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ABSTRACT
Most websites, services, and applications have come to rely on
Internet services (e.g., DNS, CDN, email, WWW, etc.) o�ered by
third parties. Although employing such services generally improves
reliability and cost-e�ectiveness, it also creates dependencies on
service providers, which may expose websites to additional risks,
such as DDoS attacks or cascading failures. As cloud services are
becoming more popular, an increasing percentage of the overall
Internet ecosystem relies on a decreasing number of highly popular
services. In our general e�ort to assess the security risk for a given
entity, and motivated by the e�ects of recent service disruptions, we
perform a large-scale analysis of passive and active DNS datasets
including more than 2.5 trillion queries in order to discover the
dependencies between websites and Internet services.

In this paper, we present the �ndings of our DNS dataset analysis,
and attempt to expose important insights about the ecosystem of
dependencies. To further understand the nature of dependencies,
we perform graph-theoretic analysis on the dependency graph and
propose support power, a novel power measure that can quantify
the amount of dependence websites and other services have on a
particular service. Our DNS analysis �ndings reveal that the current
service ecosystem is dominated by a handful of popular service
providers—with Amazon being the leader, by far—whose popularity
is steadily increasing. These �ndings are further supported by our
graph analysis results, which also reveals a set of less-popular
services that many (regional) websites depend on.

1 INTRODUCTION
The Internet was designed to be fault-tolerant, distributed, and
resilient. Some of the core services developed on top of it share the
same design principles. The DNS, the WWW, and email have been
designed so as to provide the assurances of a highly distributed
infrastructure, with the ability to isolate failures, contain their
e�ects and, eventually, recover from them.
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Maintaining such highly reliable Internet (“layer 7”) services is
technically challenging, costly, and crucial for business continu-
ity. With more and more of our day-to-day business and personal
activity taking place online people have come to rely on the infras-
tructure being robust and available. Even the smallest amount of
downtime may signi�cantly damage a company, both �nancially
and in terms of brand name. The opportunities for failure are nu-
merous: hardware failure, software miscon�guration, service mis-
management, human error, malicious activity (such as intrusions
and DoS attacks), and natural disasters are just a few examples of
the things that can go wrong. In order for any company to achieve
the expected level of availability and capacity, a great amount of
resources need to be invested for building and maintaining each
and every one of the services needed.

This problem became apparent early on as Internet services be-
came popular and every company was expected to have an Internet
presence. Service hosting providers �lled the gap of maintaining
such services, by providing DNS/WWW/email service hosting for
their subscribers. The economy of scale made it possible for such
services to be run in datacenters with high (or higher) availability
guarantees. Even though some amount of service consolidation
was introduced, thus making the overall Internet service landscape
less distributed and less fault tolerant, the large number of distinct
service providers ensured that failures were somewhat contained
within the set of customers of a given provider.

The emergence of cloud services changed the service provider
landscape yet again. The SaaS and IaaS cloud o�erings enabled
customers to shift more and more of their infrastructure and ser-
vices to third-party cloud providers, capable of catering to the
customers’ ever increasing demand for high availability, high per-
formance, professional management, and cost e�ciency. As the
cloud service provider landscape is maturing, we observe that only
few “big players” are (1) able to expand their portfolio of services
to include more functionality appealing to their customers, while
being (2) able to survive the �erce competition involved in running
such costly large-scale operations at a pro�t. Consequently, a small
number of service providers own large portions of the market, thus
becoming stronger, bigger, which in turn enables them to attract
more customers. The sophistication of such service providers may
make it less likely for failures to occur, but when they do happen—
by mistake or malice—the results can be catastrophic, and their
impact can be felt throughout the whole Internet. As more and
more companies and individuals depend on a limited number of
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service providers for critical services, some of the fundamental de-
sign properties of Internet services are being put to the test and one
cannot help but wonder: what are the service dependencies within
the service ecosystem today, and how do they a�ect the risk to users
introduced by relying on such “single points of failure”?

1.1 When Things Go Wrong—Motivation
Our work is motivated by (1) a number of recent and older incidents
that have demonstrated the reliance of Internet users on certain
service providers, (2) the increased frequency of such attacks—that
are “easy to set up, di�cult to stop, and very e�ective” [1], and
(3) our overarching goal of devising methods to assess the security
risk associated with such dependencies. In the past, we have wit-
nessed a number of DDoS or other attacks on websites and Web
applications that have resulted in partial or complete interruption
of the service in question (e.g., daily attacks on the Sony Playstation
network [5], Microsoft Xbox [48], major international banks [31],
etc.). Similarly, there have been numerous cases of failures due to
non-malicious events, such as human error or hardware failures.
Such failures, however, are often qualitatively di�erent from fail-
ures to global-scale Internet services. If a Web application (such
as a social media platform, or a search engine) becomes unavail-
able, the users of that particular application are inconvenienced,
but not deprived of a core Internet service (such as DNS) whose
interruption may have cascading e�ects (by incapacitating addi-
tional services) that may cause a widely-felt disruption. As more
functionality is consolidated on less service providers, not only do
the e�ects of a potential service interruption become more severe,
but the service provider itself becomes a more appealing target for
malicious actors and coordinated large-scale attacks. Therefore,
assessing the security risks of a particular organization can bene�t
directly from pro�ling the services it relies on, their dependency
chains, and their place/role in the service ecosystem.

In recent time we have witnessed some alarming examples of the
e�ects failures in major service providers may have. Recent large-
scale DDoS attacks on OVH, one of the worlds largest hosting com-
panies [36], reached a rate of nearly 1 Tbps, showing how attackers
can direct signi�cant “�repower” towards their victims—enough to
seriously disrupt the services provided by the hosting provider to
its customers (in OVH’s case more than 50,000 customers in North
America alone). A good example of the inter-dependencies between
services and the cascading e�ects of such attacks, is the results of
similar DDoS attacks to individual websites, such as a security ex-
pert’s personal blog [29] and BBC [27] (both of which exceeded 600
Gbps of attack tra�c). On the surface, one would not expect such
attacks to cause Internet-scale service disruption—aside from their
e�ects on the target websites and despite launching hundreds of
Gbps of attack tra�c. This would be true if it wasn’t for the fact
that such websites rely on cloud services that can be signi�cantly
a�ected by the targeted attack. For instance, many popular websites
rely on Content Distribution Networks (CDNs) for their services
which may or may not be able to sustain the collateral damage
in�icted on them by the attackers. As such, the original attack may
have signi�cant cascading e�ects to the other services that rely on
the same CDN. In the case of [29] Akamai had to stop serving the
website under DDoS, despite their e�ort to mitigate the attack.

More alarmingly, aside from such indirect e�ects of attacks on
services and their users, we have recently witnessed serious DDoS
attacks towards core Internet service providers themselves. For
instance, the attack on Dyn [30], a popular DNS service provider,
caused signi�cant disruption to a wide variety of other websites
and services—including Twitter, Spotify, Net�ix, Amazon, Tumblr,
Reddit, PayPal, and others—thus demonstrating the risk associated
with service dependencies. Many websites, services, and users not
relying directly on Dyn were a�ected as a results of the cascading
failure e�ect. Not surprisingly, the Dyn attack a�ected a major
CDN as well: the Cloud�are [40] CDN service, under a certain
con�guration (using CNAME rather than A records for its customers)
requires to perform a DNS query to resolve the IP address of the
origin server. When Dyn was rendered inaccessible, the Cloud�are
CDN su�ered a cascading failure, observed on (almost) the entire
planet [21]. As mentioned in Cloud�are’s relevant blog post, “the
Internet is very complex and [. . . ] the devil is in the details”. These
(dependency) details are what we set out to discover, understand,
and expose in this work through DNS data analysis.

Another incident that illustrates both the strengths and weak-
nesses of service dependencies is the attack that was launched
against the Spamhaus non-pro�t anti-spam organization. In 2013,
Spamhaus was targeted by more than 300 Gbps of DDoS traf-
�c [39, 46]. Initially, Cloud�are (which provides a DDoS mitigation
service) successfully mitigated the �rst waves of the attack, thus
demonstrating the bene�ts of inter-connected services and how
this can help mitigate large scale attacks. In the next phase of the
attack, however, attackers targeted networks and ISPs Cloud�are
relies upon to operate, resulting in intermittent large-scale Internet
outages a�ecting parts of Western Europe. This demonstrates how
service dependencies (1) provide more avenues for attackers to
disrupt the operation of their target, and (2) create more oppor-
tunity for collateral damage—in this case the rest of Cloud�are’s
customers, as well as the ISPs’ customers.

Lastly, one more incident highlighting the cascading failure e�ect
occurred recently, not because of malicious activity, but due to
human error. The Amazon S3 failure in January of 2017 [14] brie�y
demonstrated how many popular services have come to rely on a
few big cloud service providers for many of their Internet service
and infrastructure needs. Such incidents point to the additional
observation that when assessing an organization’s exposure to
risk it may not be su�cient to assess the organization’s direct
dependencies (e.g., service or supply chain dependencies), but one
may need to dig deeper into that organization’s dependency chain.

1.2 Our Goals and Contributions
Motivated by (1) the impact and seriousness of recent attacks to
SaaS and IaaS Cloud providers (as well as failures due to non-
malicious events), and (2) by the increasing adoption and popularity
of such services, we set out to investigate the dependencies between
websites and (Cloud) services. Identifying such relationships will
provide valuable insights for our overarching e�ort to assess and
quantify cyber risk for organizations. More speci�cally, our goals
include the following:

• Identify dependencies between websites and services.
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• Develop techniques that are broadly applicable, require
little or no service-speci�c knowledge, and scale well.

• Analyze discovered dependency information—e.g., popu-
larity analysis, failure e�ects, temporal trends, etc.—and
extract useful/actionable insights.

To the best of our knowledge, this is the �rst study that 1) attempts
to discover such service dependencies through analysis of DNS
datasets, and 2) studies the discovered relationships using graph-
theoretical analyses.

Non-Goals. We aim to discover dependencies among websites
and services using scalable analysis of DNS datasets, to the best of
our ability, with no privileged access to internal information. Given
these assumptions, we aim to get the best possible coverage. It is
not, however, our goal to achieve complete coverage of all depen-
dencies on the Internet, or of the full nature of such relationships.
In fact, we are certain that many types of dependencies may not
be externally observable without privileged access, or not visible
in DNS data. Furthermore, we aim to explore and expose some
such dependencies, but, at the moment, we do not aim to propose
methods to reduce one’s risk due to such dependencies. Lastly, we
do not aim to discourage any entity from using services that we �nd
to be of critical role to the ecosystem—we only intend to expose the
current dependency structure for the purposes of risk assessment,
thus enabling users to make well-informed decisions about service
usage (e.g., discover single-points of failure). After all, we all need
somebody to lean on.

The e�ects of the discovered dependencies on risk, and how to
mitigate them, is part of ongoing e�orts and is left as future work.

Our contributions. We make the following contributions:
• We perform a wide-scale analysis of active and passive

DNS datasets for the Alexa top 1 million domains in order
to identify dependencies on service providers. Our method
does not rely on any special knowledge or access to any
website or service, and is based entirely on DNS data.
• As a result of this analysis we are able to quantify statistics

about service dependencies, con�rm common intuition in
certain cases, and extract new insights in others.

• Our results show that service dependencies are converging
towards a few very important service providers—most no-
tably, we found evidence that more than half of the top 1M
domains and more than 90% of top 1K domains use Ama-
zon services. Furthermore, this phenomenon—whereby the
Internet appears to lose part of its decentralized nature—
appears to become stronger over time.

• We perform graph analysis on Internet service dependency
graph data and report top-k important services based on
various graph theoretical centrality measures. Results
through graph analysis further corroborate with the �nd-
ings obtained through other analysis methods in this paper.

• Finally, we introduce a novel power measure namely sup-
port power, so as to quantify the extent to which websites
and other services are dependent on a particular service.

The rest of the paper is organized as follows. Section 2 presents
the datasets analyzed for the purposes of this study, while Section 3
discusses the methods we employed for our analyses. Section 4

presents the �ndings of both the DNS analysis (4.1) and the graph-
based analysis (4.2). Finally, Section 5 presents related work.

2 DATASETS ANALYZED
Our analysis combines DNS data collected both actively and pas-
sively with a few additional datasets. The characteristics of these
datasets are as follows.

2.1 Non-DNS Data Sources
To avoid including results about irrelevant or marginally used parts
of the Internet, we use Alexa’s top 1 million domain list:1 our analy-
sis focuses on the domains included in this list. To map IP addresses
to domains, we use the reverse DNS data from Project Sonar [41].2
The Public Su�x List available at https://publicsu�x.org is a list
of domains “under which Internet users can (or historically could)
directly register names”, such as .com or .co.uk. We use this
list3 to recognize the entity responsible for a given domain name
(e.g., google.com or amazon.co.uk). The “private domains” sec-
tion of the Public Su�x List also provides a list of domains that
can be obtained through the services of private companies rather
than registration authorities (e.g., *.s3.amazonaws.com). As we
describe in more detail in the following, we use this part of the
dataset to infer that some domains pertain to the same service (e.g.,
*.s3.amazonaws.com and *.s3-us-west-1.amazonaws.com all per-
tain to Amazon S3).

2.2 Passively Collected DNS Data
We obtained a very large dataset of passively-collected DNS data,
consisting of 2.5 years of DNS query logs from a large service
provider, between November 2014 and April 2017, for an average
of 85 billion queries per month and a total count of 2.5 trillion DNS
query results.

From the record types stored in the DNS datasets, we are inter-
ested in data objects having record type A (domain to IPv4 address,
which we map back to domains using reverse DNS information),
CNAME (domain to canonical name, used to declare that a domain
name is an alias of another one), MX (mail exchange, to �nd out
which mail server handles email for a domain), NS (delegating a zone
to an authoritative name server). AAAA (domain to IPv6 address)
records are few in our dataset; because of the limited information
that can be gleaned from it, and because we did not have access to
reverse DNS scans of the IPv6 space, we do not include AAAA �elds
in our analysis.

From our dataset, for each A, CNAME and NS query, we use the
query domain and the response; to enable longitudinal analysis we
split our dataset in �ve 6-month periods. After removing duplicates,
we ended up with a total of 38.3B records, (36.8B A, 1.4B CNAME and
167M NS records). The predominance of A records in this dataset is
interesting for two reasons: �rst, they represent a large majority of
the whole dataset (around 96%); hence, being able to use this data for
our purposes through reverse DNS information is key. Second, after
removing duplicates, the number of (domain, IP address) pairs we

1At aws.amazon.com/alexa-top-sites/ there are no more download links, but at the time
of writing the list is still available at s3.amazonaws.com/alexa-static/top-1m.csv.zip.
2https://scans.io/study/sonar.rdns_v2
3https://publicsu�x.org/list/public_su�x_list.dat

https://publicsuffix.org
https://aws.amazon.com/alexa-top-sites/
https://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://scans.io/study/sonar.rdns_v2
https://publicsuffix.org/list/public_suffix_list.dat
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have is almost 10 times larger than the size of the IPv4 address space
(4.3B). This shows that it is very common for a machine/IP address
to respond to multiple FQDNs, hence making this DNS analysis a
good mechanism for us to identify such cases of particular interest
to our investigation.

Finally, we have observed that the active DNS measurement
dataset contains more reliable MX information. In fact, MX records
are less commonly queried than other record types. Therefore,
passive DNS datasets are likely to provide (too) low MX record
coverage. Furthermore, the lower number of MX records, compared
to the other DNS record types, makes active measurements more
scalable. For these reasons we collected MX information using the
methods described in the following.

2.3 Actively Collected DNS Data
The passive DNS dataset is very rich; however, it largely consists of
A and CNAME records (NS and MX queries are de�nitely less); more-
over, the number of queries is heavily skewed towards few im-
portant domains. For these reasons, we supplemented the data
gathered passively with data that we queried actively. In particular,
for each domain domain.com in the Alexa top 1M dataset, we used
the dig Unix tool to query both domain.com and www.domain.com
for the four record types we use. We repeated these queries monthly
between January and May 2017.

We found out that this dataset is only marginally useful in learn-
ing new data from A and CNAME �elds: they are de�nitely better
covered through the passive DNS logs. On the other hand, the
information about NS and MX records for less popular domains is
rather scarce in the passive DNS data, and in this respect the active
measurement shines: in conclusion, both active and passive DNS
data are essential for this analysis.

It is noteworthy that to limit the footprint and the burden induced
on DNS servers by our active measurements to the lowest possible,
we only perform two queries for each domain in the Alexa top 1M
list, and we do this only once a month.

3 ANALYSIS AND METHODS USED
Our analysis takes two steps: �rst, we construct (and analyze) a
mapping of services used, based on the intuition that a DNS record
mapping x.domain.com to y.service.com is a fairly reliable evi-
dence that domain.com uses the service provided by service.com.
Then, we perform a graph-based analysis where domains are nodes
and the edges represent relations of service usage (in the previ-
ous example, there would be a directed edge from domain.com to
service.com).

3.1 DNS Data Analysis
The main input to this analysis is the set of DNS records collected
through the active and passive measurement methods described in
Section 2.

While MX, CNAME and NS records consist of fully quali�ed domain
names (FQDNs),4 A records (which, as noted in Section 2.2, are a
large majority of our dataset) contain IP addresses. We replace
each IP address with the FQDN(s) obtained for that IP through

4MX records also contain a priority value that we ignore for our purposes.

reverse DNS.5 After this step, for each record type, we obtain a set
of

(
FQDNq , FQDNr

)
mappings, where FQDNq is the queried do-

main and FQDNr is obtained from the response (indirectly through
reverse DNS for A records, as described above).

We map each FQDNq to the corresponding domain in the Alexa
Top 1M domain list; as argued in Section 2.1 we discard all infor-
mation regarding other domains.

The last part of this procedure consists in mapping FQDNr to a
service. We use 3 primary �elds to describe each service: category,
provider domain and service name.6 For example, Amazon S3 has
category “cloud”, provider domain amazon.com and service name
“Amazon S3”. We have �ve categories: Cloud, CDN, DNS, Email,
and ISPs – the ISP category covering mostly hosting and carriers’
domains. To perform this mapping, we set up a tree structure
mirroring the parts of the DNS hierarchy we have information on:
(1) which domains are public (as obtained from the Public Su�x
List); (2) which domains correspond to a known service.

The information about known private services is bootstrapped
with the private section of the Public Su�x List and a list of known
CDN domains;7 we then update it manually according to the results
of a �rst run of this analysis. We map FQDNr values to services by
matching the longest possible domain su�x with tree elements. If
we end up in a node corresponding to a known service, we return
it; otherwise, we return as provider domain and service name the
shortest private su�x of the name (e.g., x.domain.co.uk is mapped
to domain.co.uk), with a null value as category.

A �rst run of the analysis returns a large set of domain to service
mappings where the service category is unknown. We take into
account the services that are used by several domains (we use as
threshold the services used by at least 0.1% of the domains we are
examining), and manually create rules to categorize this. We end
up with a set of 243 manually-written rules, which can triage a
large set of the customer-to-provider relationships we discover in
our study.

Caveats. Reverse DNS con�guration errors can sometimes re-
sult in erroneous results. In particular, we have found errors in
the reverse DNS con�guration of some Akamai CDN servers, for
which the reverse DNS points to domains like rr.com (an ISP) or
even mwsco.com (a welding supply business). We have detected
those errors because of (1) an abnormally high number of domains
using this service; (2) the fact that we detect essentially all these
domains as Akamai customers. We then con�rmed that those were
in fact Akamai servers by verifying that they indeed serve web
pages served by the Akamai network; subsequently, we removed
those results from our analysis. Such reverse DNS errors can be
explained by the fact that an important part of the value proposition
of CDNs is, in fact, placing servers at the edge of the network, in
parts that are possibly administered by other actors. Alternatively,
such anomalies may simply be due to IP address reuse and improper
reverse DNS maintenance (e.g., IP address previously belonging

5IP addresses mapping to multiple FQDNs through reverse DNS records are mapped
to all of them.
6We also use an optional “subcategory” �eld, where applicable—e.g., Amazon S3 has
subcategory “storage”.
7github.com/WPO-Foundation/webpagetest/blob/master/agent/wpthook/cdn.h

https://github.com/WPO-Foundation/webpagetest/blob/master/agent/wpthook/cdn.h
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to one organization being reassigned to a CDN without proper
updates to rDNS).

In some cases, reverse DNS does not provide enough granularity
to distinguish the particular service given: for example, Google uses
1e100.net as reverse DNS for all of its services [19]. Obtaining
such a result through our reverse DNS information for A records
allows us to conclude that a domain is using some Google service,
but we do not have enough information to know which one.

3.2 Graph-Based Analysis
From the service mapping obtained in the previous step, we create a
graphG = (V ,E) connecting domains, in such a way that a directed
edge exists between domains x and y if x uses a service provided
by y. We create this graph to enable graph-based analysis that can
lead to the discovery of important artifacts—such as chain failures
that can be seen as a path in the graph—as well as the application
of graph-theoretical tools and epidemic modeling. Indeed, in Sec-
tion 4.1.4, we have results that suggest that important chain failure
events have already been observed in the wild, thus underlining
the cascading nature of such failures. Results for our graph-based
analysis are in Section 4.2.

To understand the nature of cascading or chain failures, we
discuss a set of key metrics. First, we introduce a new metric to
quantify the extent to which nodes in the graph are dependent
on a particular node. Second, we reason about failure cascades
to dependent services using epidemic modelling of the service
dependency graph data.

Support Power. In graph theory, the concept of centrality and
power have a peculiar relationship. The traditional degree centrality
approach argues that nodes that have more connections are more
likely to be powerful because they can directly a�ect more other
nodes. This makes sense, but having the same degree does not
necessarily make nodes equally important. If, on the other hand, the
set of nodes V ′ ⊆ V to which a particular node v ∈ V is connected
are not, themselves, well connected, then nodes inV ′ are dependent
on node v . Phillip Bonacich [8] argued that being connected to
connected others makes a node central, but not powerful. Somewhat
ironically, being connected to others that are not well connected
makes one powerful, because these other nodes are dependent on
you – whereas well connected nodes are not. Bonacich proposed
that both centrality and power were a function of the connections of
the set of nodes in one’s neighborhood. The more connections the
nodes in nodev’s neighborhood ηv have, the more central the node
v is. Fewer the connections to the set of nodes V ′ ⊆ V in a node
v’s neighborhood ηv , the more powerful the node v is. Building on
Bonacich’s intuition of power for a particular node u, we observe
that, in addition to the fewer connection of node u’s dependants,
node u’s lower dependency on other nodes also makes it more
powerful. Also, we believe that node u’s power further increases
when many nodes (recursively) depend on u’s dependants. To take
these additional observations into consideration, and inspired by
the concept of Bonacich Power, we introduce a new power metric
that we call support power.

More intuitively, the support power SPv of a particular node v is
higher if nodes that depend on v also depend on few or none other
nodes, and/or if nodes depending on v themselves support a large

number of other nodes. Here, if there is a directed edge from u to v
then node v is said to be supporter of node u and node u is said to
be dependent on node v . More formally,

SP
(in−d )
u =

(∑
v ∈η−u d

−(v)
)
× d−(u)(∑

v ∈η+u d
+(v)

)
× d+(u)

(1)

where d−(u) and d+(u) are the in-degree and out-degree of node
u. η−u and η+u are the set of nodes that are incident to and reached
from node u. Since the factor

∑
v ∈ηu d

−(v) only considers depen-
dency of up to 2-hop neighboring nodes. To consider chains of
dependencies greater than 2-hops leading up to a particular node
u, instead of in-degree values, we can rather consider the pager-
ank (pr ) or eigenvalue centrality (eд) values of the relevant nodes.
More formally, the support power of a nodeu considering pagerank
SP
(pr )
u and eigenvector centrality scores SP (ec)u can be given by:

SP (pr )u =

(∑
v∈η−u pr (v)

)
× d−(u)(∑

v∈η+u d
+(v)

)
× d+(u)

, SP (ec )u =

(∑
v∈η−u ec(v)

)
× d−(u)(∑

v∈η+u d
+(v)

)
× d+(u)

b c d

fgh

a

e

Figure 1: Example showing support chains for di�erent
nodes a,b, c,d, e, f ,д and h in the graph.

Overall, in the context of this paper, sorting the nodes or services
by their support values, in descending order, gives us a ranking of
the domains/services that are (1) powerful, and (2) solely support
dependency chain of domains/services that, mostly, do not depend
on other services. Figure 1 shows examples of support chains for
di�erent nodes a,b, c,d, e, f ,д and h in the graph. According to the
de�nition of support power, we have SPh > SPд > SPf > SPe >
SPd > SPc > SPb > SPa . Here, it is worth noting that node b and
a have support chains leading up to them that are similar but node
b is more powerful than node a because it is not dependent on any
other node unlike a. On the other hand, node c is more powerful
than node b, as dependency on c by other nodes is stronger when
compared to dependency of other nodes on b, and so on and so
forth. Dependency is said to be stronger, if nodes dependent on a
particular node are less dependent on other nodes.

Nodes with high support power have high centrality (i.e., they
are used by many) and they are heavily used by domains with fewer
dependencies. Consider nodes b and d in Figure 1, where d has
higher support power: similar to the Spamhaus case reported in
Section 1, if an attacker wanted to cause a chain failure a node
dependent on d , attacking d is their only option. Conversely, b
is not the only avenue for attacks if one wants to disrupt one of
their dependent nodes. In other words, by virtue of being the single
point of failure for many services, nodes with high support power
are more in danger of being attacked.
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Epidemic Modeling & Degree Distribution. Cascading fail-
ures of Internet services can be modeled with tools similar to epi-
demic modeling. Indeed, epidemics can spread through the human
contacts network similarly to the way a failure can spread through
the network of dependencies between services: like an infected
individual spreads a contagion to people that get close to it, a failure
cascades to dependent services.

Many epidemic models reason in terms of an epidemic threshold,
which is a contagion probability that marks a phase transition:
below the epidemic threshold epidemics die out quickly; above it,
they can reach a constant fraction of the whole population. One
key result proven by Pastor-Satorras and Vespignani [37] is that
scale free networks —i.e., those whose degree distribution follows a
power law—have no epidemic threshold: no matter the probability of
contagion, all epidemics can become widespread. Pastor-Satorras
and Vespignani have shown that this pessimistic result applies to
the propagation of malware over the Internet and generalized it to
drop assumptions like very large network sizes [38] and absence of
connectivity correlations [7]; as we show in Section 4.2, our graph
has a power-law degree distribution as well, and hence this result
also applies to it.

4 RESULTS
4.1 DNS Analysis Findings
We present the results of our DNS dataset analysis as it pertains to
the services used by the Alexa top 1M domain names. While the
active DNS dataset was collected since January 2017, our passive
DNS dataset covers queries made by tens of millions of real users
since November 2014. The 2.5-year-long passive DNS data allowed
us to experiment with periods of varying lengths and �nd out
whether there are dramatic di�erences in the popular services used
over time.
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Figure 2: Number of dependencies that can be discovered
using data from periods of varying time lengths.

In Figure 2, we compare the results obtained using di�erent
lengths of passive DNS traces (selected such that in all cases the
traces are collected until April 30 2017). These results suggest that
increasing the time window observed provides better coverage in

understanding which services are used by companies. While ex-
panding the data coverage does not have a drastic impact on the
number of customers for some of the services (e.g., Cloud�are, AWS
DNS), for many others we see a great improvement. For example,
increasing the data length from 6 months to 30 months lets us
discover 41% more Amazon EC2 and 39% more Amazon Elastic
Load Balancing customers. This motivates our choice of presenting
results that are derived from the more detailed dependency rela-
tionship analysis that makes use of the entirety of the passive DNS
data.

4.1.1 Per Service Category Analysis. In Table 1, we list the
top 5 service providers in the cloud, email, ISP, CDN and DNS
categories, as derived by their popularity with the Alexa top 1M
and 1K domains. We also present results for 961 US government
domains (identi�ed by the .gov TLD), as they represent a class of
domains/services that can be highly sensitive to factors that may
increase their risk—such the dependencies we are investigating.
Amazon appears to be the top cloud service provider, having cus-
tomers from 60% of the Alexa top 1M, 94% top 1K and 93% of the
US .gov domains. These numbers indicate that Amazon is going
towards a monopoly on the cloud computing market. This can be
seen as scary, as in an unfortunate event of a problem at Amazon,
a very big percentage of Internet could be impacted resulting in a
catastrophic event.

The most used CDN providers for Alexa top 1M/1K and .gov
domains are nearly the same while the order is slightly di�erent.
Akamai is the top CDN provider, followed closely by Cloudfront,
Google CDN and Cloud�are. While among the top 1M domains,
these four CDNs have approximately the same amount of customers,
among the top 1K almost half of them and among .gov domains
20% of them uses Akamai CDN services. On the other hand, the top
providers in the managed DNS providers category for Alexa top
1M/1K and .gov domains are very di�erent. While Cloud�are is the
lead DNS provider for the Alexa top 1M, only 16% of the Alexa top
1K uses Cloud�are, which makes it the third popular DNS provider.
Amazon DNS has 30% of the top 1K domains as customer and only
6% of the top 1M.

Gmail is the most used e-mail services according to our data. 10%
of the Alexa top 1M and 19% of the Alexa top 1K domains employ
google mail. However, .gov domains prefer outlook.com over it.

4.1.2 Trends. The most visible change observed since the end
of 2014 is the dramatic increase in the number of Amazon EC2 cus-
tomers. As clearly witnessed in Figure 3, in April 2017 Amazon EC2
had around twice the number of Alexa top 1M customers than two
years before. This �nding is interesting since EC2 growth appears
to outpace the already optimistic forecasts of 2011 [25], predicting
that cloud-related spending would triple in 6 years, by 2017. More
broadly, we observe that Amazon appears to be largely dominat-
ing the market, in general. In Figure 4 we show the percentage of
companies in Alexa top 1M, Alexa top 1K, and the US government
domains that use only Amazon cloud services. While at the end
of 2014 only ~12% of Alexa 1M domains used exclusively Amazon
cloud services, that number more than doubled to ~30% by 2017.

There are other interesting changes we see over time:
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Table 1: Top 5 services per category in Alexa top 1M, top 1,000, and .gov domains.

# Cloud CDN DNS Email ISP

Alexa Top 1 Million
1 Amazon EC2 60% Akamai 4% Cloud�are 11% Gmail 10% hetzner.com 4%
2 Amazon ELB 5% CloudFront 3% DomainControl 7% Secureserver.net 10% linode.com 3%
3 GSuite 4% Google CDN 3% AWS DNS 6% outlook.com 4% endurance.com 2%
4 O�ce365 2% Cloud�are 2% DNSMadeEasy 2% Yandex 2% centrulink.com 2%
5 Amazon S3 2% Incapsula 1% DNSPod 1% qq.com 1% teliacarrier.com 2%

Alexa Top 1,000
1 Amazon EC2 94% Akamai 46% AWS DNS 30% Gmail 19% teliacarrier.com 39%
2 Amazon ELB 35% CloudFront 30% dynect.net 17% sendgrid.net 10% xo.com 36%
3 GSuite 17% Google CDN 15% Cloud�are 16% secureserver.net 10% centurylink.com 35%
4 Amazon S3 15% fastly.net 12% akadns.net 14% outlook.com 5% pccwglobal.com 33%
5 AWS other 11% edgecast.com 12% ultradns.com 9% psmtp.com 2% verio.com 33%

.gov domains
1 Amazon EC2 93% Akamai 20% akam.net 8% outlook.com 18% centurylink.com 13%
2 Amazon ELB 18% CloudFront 5% akadns.net 8% Gmail 6% zayo.com 10%
3 O�ce 365 14% Cloud�are 5% AWS DNS 7% secureserver.net 6% xo.com 10%
4 lync.com 12% Google CDN 3% domaincontrol.com 5% sendgrid.net 2% verio.com 10%
5 GSuite 6% Incapsula 2% dhhs.gov 4% pphosted.com 2% above.net 9%
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Figure 3: Most popular services and their usage over time.

• Amazon EC2 customers from Alexa top 1000 increased
from 80% to 90%.

• The Google CDN gained popularity among the Alexa top
1000 domains (from 9th to 3rd position), but lost popularity
in general.

• Amazon DNS services increased their customer base in the
US government.

• For US government domains, the usage of Amazon EC2
increased by 20%, reaching 85% by the beginning of 2017.

4.1.3 Correlations in Service Usage. Across our results we
notice that there are sets of correlated services – meaning that
domains that use a service are more likely to also use another. We
have taken into account all services used by at least 2% of the do-
mains in our dataset, and for each of those services we have built a
boolean vector where the ith element is true if the ith domain uses
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Figure 4: Percentage of companies that use only Amazon
cloud services

the service. We then computed the Pearson correlation coe�cient
between all services, and the highest and lowest correlation coe�-
cients are reported in Table 2. It is clear that several domains tend
to use several services from the same provider at once – for exam-
ple, there’s high correlation between using domaincontrol.com
and secureserver.net which are, respectively, Go Daddy’s DNS
and email services. We can draw similar conclusions with services
provided by Amazon and Google. Albeit correlation coe�cients
are lower, we can also observe that there are negatively correlated
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Table 2: Positively and negatively correlated services.

Category/Service 1 Category/Service 2 Coef.

DNS/domaincontrol.com Email/secureserver.net 0.57
DNS/AWS DNS CDN/Amazon CloudFront 0.41
Cloud/Amazon ELB CDN/Amazon CloudFront 0.28
Cloud/Amazon ELB DNS/AWS DNS 0.25
Cloud/GSuite Email/Google Mail 0.22

. . .
Email/Gmail Email/secureserver.net -0.06
Email/Gmail Email/Outlook -0.06
DNS/Cloud�are Email/Outlook -0.07
DNS/Cloud�are Cloud/Amazon EC2 -0.10
DNS/Cloud�are Email/Gmail -0.11

services – for example, users of Cloud�are’s DNS solutions are less
likely to use services such as Gmail, Outlook or Amazon EC2.

4.1.4 Case Studies. As previously mentioned, we have wit-
nessed some recent and massive failure events due to outages at
heavily-used services. Two such examples are the Dyn DNS outage
in October 2016, and the Amazon S3 outage in February 2017. In
addition to being important events that motivate our study, they
o�er an opportunity for us to investigate the results that our service
mapping obtained for these events.

October 2016: Dyn DNS Outage. On October 16, 2016, a very
large botnet based on the Mirai malware attacked Dyn, a very pop-
ular DNS provider. As a result of the attack, several important
Internet services – including Twitter, Spotify and Reddit – were
impacted [30]. From the Wikipedia page about the event,8 we col-
lected a list of 70 services and websites a�ected by the outage, and
compiled a list of their domains. We then found that our mapping
discovers that exactly half of them (35) use or used Dyn’s DNS.
The remaining 35 domains are all in the Alexa top 1M domains,
and hence our analysis includes active NS queries issued directly to
them as discussed in Section 2.3, which did not return Dyn domains.
We also veri�ed with historic data that those domains didn’t change
DNS provider between the incident data and the moment in which
we performed data collection. Hence, we speculate that these do-
mains were actually relying on Dyn indirectly, by depending on
other services that were Dyn’s customers. In other words, this was
a case of a cascading failure, in which the failure of a service (Dyn)
severely impacted the customers of their customers. A similar pattern
was documented by Cloud�are [16], when failures in a backbone
provider caused errors for Cloud�are’s customers.

It would be desirable to obtain more insight on which services’
failure have caused the cascading failures referred to above, but
this is made di�cult by the fact that 1) by the way our analysis is
designed, not all service dependencies are designed, 2) we don’t
have a comprehensive list of services a�ected by the outage, and
3) for a popular service like Dyn (cf. Table 1), several paths in the
service dependency graph can be used as possible explanation to
the failure. We regard this as a potential analysis that can be carried
out in future work.
8https://en.wikipedia.org/wiki/2016_Dyn_cyberattack

February 2017: Amazon S3 Outage. On February 28, 2017, a
con�guration error caused a disruption in the service of Amazon
S3, leading once again to “partially or fully broken” service on
several important websites and services [14]. As Amazon reports,
this failure resulted in chain failures on other Amazon services that
depend on S3, like the Elastic Compute Cloud (EC2), Elastic Block
Store (EBS), and AWS Lambda [4]. Similar to the Dyn event, we
found media coverage reporting a list of external services a�ected
by the outage [34], and obtained a list of 74 a�ected domains.

Unlike DNS, detecting whether a given company is using Ama-
zon S3 is not easy, as usage of the service is not necessarily re�ected
in DNS data; still, for convenience, companies sometimes insert
DNS records for their domains that point – through A and CNAME
records – to Amazon S3 hosts, allowing our method to recognize
the usage of the S3 service.

In this case, we discovered that 21 (28%) of the domains a�ected
by the outage use Amazon S3, and that other Amazon services
were heavily used within the set of a�ected domains: 70 (95%)
use Amazon EC2; 48 (65%) use Amazon Elastic Load Balancing; 41
(55%) use Amazon’s AWS DNS solution; 39 (52%) use Amazon’s
CloudFront CDN. We interpret these results in the following way:

(1) Even for services where our method can’t guarantee high
coverage, such as S3, we are still able to identify a sig-
ni�cant subset of domains using them. This allows us to
achieve a 25-30% “direct” detection rate—even without con-
sidering the cascading failure e�ect. If, by extrapolating
from the Dyn case study, we assume a 50% cascading fail-
ure rate then we could report a failure detection rate of
about 50-60%.

(2) Con�rming what we learned in Section 4.1.3, companies
are likely to use several services at once from the same
provider, as demonstrated by the large level of dependency
on Amazon for the a�ected domains. This provides us with
a good reason to believe, with high con�dence, that if a
given domain is, for example, found to be using Amazon’s
DNS and CDN, it is also more likely to use Amazon’s S3
(or other services).

4.2 Graph Analysis Insights
4.2.1 General Statistics. We begin our analysis of the service

dependency graph according to the method of Section 3.2 by dis-
cussing general graph statistics. This graph is built using data
collected over a period of two and a half years (Nov 2014 - Apr
2017), is directed and consists of about 1.7 million nodes (services)
and 5.2 million edges. This graph has 4, 404 connected components,
and the largest or giant component consist of about 1.65 million
nodes, which is about 99.52% of the total number of nodes. On the
other hand, the largest strongly connected component consists of
23, 251 nodes (1.4%) and 0.2 million edges.

4.2.2 Centrality. As a �rst attempt to understand the graph’s
properties, we considered various centrality measures and their
interpretation. We also present the top-10 services according to
each centrality measure. More speci�cally:

https://en.wikipedia.org/wiki/2016_Dyn_cyberattack
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In-Degree Centrality. Count of average number of domains
using a given service. In other words, re�ects the number of do-
mains that a particular service could break if it goes down/fails.

PageRank. PageRank is somewhat related to in-degree central-
ity, but unlike in-degree it re�ects a measure of connectivity in
the whole network—i.e., if many random walks in the graph lead
to a particular service u, then u will have high PageRank—since
domains used by others use u’s services as well. Random walks in
the graph follow the same paths that cascading failures would take;
hence, high PageRank implies a larger danger of cascading failures.

Betweenness centrality. An important service (node) will lie
on a high proportion of dependency/usage paths between other
nodes in the network. Removal of high betweenness centrality
nodes is known to disconnect graphs in addition to causing cascad-
ing failures in the underlying networks.

Eigenvector centrality. Bonacich or eigenvector centrality as-
signs high importance scores to the services that use other im-
portant services and in turn are used by other important services.
Eigenvector centrality, in some sense, is a measure of vulnerability
to cascading failures – if a particular service or a domain use a lot
of external services and are used by a lot of external services then
it is potentially vulnerable to cascading failure events.

Table 3 presents the top 10 services for each of the centrality
measures discussed above. Perhaps unsurprisingly, Amazon is con-
sistently the most dominant service for all the centrality measures,
which indicates that it is the most central and important service
provider in today’s Internet. This also means that an outage of or
attack on Amazon’s services can take down many directly as well
as indirectly dependant domains and services. Other most impor-
tant services across di�erent centrality measures include Google,
Cloud�are, Barefruit and Akamai. It is worth noting that all the
top-10 services across di�erent centrality measures belong to the
largest strongly connected component of the graph, which consists
of just 1.4% of the nodes in the graph.

The case of Barefruit is quite interesting: it is a little-known ad-
vertising company that collaborates with ISPs and takes advantage
of non-existant domain errors to display advertising. The results
of Barefruit are, hence, likely to be a glitch: they appear in our
passive DNS traces because it was the providers —not the queried
domains— that used Barefruit’s services. This is a useful reminder
of the limitations of our approach.

4.2.3 Degree Distribution. As we discussed in Section 3.2,
studying the degree distribution of the graph we are analyzing is
key to understanding the spreading of cascading failures over the
network: due to their very structure, scale-free graphs—where a
few nodes have a very high degree—carry the risk of cascading
failures that spread to very large portions of the graph even when
the probability of a cascading failure itself is low.

In Figure 5, following the advice of Clauset et al. [12], we show
the complementary cumulative distribution function (CCDF) of de-
gree in a double-logarithmic scale9: power law degree distributions
have a linear shape in the plot, which is true for our graph. In this
graph, the in- and out-degrees are di�erent distributions, where

9To plot the 0 values, the plot has a linear scale in the [0, 1] interval.

Figure 5: Degree distribution of the domain graph.

the in-degree of nodes like amazon.com or google.com is de�nitely
larger than the largest out-degrees in the graph.

4.2.4 Support Power. Table 4 shows the top-15 domains based
on the support power metric discussed in Section 3.2. We present re-
sults for in-degree based support power SP (in−d ), PageRank based
support power SP (pr ) and eigenvector based support power SP (ec).
We do not consider betweenness centrality in this context as it is
not related to in-degree (dependency) measure as much as pager-
ank and eigenvector centrality. In-degree based support power just
considers 2-hop dependencies, whereas pagerank and eigenvector
centrality based power values consider every possible dependency
leading up to a particular node (service). Surprisingly, unlike cen-
trality based results, Barefruit appears to be the most powerful
service domain across all the variants of the SP metric—followed by
HDE Inc Japan, Unbounce, Amazon Europe, Hetzner Online, and
PCCW Global. We can observe that service domains that provide a
very unique service (or operate in regions where there is a lack of
alternatives), are more powerful, with strong support chains.

5 RELATEDWORK
To the best of our knowledge, and despite its importance in terms
of security, safety and also market research, scienti�c literature on
the problem of deciphering the web of dependencies in the Internet
only recently began to gain traction.

In 2012, Nikiforakis et al. [33] crawled a set of popular websites,
showing that many of them rely on JavaScript libraries served
by third parties; compromising those third parties can enable the
attackers to steal data from the page itself and/or from other scripts.

In 2013, He et al. [23] studied the case of two popular cloud
providers, namely Amazon EC2 and Microsoft Azure, by the Alexa
top 1M website domains. Using a combination of actively collected
DNS data and network tra�c logs collected at an academic net-
work they report on the popularity of cloud providers, deployment
strategies for web services and resilience of cloud infrastructures
to failure. Our work extends and goes beyond the work by He
et al. by looking at di�erent types of services, i.e., not only cloud
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Table 3: Top 10 domains for various centrality metrics.

# In-Degree Centrality PageRank Betweenness Centrality Eigenvector Centrality

1 amazon.com 0.36 amazon.com 0.07 amazon.com 0.1B amazon.com 0.44
2 google.com 0.09 cloud�are.com 0.013 google.com 0.05B barefruit.co.uk 0.31
3 cloud�are.com 0.075 google.com 0.013 akadns.net 0.04B akamai.com 0.15
4 secureserver.net 0.05 barefruit.co.uk 0.011 ripe.net 0.038B rr.com 0.13
5 domaincontrol.com 0.04 secureserver.net 0.005 akamai.com 0.029B centurylink.com 0.11
6 barefruit.co.uk 0.03 barefruit.com 0.005 microsoft.com 0.026B google.com 0.11
7 outlook.com 0.02 domaincontrol.com 0.005 ntt.net 0.025B xo.com 0.10
8 hetzner.com 0.02 hetzner.com 0.003 apple.com 0.021B zayo.com 0.09
9 akamai.com 0.02 ibm.com 0.003 amazonaws.com 0.02B pccwglobal.com 0.09

10 linode.com 0.016 akamai.com 0.002 cloud�are.com 0.018B teliacarrier.com 0.09

Table 4: Top 15 domains based on support power (SP ).

# In-degree based SP (in−d ) PageRank based SP (pr ) Eigenvector Centrality based SP (ec)

1 barefruit.co.uk 42,538 barefruit.co.uk 7,928 barefruit.co.uk 321,348
2 hdemail.jp 7,083 hdemail.jp 1,349 unbouncepages.com 26,067
3 amazon.eu 4,497 amazon.eu 855 hetzner.com 17510
4 unbouncepages.com 3,129 sixcore.ne.jp 717 pccwglobal.com 14,187
5 pccwglobal.com 2,558 xserver.jp 559 amazon.com 13,775
6 ultradns.com 2,221 hetzner.com 525 vsnl.net.in 9,107
7 vsnl.net.in 2,088 unbouncepages.com 465 hdemail.jp 8,875
8 asahi-net.or.jp 1,922 pccwglobal.com 461 customersaas.com 7,445
9 hetzner.com 1,785 ultradns.com 426 ultradns.com 6,800

10 estore.co.jp 1,712 amazon.com 383 telecomitalia.com 6,569
11 sixcore.ne.jp 1,578 vsnl.net.in 363 zayo.com 6,220
12 telecom.com.ar 1,375 asahi-net.or.jp 349 libguides.com 6,113
13 amazon.com 1,270 xserver.ne.jp 271 verio.com 5,963
14 roaringpenguin.com 1,247 telecom.com.ar 260 amazon.eu 5,611
15 mynet.cn 1,077 estore.co.jp 247 cantv.com.ve 5,189

providers, in order to uncover an as complete as possible picture of
web service dependencies. Moreover, by doing so over a period of
two and half years we are able to observe trends and the evolution
over time.

In 2016, Cangialosi et al. [11] studied the phenomenon of pri-
vate HTTPS key sharing, con�rming —from another angle— our
conclusions that the core Internet infrastructure su�ers from being
overly concentrated in the hands of a few players.

Recently, Simeonovski et al. [44] performed a study that col-
lected data the about Internet topology and used it to model three
kinds of attacks (distribution of malicious JavaScript, email sni�ng,
and DoS against core service providers); among the various datasets
Simeonovski et al. used, there is an actively collected DNS dataset,
which they employed to collect information on a few types of ser-
vices (DNS, Web and email servers). Unlike their work, ours focuses
speci�cally on everything that can be obtained with DNS data, in-
cluding passive measurements, a larger set of services considered,
and using several centrality metrics to estimate the in�uence of
di�erent players.

On the industrial side, various companies sell data about what
online services each company/domain is using (e.g., SecurityScore-
Card’s Automatic Vendor Detection [43], Datanyze [13], Wappal-
izer [50], Built With [9], etc.); however, their methods are typically
kept as trade secrets, so it is hard to know the technical di�erences
between their approach and the one discussed in this paper. To
the best of our knowledge, however, it appears that most of the
results from these vendors come from web crawling, rather than
DNS data analysis. On a related topic to uncovering web service
inter-dependencies, there exists a large corpus of studies seeking
to extract and characterize relationships between Autonomous Sys-
tems (ASes) in the Internet routing [17, 18, 35, 54]. However, these
studies focus exclusively on uncovering the type of relationships
that exist between Internet Service Providers (ISPs) and customer
networks at the (BGP) routing level. Such measurement study usu-
ally requires the use of (BGP) routing data, possibly combined with
active measurements such as traceroute. While such routing-
level service inter-dependency results could complement our the
DNS-based results, it is out of the scope of this paper.
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DNS Data Collection and Analysis. The DNS constitutes a
critical building block of the Internet and as such plays an ubiqui-
tous role in most Internet activities. Originally designed to translate
user-friendly domain names into IP addresses, the DNS nowadays
is also (ab)used for many di�erent purposes, such as operating
blacklists of spam email senders, tunneling tra�c, enabling cyber-
criminals to operate moving command and control infrastructures,
etc. Inspecting DNS data has thus become an ideal way to moni-
tor di�erent aspects of Internet activity, including cyber security
aspects. In fact, the security community has been using the DNS
extensively to detect Internet abuses [2, 3, 6, 15, 22, 24, 28, 53]. As
mentioned earlier, He et al. [23] leverage DNS data to study usage
patterns of the two cloud providers Amazon EC2 and Microsoft
Azure.

DNS data is usually collected in two ways: (1) by passively record-
ing DNS queries and responses that are made to some collector
DNS servers [51] or (2) by actively querying some domains [28, 47].
While passive DNS data is considered easier to collect and is by far
the most common type of DNS data, both approaches appear to be
complementary to obtain the best data coverage, in terms of num-
ber of domains, possible. On the one hand passively collected DNS
datasets tend to be biased towards popular domains likely to be
queried at the DNS server collectors. On the other hand active DNS
data collection requires a list of seed domains, which will ensure
coverage for these domains while potentially reducing the global
coverage of the resulting datasets. To overcome these limitations,
in this work, we use a combination of passive and active DNS data.

Some publicly available software packages look at CNAME �elds
in order to discover CDNs.10 This approach bears some similarity
with our proposal, but it is limited to active, on-demand, CNAME
queries, and only recognizes a few speci�c services for which rules
have been written beforehand. Our approach lets us discover pre-
viously unknown services of any kind, and exploits passive DNS
information in other �elds, including A �elds through reverse DNS.

Graph Analysis. Graph analysis is a powerful tool for discov-
ering valuable information about relationships in complex network
data. In this paper, we have tried to analyze the Internet service
dependency graph to understand the nature of dependencies, im-
portant services, and cascading failures in the presence of service
outages. Literature is �lled with work where dependencies of some
type and kind are analyzed on a variety of graph data related to
di�erent problem domains [10, 20, 26, 32, 45, 55]. For instance, Ster-
giopoulos et al. [45] model cascading critical infrastructure failures
using dependency risk graphs; they explore relationships between
dependency risk paths and graph centrality measures so as to iden-
tify nodes that signi�cantly impact the overall dependency risk.
Zimmermann and Nagappan [55] study software dependencies
spread across binaries developed by di�erent teams; they compute
the complexity of the subsystem’s dependency graphs using con-
cepts adapted from classical graph theory, and hypothesize that
these complexities correlate with failures. Our work is the very �rst
to use graph-analysis in the domain of DNS and Internet services to
assess and analyze the dependency between websites and services.

The problem of measuring node importance through central-
ity has been studied extensively in past [8, 42, 49, 52]. Our work
10See, e.g., https://github.com/WPO-Foundation/webpagetest/

makes use of several standard graph-theoretical centrality measures
to evaluate the importance of services. In addition to centrality,
power is also an interesting graph theoretical concept introduced
by Bonacich [8]. In this paper, we have identi�ed the limitations
in the applicability of Bonacich’s power metric in our context, and
have introduced a novel power metric—namely support power.

6 CONCLUSION
Even though the Internet was designed to be a highly resilient,
decentralized infrastructure, recent incidents that have caused dis-
ruption of popular Internet services have underlined the fact that
there is a high degree of dependency between websites and service
providers.

Motivated by these events and our desire to develop risk as-
sessment mechanisms for organizations, we have analyzed a large
corpus of DNS data in order to discover and investigate such de-
pendencies. Our analysis quanti�es the degree of dependency of
the Alexa top 1M domains to various Internet service providers.
Furthermore, our graph analysis reinforces our �ndings, while the
introduction of the support power metric attempts to capture more
complex relationships that can play an important role in under-
standing cascading failures.

We believe that the this work is a �rst step towards establishing
a set of actionable metrics that can assist website and service opera-
tors in making informed choices about their Internet/cloud service
dependencies, so as to mitigate the e�ects of large-scale incidents,
improve resiliency, and minimize overall exposure to risk.
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