Finally, in order to calculate the number of floating point
operations for the Nyström approximation we follow the pseudo
code in [7], for which the total count of floating point operations
is 6nk + 8k3 � 3k2 + 4nk2 � 3k + 2nkm + nm + 2nm2

+

m2
+m3 � n.

In Figure 2, we see how the variance of the clustering
performance of MSBC diminishes throughout iterations. Larger
mini-batches lead to faster variance reduction of the stochastic
gradient, thus producing faster convergence to the solution.
Compared with the power method, the proposed MBSC needs
distinctively less computations, while achieving higher or
similar clustering accuracy. Another interesting observation
is that the proposed MBSC achieves stable clustering accuracy
before it makes a full pass through the whole data set. The
Nyström approximation is computationally fast on all three data
sets. Nevertheless, its time and space complexity drastically
increase with the number of inducing points. The PSGD
method, as shown in Figure 4, converges more slowly than
MBSC, producing comparable NMI scores on Pendigits
and Shuttle data sets, and a lower NMI score on the
MNIST data. Though stochastic gradients in PSGD have similar
variance as in our proposal, MBSC samples columns rather than
randomly selecting entries, and we speculate that this allows to
preserves more global information of dense affinity structures.
On the Pendigits and Shuttle data sets, with less running
time, the proposed MBSC method requires smaller mini batches
to conduct clustering and achieves better clustering performance
than the Nyström approximation. On the MNIST data set,
instead, the Nyström approximation produces strikingly good
clustering results when the number of selected samples is larger
than 500. However, the proposed MBSC method converges to
the clustering accuracy of the exact spectral clustering even
when the size of the mini-batch size is small, e.g., less than 100.
As shown in Figure 3, the warm start initialization is effective
in leading to faster convergence and a reduced variance, with
minor extra cost.



TABLE II: Running time comparison on Covtype-I and Covtype-II data. T is the number of iterations.

Covtype-I Covtype-II
Algorithm T Mean NMI Std NMI time (s ) Algorithm T Mean NMI Std NMI time (s)

MBSC-E-400 230 0.40 0.01 1088 MBSC-E-1000 325 0.11 0.01 8400
MBSC-E-800 230 0.40 0.01 2190 MBSC-E-2000 325 0.15 0.01 13510
Nyström-400 - 0.38 0.01 78 Nyström-1000 - 0.09 0.01 2520
Nyström-800 - 0.38 0.01 965 Nyström-2000 - 0.11 0.01 11420

Power method 3 0.40 - 9300 Power Method Too expensive

B. Use case: spectral clustering on larger data sets

To demonstrate that the proposed approach can tackle
large-scale spectral clustering problems, we implemented the
proposed MBSC algorithm computing the necessary columns
of L to construct stochastic gradients on-the-fly, and applied it
to two data sets comprising 100K and 580K samples. Table II
compares this version of MBSC, that we denote as MBSC-E,
with the Nyström approximation and the power method. MBSC-
E produces stable clustering results after 200 iterations. The
running time and NMI are reported as average and standard
deviation over 5 repetitions. In the comparison, the Nyström
approximation selects a subset of the same size of the mini-
batch in MBSC-E. On the Covtype-II data set, the power
method fails to obtain clustering results within an acceptable
time, and we omit it from Table II.

While running time is heavily dependent on implementation
and system architecture, we argue that this is probably in
favor of the Nyström approximation, for which we are using
well optimized scientific computing packages. In any case, the
purpose of this experiment is to demonstrate that the proposed
MBSC algorithm, avoiding approximations to the Laplacian,
can achieve higher performance than approximate methods
on large-scale spectral clustering problems. Crucially, we
demonstrate that this is possible at a comparable computational
cost with approximate methods.

On both Covtype-I and Covtype-II data sets, MBSC
achieves consistently better clustering accuracy than the
Nyström approximation. Because the computational cost of the
Nyström approximation rapidly increases with the size of the
approximating set, it requires longer than MBSC-E to achieve
a comparable clustering accuracy. Furthermore, compared with
the power method, MBSC-E shows superior computational
efficiency given large-scale data sets. Remarkably, MBSC-E
requires less than 1GB and 3.6GB memory to run on the two
data sets, respectively.

V. CONCLUSIONS

With the aim of improving scalability of normalized cut-
based spectral clustering, we formulated it as an optimization
problem with an orthonormality constraint, and solved it using
stochastic gradient over Stiefel manifolds. We proposed a novel
adaptive stochastic gradient optimization framework on Stiefel
manifolds to compute the spectrum of Laplacian matrices, with
computation of stochastic gradients linear in the number of
samples. We provided theoretical justifications and empirical
analyses to demonstrate how our proposal tackles large-scale
spectral clustering in a practical way.

Our proposal is characterized by attractive robustness to
parameter selection and scalability. It leads to the same
clustering accuracy of spectral clustering approaches that use
the exact spectrum of the Laplacian at a fraction of the cost.
The results also support the motivation behind our proposal
that approximate methods can potentially affect clustering
performance. In cases where approximate methods perform
well, as we reported in one of the experiments, we can see
our proposal as a practical way to obtain clustering solutions
as good as the gold-standard of the “exact” approach at
a reasonable cost. Furthermore, the proposed method can
compute the whole Laplacian matrix incrementally, making
it an attractive option to tackle large-scale spectral clustering
problems with a limited memory footprint.

We are investigating the possibility to combine our frame-
work with other approximate methods, for example, to be
able to afford more inducing points when conducting spectral
clustering using the Nyström approximation. Another extension
is to leverage approximations to reduce the variance of the
stochastic gradients without introducing any bias, in order to ac-
celerate stochastic gradient optimization. A Spark/TensorFlow
implementation of MBSC is under development.
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