
Large-Scale Identification of Malicious Singleton Files

Bo Li
University of Michigan

bbbli@umich.edu

Kevin Roundy
Symantec Research Labs

Kevin_Roundy@symantec.com

Chris Gates
Symantec Research Labs

Chris_Gates@symantec.com

Yevgeniy Vorobeychik
Vanderbilt University

yevgeniy.vorobeychik@vanderbilt.edu

ABSTRACT
We study a dataset of billions of program binary files that
appeared on 100 million computers over the course of 12
months, discovering that 94% of these files were present on a
single machine. Though malware polymorphism is one cause
for the large number of singleton files, additional factors also
contribute to polymorphism, given that the ratio of benign
to malicious singleton files is 80:1. The huge number of be-
nign singletons makes it challenging to reliably identify the
minority of malicious singletons. We present a large-scale
study of the properties, characteristics, and distribution of
benign and malicious singleton files. We leverage the in-
sights from this study to build a classifier based purely on
static features to identify 92% of the remaining malicious
singletons at a 1.4% percent false positive rate, despite heavy
use of obfuscation and packing techniques by most malicious
singleton files that we make no attempt to de-obfuscate. Fi-
nally, we demonstrate robustness of our classifier to impor-
tant classes of automated evasion attacks.

CCS Concepts
•Security and privacy → Software security engineer-
ing;

Keywords
Singleton files; malware detection; robust classifier

1. INTRODUCTION
Despite continual evolution in the attacks used by mali-

cious actors, labeling software files as benign or malicious
remains a key computer security task, with nearly 1 mil-
lion malicious files being detected per day [29]. Some of the
most reliable techniques label files by combining the context
provided by multiple instances of the file. For example, Polo-
nium judges a file based on the hygiene of the machines on
which it appears [4], while Aesop labels a file by inferring its
software-package relationships to known good or bad files,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY’17, March 22-24, 2017, Scottsdale, AZ, USA
c© 2017 ACM. ISBN 978-1-4503-4523-1/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3029806.3029815

based on file co-occurrence data [31]. These detection tech-
nologies are unable to protect customers from early instances
of a file because they require the context from multiple in-
stances to label malware reliably, only protecting customers
from later instances of the file. Thus, the hardest instance
of a malware file to label is its first, and regrettably, the first
instance is also the last in most cases, as most malware sam-
ples appear on a single machine. In 2015 around 89% of all
program binary files (such as executable files with .EXE and
.DLL extensions on Windows computers) reported through
Norton’s Community Watch program existed on only one
machine, a rate that has increased from 81% since 2012.
To make matters worse, real-time protection must label files
that have been seen only once even though they may even-
tually appear on many other machines, putting the effective
percentage of unique files at any given time at 94%.

We present the first large-scale study of singleton files and
identify novel techniques to label such files as benign or ma-
licious based on their contents and context. We define a
singleton file as any file that appears on exactly 1 machine.
We consider two files to be distinct when a cryptographic
hash taken over their contents (such as SHA-256) yields a
different result, meaning that two files that differ by a single
bit are considered distinct even though they may be func-
tionally equivalent.

Due to the fact that malware is often polymorphic, many
malicious files are among these singletons. However, single-
ton executable files do not trend towards being malicious;
in fact the opposite is true: the ratio of benign to mali-
cious singleton files is 80 to 1, resulting in a skewed dataset.
This ratio gives low prevalence malware a large set of files
to hide amongst and it makes effective classification models
difficult to train, as most machine learning models require
relatively balanced data sets for effective training. We study
the root causes behind the large numbers of benign single-
ton files in Section 2.2 and study malicious singletons in
Section 2.3. We study the properties of machines that are
prolific sources of benign singleton files in Section 3.1. We
filter obviously benign singletons by profiling the prominent
categories of benign singleton files that appear on such sys-
tems (Section 3.2). We present the full machine learning
pipeline and the features we use to classify these samples in
Section 3.3. We present experimental results in Section 4.

Since the phenomenon of malicious singleton files was largely
driven by the arms race between security vendors and mali-
cious adversaries in the first place, it is important to analyze
robustness of our model against evasion attacks, and we do
so in Section 4.3. We form the interactions between and ad-

versary and our malware detection system as a Stackelberg
game [34] and simulate evasion attacks on real singleton files
to demonstrate that our proposed pipeline performs robustly
against attacker interference.

In summary, we make the following contributions:
1. We provide the first detailed discussion of the role that

benign polymorphism plays in making singleton file clas-
sification a challenging problem.

2. We identify root causes of benign polymorphism and lever-
age these to develop a method for filtering the most“obvi-
ous” benign files prior to applying malware classification
methods.

3. We develop an algorithm that classifies 92% of malicious
singletons as such, at a 1.4% false positive rate. We do
so purely on the basis of static file properties, despite ex-
tensive obfuscation in most malware files, which we make
no attempt to reverse.

4. We explore the adversarial robustness of multiple classi-
fication models to an important class of automated eva-
sion/mimicry attacks, demonstrating the robustness of a
performant set of features derived from static file proper-
ties.

2. SINGLETON FILES IN THE WILD
To address the paucity of information about singleton

files, we study their causes, distribution patterns, and in-
ternal structure. We describe the predominant reasons for
which software creators produce benign and malicious sin-
gleton files. For benign singletons, we identify the software
packages that are the strongest predictors of the presence of
benign singleton files on a machine. For malicious software,
many singletons are produced from a relatively much smaller
base of malware families. Thus, to better understand the na-
ture of the polymorphism that is present in practice across
a large body of singleton malware, we study the static prop-
erties of malicious singleton files across all malware families
and within individual families.

2.1 Dataset Description
In the interest of performing a reproducible study, we per-

form the following study over data that is voluntarily con-
tributed by members of the Norton Community Watch pro-
gram, which consists of metadata about the binary files on
their computers and an identifier of the machines on which
they appear. Symantec shares a representative portion of
this anonymized dataset with external researchers through
its WINE program [10]. We use an extended window of
time from 2012 through 2015 to generate high-level statis-
tics about singleton data, and refer to this dataset as D0.
We also use an 8-month window of data from 2014 for a
more in depth analysis of the properties of singleton files
and machines on which they appear, we call this D1. A
portion of the files in D1 is labeled with high-confidence
benign or malicious labels. We form dataset D2 by select-
ing a subset of the previous data that consists of labeled
singleton files, and for which the file itself is available, al-
lowing us to extract additional static features from the files
that we describe in Section 3.3. The ground truth labels
are generated by manually inspection and other high con-
fident evidence. This dataset comprises 200,000 malicious
and 16 million benign singleton files, and is the basis of the
experimental evaluation of Section 4.

2.2 Benign Singleton Files
The abundance of benign singletons may be surprising

given that there are not obvious benefits to distributing le-
gitimate software as singleton files. Of course, some software
is rare simply because it attracts few users, as in the case of
software on a build machine that performs daily regression
tests. However, there are also less obvious, but no less sig-
nificant reasons behind the large numbers of singleton files,
including the following:

1. The .NET Framework seeks to enable localized perfor-
mance optimizations by distributing software in Microsoft
Intermediate Language code so it can be compiled into
native executable code by the .NET framework on the
machine where it will execute, in a way that is specific to
the machine’s architecture. This is evident in practice,
as .NET produces executables that are unique in most
cases. Its widespread use makes it the largest driver of
benign singleton files in our data.

2. Many classes of binary rewriting tools take a program bi-
nary file as input, producing a modified version as output,
typically to insert additional functionality. For instance,
tools such as Themida and Armadillo add resistance to
tampering and reverse engineering, frequently to protect
intellectual property and preserve revenue streams, as in
the example of freemium games that require payment to
unlock in-game features and virtual currency. Other ex-
amples of binary rewriting tools include the RunAsAdmin
tool referenced in Table 1, which modifies executables so
that administrative privileges are required to run them.

3. In many cases, software embeds product serial numbers
or license keys in its files, resulting in a different hash-
based identifier for otherwise identical files.

4. Singleton files can be generated by software that pro-
duces executable files in scenarios where other file formats
are more typically used. For instance, Microsoft’s Active
Server Pages framework generates at least one DLL for
every ASP webpage that references .NET code. Another
example is ActiveCode’s Building Information Modeling
software that creates project files as executables rather
than as data files. It is not uncommon for these frame-
works to generate thousands of singleton binaries on a
single machine.

5. Interrupted or partial downloads can result in files that
appear to be singletons, even though they are really pre-
fixes of a larger more complete file. If the entire file is
available for inspection, this can be checked, but our
dataset includes metadata for many files that have not
been physically collected.

In Figure 1 we show the most common substring used in
benign singleton filenames as extracted from dataset D1,
many of which hint at the above factors. In particular, the
most-observed filename pattern is “app-web-”, which is seen
in DLL files supporting web-pages created by ASP Web Ap-
plications. These files are often singletons because they are
compiled from .NET code.

Using a subset of the data from dataset D0, we demon-
strated in Figure 2 (a) that singleton files are not uniformly
distributed across systems. The figure shows the number of
machines that possess specific counts of singleton and non-
singleton files. Figure 2 (b) is another way to view the same
data, showing that almost 40% of machines have few or no
singleton files and more than 94% of the systems have fewer
than 100 singletons. Thus, the majority of singleton files

Figure 1: Percent of singleton files containing a spe-
cific substring.

come from the heavy tail of the distribution representing
relatively few systems. Note that this data is from a specific
period in time, and so machines with low numbers of non-
singleton files indicate machines that experienced minimal
changes/updates during the period when data was collected.

Figure 2: (a) Number of machines with a specific
number of singleton/non-singleton files, (b) percent
of machines that report more than X singleton and
non-singleton files.

To help us work towards a solution that could identify
benign singletons as such, we seek to better understand the
machines on which they are most likely to exist. To identify
software packages that could be responsible for the creation
of singletons, we turn to the clustering approach proposed
by Tamersoy et al. [31], which identifies software packages
indirectly by clustering software files that are nearly always
installed together on a machine, or not at all (see Section 3.1
for more details). Henceforth, we refer to these clusters as
software packages. Once files are so clustered, we proceed
by identifying the software packages that are most indica-
tive of the presence of absence of singletons on a machine.
Let S denote a specific software package (cluster). We iden-
tified a set of 10 million machines from D1, each of which
contains at least 10 benign singleton files, which we denote
by H (for HasSingletons). Likewise, we identified 10 million
machines from D1 with no singleton files, which we denote
by N , for NoSingletons. We identify the predictiveness of
each software package S by counting its number of occur-
rences in eachH andN , and use these counts to compute the
odds ratios (OR) of a machine containing singletons given
S, OR(S) = H/N . Intuitively, the higher OR(S) is for a
particular software package S, the more likely it is that this
(benign) package generates many singletons. An OR(S) ra-
tio that is close to 1 is indicative of a software package that

is equally likely to appear on machines that do and do not
contain singletons, and therefore probably does not gener-
ate singletons itself. On the other hand, an OR(S) that is
significantly lower than 1 indicates that machines on which
S is installed are tightly controlled or special-use systems
unlikely to contain singleton files.

Table 1 shows software packages that are strong predic-
tors for the presence (or absence) of benign singletons on
a machine. Software packages that correlate with increased
numbers of singletons include compiler-related tools (Visual
Studio, SoapSuds, SmartClient), tools that wrap or modify
executables (RunAsAdmin, App-V), and software packages
that include numerous signed singletons (Google Talk Plu-
gin). Interestingly, there are also many software packages
that correlate strongly with an absence of singletons on the
system. These are indicative of tightly controlled or mini-
malist special-purpose systems.

Our ability to identify software packages that lead to pres-
ence/absence of many benign singleton files is a critical step
towards developing a method for classifying malicious vs.
benign singletons. In particular, as described in Section 3,
it enables us to prune a large fraction of files as benign before
applying machine learning methods, dramatically reducing
the false positive rate.

2.3 Malicious Singleton Files
Malware files skew heavily towards low-prevalence files,

and towards singleton files in particular. Using D0 we can
see that this trend has increased in recent years: 75% of
known malware files were singletons in 2012, and the rate
increased to 86% by 2015. There are readily apparent rea-
sons why malware files skew towards low-prevalence files,
including the following:
1. Avoiding signature-based detection: Users typically want

to prevent malware from running on their systems, and
blocking a single high-prevalence file is much easier than
blocking large numbers of distinct yet functionally equiv-
alent files. Polymorphism is a widespread technique for
producing many functionally equivalent program bina-
ries, which aims to reduce the effectiveness of traditional
Anti-Virus signatures over portions of the file.

2. Resistance to reverse engineering and tampering: Many
malware authors pack, obfuscate or encrypt their bina-
ries, often with the assistance of third-party tools that
are inexpensive or free. Polymorphism is often a welcome
byproduct of these techniques, though it is not necessarily
the primary objective.

3. Malware attribution resistance: The ease with which mal-
ware authors can create many functionally equivalent mal-
ware files makes the problem of attributing a malicious
file to its author much harder than it would be if the same
file was used in all instances. For the same reason, poly-
morphism makes it difficult for security researchers to
assess a malware family’s reach. Modularity also allows
for specific components to be used as needed, without
unnecessarily exposing the binary to detection.

Despite the widespread availability and use of tools that
can inexpensively apply polymorphism and obfuscation to
malware binaries, the security industry has developed effec-
tive techniques to counter these. Much of the polymorphism
seen in malware binaries is superficially applied by post-
compilation binary obfuscation tools that“pack”the original
contents of the malware file (by compressing or encrypting

Have singleton: Control set OR Representative Filename Software Name

13770:1 Appvux.dll Microsoft App-V
11792:1 Soapsuds.ni.exe SoapSuds Tool for XML Web Services
110501:2 Blpsmarthost.exe SmartClient
36515:2 gtpo3d host.dll Google Talk Plugin
13868:1 Runasadmin.exe Microsoft RunAsAdmin Tool
8511:1 Microsoft.office.tools.ni.dll Visual Studio

...
1:1702 Policy.exe ???
1:4392 vdiagentmonitor.exe Citrix VDI-in-a-Box

Table 1: Software packages that are most predictive of presence/absense of benign singleton files. For
succinctness, we represent each software package by its most prevalent filename.

the code), and add layers of additional obfuscation-related
code [28]. There are some obfuscation tools that are far more
complex than this, but most of them are used almost exclu-
sively by either malicious or by benign software authors.
Techniques used by the anti-virus industry to combat these
obfuscations are discussed at the end of this section.

To provide additional insight into the nature of malware
polymorphism, we study the use of polymorphism by 800
malware families that were observed in the wild in our D1
dataset. Overall, we found that 31% of these families are dis-
tributed exclusively as singletons, accounting for over 80%
of all singleton malware files, while 60% of families rely ex-
clusively on non-singletons. There is a subtle difference here,
that by volume, the 60% of families account for many de-
tections since they are higher prevalence, while the 80% of
singletons account for a lower percent of all detections even
though there are more of them, since they only occur on a
single system.

To identify malware families that exhibit a high degree of
polymorphism, we extracted about 200 static features from
files belonging each malware family. Our features include
most fields in the Portable Executable file header of Win-
dows Executable files (such as file size, number of sections,
etc.), as well as entropy statistics taken from individual bi-
nary sections, and information about dynamically linked ex-
ternal libraries and functions that are listed in the file’s Im-
port Table. For each malware family, we calculate variability
scores as the average variance of our static features for the
files belonging to that family. The families with the highest
variability scores are:

• Adware.Bookedspace
• Backdoor.Pcclient
• Spyware.EmailSpy
• Trojan.Usuge!gen3
• W32.Neshuta
• W32.P illeuz
• W32.Svich
• W32.Tu1ik

These malware families vary greatly in form, function, and
scale, though they do share properties that help account for
their high variance. In particular, all of these families are
modular, infecting machines with multiple functionally dif-
ferent files that are of similar prevalence and have dramati-
cally different characteristics. In all cases, there is at least an
order of magnitude difference in file size between the largest
and smallest binary. Furthermore, all samples apply binary
packing techniques sporadically rather than in all instances.
Backdoor.Pcclient is a Remote Access Trojan and the

lowest prevalence family that has high variance in the static
features. Polymorphism is not evident in this family; its

elevated variance is a reflection of a modular design, multi-
ple releases of some of those modules, and large differences
from one module to another. By contrast, W32.P illeuz is
a very prevalent worm family, but its Visual Basic executa-
bles achieve high variance through extensive obfuscation and
highly variable file sizes, which add to the worm’s modularity
and occasional use of packing. W32.Neshuta is particularly
interesting in that it infects all .exe and .com files on the
machines that it compromises, resulting in many detected
unique executables of differing sizes, in addition to its own
modular and polymorphic code.

API Purpose API Function
Anti-Analysis IsDebuggerPresent

GetCommandLineW
GetCurrentProcessId
GetT ickCount
Sleep
TerminateProcess

Unpack Malware Payload GetProcAddress
GetModuleHandleW
GetModuleFileNameW

Load/Modify Library Code CreateFileMappingA
CreateFileMappingW
MapV iewOfFile
SetF ilePointer
LockResource

Propagation GetTempPathW
CopyFileA
CreateFileW
WriteFile

Table 2: Categories of Windows API functions that
are disproportionately used by malware

The Windows API functions imported by malware files
provide interesting insights into their behavior, and are use-
ful as static features, because they are reasonably adver-
sarially resistant. Though malware authors can easily add
imports for API functions that they do not need, remov-
ing APIs is significantly harder, as these may be needed to
compromise the system (e.g., CreateRemoteThread). The
only inexpensive way in which a malware file can hide its
use of API functions from static analysis is to use a binary
packing tool so that its Import Table is not unpacked until
runtime, when it is used to dynamically link to Windows
API functions. However, this technique completely alters
the file’s static profile and introduces the static fingerprint
of the obfuscation tool, offering an indication that the file is
probably malicious. In addition, as discussed at the end of
this section, these obfuscations can be reversed by anti-virus
vendors.

Table 2 lists the API functions that are most dispropor-
tionately used by malware, categorized by the purpose for
which malware authors typically use them. Many of these

APIs support analysis resistance, either by detecting an anal-
ysis environment, hiding behavior from analysis, or by ac-
tively resist against analysis. Most other APIs that are in-
dicative of malware have to do with linking or loading to
additional code at runtime, typically because the malware
payload is packed, but also for more nefarious purposes, such
as malicious code injection and propagation.

Anti-Virus Industry Response to Obfuscation:
The anti-virus industry has sought to adapt to malware’s
widespread use of obfuscation tools by applying static and
dynamic techniques to largely reverse the packing process in
a way that preserves many of the benefits of static analysis.
In particular, these techniques allow malicious code to be
extracted, along with the contents of the Import Address
Table, which contains the addresses of functions imported
from external dynamically linked libraries. Unpacking tech-
niques include the “X-Ray” technique, which may be used
to crack weak encryption schemes or recognize the use of
a particular compression algorithm and reverse its effects
[27]. Most unpacking techniques, however, have a dynamic
component and can be broadly classified into emulators and
secure sandboxes. Emulators do not allow malicious files to
execute natively on the machine or to execute real system
calls or Windows API calls, but provide a good approxi-
mation of a native environment nonetheless. They are fre-
quently deployed on client machines so that any suspicious
file can be emulated long enough to allow unpacking to oc-
cur, after which the program’s malicious payload can be ex-
tracted from memory and the de-obfuscated code can be re-
covered and analyzed. Offline analysis of suspicious program
binaries typically uses a near-native instrumented environ-
ment where the malware program can be executed and its
dynamically unpacked malicious payload can be extracted
[12]. Though there are more elaborate obfuscation schemes
that can make executable files difficult to unpack with the
aforementioned techniques, these are either not widely de-
ployed (e.g., because they are custom-built for the malware
family) or are used predominantly by benign or malicious
software, but not both. Thus, effective benign vs. malicious
determinations can be made even in these cases, because the
obfuscation toolkits leave a recognizable fingerprint.

Though the effectiveness of the above de-obfuscation tech-
niques is open to debate, in our methodology for this pa-
per, we make the deliberate choice to use no de-obfuscation
techniques at all in our attempts to classify singleton files.
We demonstrate that malware classification based purely on
static features can be successful, even in the face of extensive
polymorphism, by good and bad files alike. The success we
achieve demonstrates that the obfuscation techniques that
are widely used by malware are themselves recognizable, and
appreciably different from the kinds of polymorphism that
are common in benign files. We expect that the classification
accuracy of our methodology would improve when applied
to files that have been de-obfuscated, given that other re-
searchers have found this to be the case [13].

3. LEARNING TO IDENTIFY MALICIOUS
SINGLETONS

Most prior efforts for identifying malicious files have ei-
ther relied on the context in which multiple instances of the
file appear (e.g., Polonium [4] and Aesop [31] systems) or

have relied exclusively on static or dynamic features derived
from the file itself (e.g., MutantX-S [13]). The context that
is available for a singleton file is necessarily limited, making
the aforementioned context-dependent techniques not ap-
plicable. Making matters worse is the fact that the ratio of
benign to malicious singleton files is nearly 80:1, which has
the effect of multiplying the false positive rate of a malware
detector by a factor of 80, and presents a significant class
imbalance problem that makes effective classifier training
difficult.

To address the lack of context for singleton files and the
preponderance of benign singleton files, we leverage insights
gleaned from our empirical observations about singleton files
in the wild. In particular, as discussed in Section 2.2, a hand-
ful of software packages generate the lion’s share of benign
singletons, while other packages correlate with their absence.
Furthermore, the toolchains that generate benign singletons
in large numbers imbue them with distinctive static prop-
erties that make them easy to label with high confidence.
We use these insights to develop a pipeline that filters be-
nign singleton files with high confidence, yielding a more
balanced dataset of suspicious files.

Figure 3: Pipeline of the singleton classification sys-
tem.

Figure 3 presents a diagram of our pipeline. We take as
input a pair (f,m), where f is a file and m is the machine
on which it resides. The first step of the pipeline, which
we call machine profiling, determines whether m is likely
to host many benign singleton files. The second step is file
profiling, in which we label obviously benign files, primar-
ily from many-singleton machines, by determining that they
closely match the benign files that are common on such sys-
tems. The final step, classification, uses a supervised clas-
sification algorithm (we explore the use of Support Vector
Machines [30] and Recursive Neural Networks [21]) to ren-
der a final judgment on the remaining files. We proceed by
describing each of our pipeline’s components in detail.

3.1 Machine profiling
Machine profiling operationalizes the following insight gleaned

from our empirical observations: since the distribution of
benign singletons is highly non-uniform, singleton classifica-
tion will benefit from identifying machines that are likely to
host many benign singletons. As discussed in Section 2.2,

the software packages present on a machine are highly pre-
dictive of the presence or absence of benign singletons.

The first challenge we face is that of automatically identi-
fying software packages from telemetry about installations of
individual program binary files. In mapping individual files
to software packages, we wish to proceed in an automated
way that is inclusive of rare software that is not available for
public download. Our approach adopts the clustering por-
tion of the Aesop system described by Tamersoy et al. [31],
in which they leverage a dataset consisting of tuples of file
and machine identifiers, each of which indicates the presence
of file f on machine m. Specifically, let F be a set of (high-
prevalence) files (in the training data). For each file f ∈ F ,
let M(f) be the set of machines on which f appears. As Ae-
sop did, we use locality sensitive hashing [11] to efficiently
and approximately group files whose M(f) sets display low
Jaccard distance to one another. The Jaccard distance be-
tween two sets X and Y is defined as: J(X,Y) = 1− X∩Y

X∪Y ,
and we define the distance between two files f and f ′ in
terms of Jaccard distance as d(f, f ′) = J(M(f),M(f ′)). We
tune locality sensitive hashing to cluster files with high prob-
ability when the Jaccard distance between the files is less
than 0.2, and to cluster them very rarely otherwise. We ob-
tain a collection of clusters C, such that each cluster C ∈ C,
serves as an approximation of a software package, since C
represents a collection of files that are usually installed to-
gether on a machine or not at all.

We proceed by identifying the approximate software pack-
ages that are the best predictors for the presence of singleton
files. We formulate this task as a machine learning problem.
We define a feature vector for each machine m that encodes
the set of software packages that exist on m. Specifically,
given n clusters (software packages), we create a correspond-
ing binary feature vector sm of length n, where smj = 1 iff
cluster j is present on machine m. Next, we append a label
lm to our feature vector such that we have {sm, lm} for each
machine, with feature vectors sm corresponding to machines
and labels lm ∈ {H,N} representing whether the associated
machine has benign singletons (labelH) or has no singletons
(label N). With this dataset in hand, we are able to train a
simple, interpretable classifier to predict lm to good effect.
Had we used individual files as predictors, we would have to
choose a machine learning algorithm that behaves well in the
presence of strongly correlated features, but software pack-
age identification dramatically reduces feature correlation.
Thus, we select Naive Bayes as our classifier g(s), which
performs well and gives us significant insight into the soft-
ware packages that are the best indicators of the presence
or absence of benign singleton files, as reported in Table 1.
Our classifier takes as input a feature vector s that repre-
sents the software packages on a given machine, and outputs
a prediction as to whether or not the machine has benign
singletons. To achieve a balanced dataset, we randomly se-
lected 2,000,000 uninfected machines, half of which contain
singletons and half of which do not.

3.2 File profiling
Given a classifier g(m) that determines whether a machine

m is expected to host benign many singletons, the next step
in our pipeline—file profiling—uses this information to iden-
tify files that can be confidently labeled benign. The result
is both a more balanced dataset that makes our pipeline’s
classifier easier to train, as well as a high-confidence label-

ing technique that reduces classifier’s false positive rate. The
main intuition behind our proposed file profiling method is
that benign singleton files bear the marks of the specific be-
nign software packages that generate them. Of course, dif-
ferent software generates singletons with dramatically dif-
ferent file structures and file-naming conventions. Conse-
quently, we seek to identify prototypical benign singletons
by clustering them based on their static properties, and fil-
ter benign files that closely match these prototypes. Since
the information we have about the software installed on any
given machine is typically incomplete, we filter benign files
that closely match benign-file prototypes on all machines,
but require much closer matches on machines where benign
singletons are not expected. This point is operationalized
below through the use of a less aggressive filtering threshold
for machines m labeled as N (no benign singletons) than for
machines labeled H (having benign singletons).

The full path, filename, and size of singleton files are the
primary static attributes that we use in our file profiling
study. We had little choice in this case because large col-
lections of labeled benign singleton files that security com-
panies share with external researchers are extremely hard
to come by, and are limited in the telemetry they provide.
In the interest of conducting a reproducible experiment,
we limit ourselves to the metadata attributes provided for
files in Dataset D1 (see Section 2.1) that Symantec shares
with external researchers through its WINE program [10].
Though D1 gives us a representative dataset of singleton
files, it also limits us to a small collection of metadata at-
tributes about files, of which the path, filename, and size
are the most useful attributes. In modest defense of the use
of filename and path as a feature, though it is true that a
malicious adversary can trivially modify the malware’s file-
name (and the path, to a lesser extent), the malware author
would frequently have to do so at the cost of losing the social
engineering benefit of choosing a filename that entices the
user to install the malware.

Due to the feature limitations of the file profiling step, we
proceed by developing techniques to maximize the discrim-
inative value of the path and filename. We seek to leverage
the observation that a handful of root causes create a sig-
nificant majority of benign singletons, and these origins are
often strongly evident in the filename and path of benign sin-
gletons. Although malware files display significantly more
diversity in their choice of filenames, these filenames typi-
cally bear the marks of social engineering, and their paths
are frequently reflective of the vector by which they man-
aged to install themselves on the machine, or are demon-
strative of attempts to hide from scrutiny. Accordingly, we
engineer features from filenames and paths to capture the
naming conventions used by benign singletons. Given a file
f , we divide its filename into words using chunking tech-
niques. Specifically, we identify separate words within each
file name that are demarcated by whitespace or punctuation,
and separate words based on CamelCase capitalization tran-
sitions, and so on. Subsequently, we represent the filename
and path components in a “bag of words” feature representa-
tion that is physically represented as a binary vector, where
the existence of a word in the filename or path corresponds
to a 1 in the associated feature, and a 0 indicates that the
word is not a part of its name. In addition, we capture the
relative frequencies of the words that appear in filenames by
measuring the term frequency (TF) of each word. Term fre-

quency is then used as a part of weighted Jaccard distance
measure used to cluster files, as described below. More for-
mally, let T ⊆ Rn represent the feature space of the singleton
files, with n the number of features. Each singleton file f
can be represented by a feature vector t, which is the dot
product of a binary bag of words vector w and the normal-
ized term frequency vector q corresponding to each word,
t = w · q, where tj is the jth feature value. Note that we ex-
clude words that appear extremely frequently, such as exe,
dll, setup, as stop words, to prevent the feature vector t
from becoming dominated by these. For any two files f1
and f2, the weighted Jaccard distance between them is then

calculated as J(f1, f2) = 1−
∑

k min(f1
k,f2

k)∑
k max(f1k,f2k)

.

We use the weighted Jaccard distance to cluster benign
singleton files in the training data using the scalable NN
Descent algorithm [9] implemented on Spark [33], which ef-
ficiently approximates K-Nearest Neighbors and produces
clusters C of of highly similar files.1 We gain further effi-
ciency and efficacy gains by choosing a bag of words rep-
resentation over edit distance when making filename com-
parisons. This approach also has the benefit of producing
an understandable model that identifies the most frequent
filename patterns present in benign singleton files, such as
those highlighted in Figure 1.

The final step in the file profiling process is to use the
clusters derived above to filter benign files that align closely
with the profile of benign singletons. To this end, for each
benign singleton cluster c ∈ C, we compute the cluster mean
c̄ = 1

|c|
∑
tj∈c

tj . For a given file f , we then find the cluster ;

let c∗ whose mean c̄ is least distant from f , where distance is
again measured based on weighted Jaccard distance: J(c̄, f).
Then, if file f resides on a machine m that is expected to
have singletons (that is, g(m) = H as defined in Section 3.1),
we filter it as benign iff J(c∗, f) ≤ θH ; otherwise, it is filtered
iff J(c∗, f) ≤ θN , where θH and θN are the corresponding
filtering thresholds.

We select different θ values for the training and final ver-
sions of our pipeline. For training, our primary goal is to
reduce the 80:1 benign to malicious class imbalance ratio so
that we can train an effective classifier, whereas for testing,
our goal is to achieve a high true positive rate while mini-
mizing false positives. For purposes of creating a balanced
training set, we select θN = 0.1 and θH = 0.3, which filters
91.8% of benign singletons, resulting in a more manageable
9:1 class imbalance ratio, at the cost of 7% of malware sam-
ples being thrown out of our training set. However this does
not affect the performance of our model adversely, since dur-
ing testing we can be less aggressive with the thresholds and
pass more files to the classifier. In practice, we found values
around θN = 0.07 and θH = 0.13 result in the best perfor-
mance over the test data.

3.3 Malicious singleton detection
Having filtered out a large portion of predicted benign

file instances, we are left with a residual data set of benign
and malicious files that we classify using supervised-learning
techniques. Though the filtering of benign files by the pre-
vious stages of our pipeline provide better class balance, we
found that significant improvements in classification accu-

1Note that this clustering of files is entirely distinct from the
clustering of files in machine profiling, where non-singleton
files are clustered based on machines that they appear on.

racy result when the residual data set is augmented by in-
cluding 3 benign files that we sample randomly from each
cluster C generated in the file profiling step. Doing so im-
proves the classifier by adding additional benign files that
are representative of the overall population of benign sin-
gleton files. We trained multiple classification algorithms
with different strengths to determine which would be most
effective at singleton classification.

Feature engineering is also key to the performance of our
classifiers. Whereas machine and file profiling were designed
for a backend system where a global view of the distribution
of benign and malicious singleton files is available, here we
design a classifier that we can deploy on client machines,
based entirely on the static features of the file. Hence, we
assume direct access to the files themselves and can build
rich feature sets over the files, so long as they are not ex-
pensive to compute. This is in contrast to the telemetry used
for machine and file profiling, for which network bandwidth
constraints and privacy concerns limited the telemetry that
could be collected. As mentioned in Section 2.3, we make no
attempt to reverse the effects of obfuscation attempts em-
ployed by malware, finding that the use of the obfuscation
techniques themselves provides strong discriminative power
that helps us to disambiguate between benign and malicious
singletons.

Features.
The features used by our learning algorithms to classify

singleton program binary files fall into four categories.
1. The first category of features corresponds to features of

file name and path. For these we used the same file name
and path bag-of-words feature representation here as in
the file profiling step of Section 3.2. To reduce the num-
ber of features included in our model, we applied a chi-
squared feature selection to choose the most discrimina-
tive features [19].

2. The second category of features are derived from the
header information of the executable file. We include
all fields in the headers that are common to most win-
dows executable files that exhibit some variability (some
header fields never change). These header fields include
the MS-DOS Stub, Signature, the COFF File Header,
and the Optional Header (which is optional but nearly
always present) [6].

3. We derive features from the Section Table found in the
file’s header, which describes each section of the binary,
and also compute the entropy of each of the file’s sections
as features.

4. Our third category of features is derived from the exter-
nal libraries that are dynamically linked to the program
binary file. To determine which libraries the file links to,
we create a feature for each of the most popular Win-
dows library files (primarily Windows API libraries) that
represents the number of functions imported from the li-
brary. We also create binary features for the individual
functions in common Windows libraries that are most
commonly used by malware. These take a value of 1
when the function is imported and 0 otherwise.

In all, category 1’s bag of words features for filename and
path consist of 300 features, while category 2,3, and 4 fea-
tures together comprise close to 1000 features.

Classification.
We apply two learning models, a Recurrent Neural Net-

work (RNN) [23] and a Support Vector Machine with a
radial basis function as its kernel [3], and compare their
performance and ability to withstand adversarial manipu-
lation in Section 4. The RNN model is particularly suited
for textual data, so we train it solely using file names and
path information as features. Given the sequential proper-
ties of the file name text, RNNs aim to make use of the
dependency relationship among characters to classify mali-
cious vsḃenign singletons. The goal of the character-level
learning model is to predict the next character in a se-
quence and thereby classify the entire sequence based on
the character distribution. Here, given a training sequence
of characters (a1, a2, ..., am), the RNN model uses the se-
quence of its output vectors (o1, o2, ..., om) to obtain a se-
quence of distributions P (ak+1|a≤k) = softmax(ok), where
the softmax distribution is defined by P (softmax(ok) =

j) = exp(ok
(j))/

∑
k exp(ok

(l)). The learning model’s ob-
jective is to maximize the total log likelihood of the training
sequence, which implies that the RNN learns a probability
distribution over the character sequences used in a full path
+ filename.

For the SVM model, we apply the text chunking tech-
nique described in Section 3.2, and use the bag-of-words
representation as described above, concatenated with static
and API-based features, where relevant. While numerous
other classification algorithms could be used here, our pur-
pose of exploring RNN and SVM specifically is to contrast
an approach specifically designed for text data (making use
of filename and path information exclusively) with a general-
purpose learning algorithm that is known to perform well in
malware classification settings [16].

Putting Everything Together.
The high-level algorithm for the entire training pipeline

is shown in Algorithm 1. The input to this algorithm is a

Algorithm 1 Train({Str, Ztr,Mtr, Ytr}):
1: g = machineProfiling({Str, Ztr,Mtr, Ytr})
2: (D, θH , θN , C) = fileProfiling({Str, Ztr,Mtr, Ytr}, g)
3: h = learnClassifier(D)

4: return g, h, θH , θN , C

collection of tuples
{si, zi,mi, yi} ∈ {S,Z,M, Y } describing file instances on
machines, which are partitioned into training (tr) and test-
ing (te) for the pipeline. Each file instance is represented by
si, the 256-bit digest of a SHA-2 hash over its contents and
the size zi of the file in bytes. The machine is represented
by a unique machine identifier mi, and each instance of the
file receives a label yi, which designates a file as benign,
malicious, or unknown. Machine profiling processes the file-
instance data to identify singleton files (those for which only
one instance exists) from more prevalent software that it
groups into packages and uses to predict the presence or ab-
sence of singletons. The end result of training the pipeline
includes the two classifiers: g classifies machines into H (has
benign singletons) and N (no benign singletons), while h
classifies files as malicious or benign, trained based on the
selected representative data D. Additional by-products in-
clude, the clusters of benign files C and the thresholds θH

and θN that determine how aggressively files projected to
be benign are filtered before the classifier h is applied.

Our test-time inputs include a set of singleton files that
we withheld from training and our model parameters, and
it returns simply whether or not to label f as benign or
malicious. The specifics of the associated testing process,
which use of our training pipeline, are given in Algorithm 2.

Algorithm 2 Predict({Ste,Mte}, g, h, θH , θN , C):

1: l = g(Mte) : label the machine as H or N
2: c∗ = arg minc∈C J(Ste, c) // find closest cluster center to

Ste

3: if J(Ste, c) ≤ θl then
4: return B // “benign” if Ste is close to a benign cluster

center

5: end if

6: return h(Ste) // otherwise, apply the classifier

4. EXPERIMENTAL EVALUATION
We conduct experiments on a large real-world dataset,

dataset D2 as described in Section 2.1, to evaluate the pro-
posed pipeline as well as analyze the robustness of learning
system. As mentioned above, in implementing and deploy-
ing such a system in practice, we face a series of tradeoffs.
The first is how much information about each file we should
be collecting. On the one hand, more information will likely
improve learning performance. On the other hand, collect-
ing and analyzing data at such scale can become extremely
expensive, both financially and computationally. Moreover,
collection of detailed data about files on end-user machines
can become a substantial privacy issue. For all of these rea-
sons, very little information is traditionally collected about
files on end-user systems, largely consisting of file name and
an anonymized path, as well as file hashes and machines
they reside on. For a subset of files, deeper information is
available, including static features as well as API calls, as
discussed above. However, these involve a significant cost:
for example, extracting API calls requires static analysis.
Our experiments are therefore designed to assess how much
value these additional features have in classification, and
whether or not it is truly worthwhile to be collecting them
at the scale necessary for practical deployment. Since we
are the first work to deal with the singleton malware detec-
tion problem, here we compare our proposed method with
standard machine learning algorithms in various settings.
Our evaluation applies Machine Profiling (MP), File Profil-
ing (FP), an RNN based on only file name features, a SVM
based on file name features, a SVM based on both file name
and the static features (SVMS), and a SVM based on file
name, static features, and API function features (SVMSF).

4.1 Baseline Evaluation
Our first efficacy study demonstrates the benefit provided

by our machine learning pipeline as compared to two nat-
ural baselines. Our first baseline applies machine and file
profiling, ranking all examples based on their similarity to
benign files, and identifying the samples that are furthest
from benign cluster centers as malicious. Our second base-
line is our best-performing classifier trained over our entire
feature set (SVMSF), but trained without the benefit of an
initial machine/file profiling step, which reduces the ratio of

benign to malicious files from an 80:1 ratio to a 9:1 ratio.
This baseline is similar to prior work in malware classifica-
tion based on static features [13]. As seen in Figure 4, our
full pipeline demonstrates clear improvement over the two
baselines, with a significantly higher AUC score. The spot
on the curve with the maximal F0.5 score achieves a 92.1%
true positive rate at a 1.4% false positive rate, a dramatic
improvement over applying FP or SVMSF on its own. Dif-
ferent locations on the ROC curve are achieved by selecting
increasing values for θN and θH . The maximal F0.5 score is
achieved with θH = 0.13 and θN = 0.07.

Though uninformed downsampling of benign files may
reasonably be suggested as an alternative means to reduce
the class imbalance and achieve better classification results
with SVMSF, our attempts to do so resulted in classifiers
that perform worse than the SVMSF classifier of Figure 4.
The reason for this is likely that downsampling decimates
small clusters of benign files, resulting in a model that rep-
resents benign singletons only by its most massively popu-
lated clusters. Our pipeline can be thought of as providing
an informed downsampling of benign files that reduces mas-
sively populated clusters of benign files to a few prototypes,
allowing the SVM to train a model that represents the full
gamut of benign singletons with the additional benefit of
doing so over a more balanced dataset.

Figure 4: (a) ROC-curve comparison of the pipeline
performance with the two baselines: no machine/file
profiling, and only machine/file profiling. (b) Com-
parisons for models with different features without
attacker.

4.2 Evaluating Performance of the Classifica-
tion Step

To assess the relative importance of the three classes of
features (text, static, and API) used by our model, we an-
alyze the relative performance of just the last classification
step of four models on the dataset produced by MP and FP
filtering: 1) RNN (using text features only), 2) SVM (us-
ing text features only), 3) SVM with both text and static
features, and 4) SVM with text, static, and API features.

To highlight the performance differences between these
classifiers, we evaluate them over a test set of singletons from
which obviously benign singletons have been pre-filtered by
file profiling (for this reason this figure does not reflect the
overall performance of our pipeline as reported in Figure 4).
Our first observation is that RNN outperforms SVM when
only textual features are used, which is not surprising, given
that RNN’s are particularly well suited to text data. Second,
our model’s performance drops when training over filename
and anonymized path plus static features, which demon-
strates the high discriminative value of the filename and
anonymized path relative to features derived from header
information in the executable. However, these static fea-

tures do offer value when we account for the potential for
adversarial manipulation, as discussed in Section 4.3. Third,
the value of features based on imported API functions is ev-
ident in the performance of the SVMSF model compared to
all other models, particularly when we choose a threshold
that limits the false positive rate, as security vendors are
prone to do: The precision and recall scores that produce a
maximal F0.5 score for SVMSF are 83% recall at a 1% false
positive rate, as compared to 76% recall at a 5% false posi-
tive rate for RNN, which is this model’s closest competitor
on an Area Under the Curve (AUC) basis. Note that the
performance of the full pipeline is better than either of these
classifiers alone (see Figure 4), because many of the benign
files that are causing the FPs are labeled correctly using
the machine and file profiling steps. Finally, our adversarial
evaluation of these classifiers (Section 4.3) offers additional
justification for incorporating static and imported function-
based features into our model.

We evaluated the run-time required to train each step of
our pipeline, including Machine Profiling (MP), File Pro-
filing (FP), and the selected classifier, which is one of the
following: RNN, SVM (based on only file name), SVMS,
and SVMSF. The run-time of each step, when performed on
a single powerful machine, is illustrated in Figure 5. Train-
ing Machine Profiling and File Profiling is fairly expensive,
However, these two steps can be done offline, and updated
incrementally as new data arrives. Training the SVM classi-
fiers is inexpensive, whereas training the RNN takes on the
order of three hours with GPU acceleration. Though we do
not believe that this is a cause for concern, the inferior per-
formance of the RNN as compared to SVMSF makes it less
appealing for inclusion in the final version of our pipeline.
We do not include test-time performance evaluation since
the cost to test a single file is negligible for all stages of the
pipeline.

Figure 5: Comparisons of the runtime of different
components within the pipeline.

4.3 Adversarial Evaluation
Though the evaluation of our classifiers, presented in Fig-

ure 4 (b) is fairly typical for a malware classification tool, it
is not necessarily indicative of the long-term performance of
a classifier once it has been massively deployed in the wild.
In particular, what is missing is an evaluation of the abil-
ity of our classifier to withstand the inevitable attempts of
malware authors to respond to its deployment by modify-
ing their malicious singleton files to mimic benign file pat-
terns in order to evade detection. Whereas researchers have

traditionally discussed an algorithm’s robustness to evasion
based on subjective arguments about the strength or weak-
ness of individual features, the now well-developed body
of research on adversarial machine learning provides more
rigorous methods for evaluating the adversarial robustness
of a machine learning method [8, 20], and provides guide-
lines for developing more adversarially robust learning tech-
niques [18, 32].

We proceed by providing an evaluation of our model’s ad-
versarial robustness. The adversarial resistance of a classifier
evaluation presupposes a given classifier, h, that outputs for
a given feature vector x, a label h(x) ∈ {−1,+1}, where
in our case, −1 represents a benign prediction and +1 rep-
resents a malicious prediction. Given h, the adversary is
modeled as aiming to minimize the cost of evasion,

x∗ = arg min
x′|h(x′)=−1

c(x, x′),

where c(x, x′) is the cost of using a malicious instance x′ in
place of x to evade h (by ensuring that h(x′) = −1, that
is, that the malicious file will be classified as benign). The
optimal evasion is represented by x∗. Because this model
always results in a successful evasion, no matter its cost, we
follow a more realistic model presented by Li and Vorob-
eychik [17], where the evasion only occurs when its cost is
within a fixed adversarial budget B, thus: c(x, x∗) ≤ B.
Similarly, we mainly focus on the binary features here and
prioritize the ones that have the most distinguished values
for malicious and benign to modify, focusing the adversaries
budget on the features that will be most useful for them to
modify under the assumption that they known how to mimic
benign software. In effect, we assume that the adversary will
evade detection only if the gains from doing so outweigh the
costs. The budget represents the percentage of the total
number of features that the attacker is able to modify. A
natural measure of the evasion cost c(x, x′) is the weighted
l1 distance between x and x′: c(x, x′) =

∑
i ai‖xi−x

′
i‖. The

choices of weights can be difficult to determine in a princi-
pled way, although some features will clearly be easier for
an adversary to modify than others. We use ai = 1 for all
features i below as a starting point. As we will see, this al-
ready provides us with substantial evidence that a classifier
using solely filename-based features is extremely exploitable
by an adversary, without even accounting for the fact that
such features are also easier to modify for malware authors
than, say, the functions they import from the Windows API
and other libraries.

Figure 6: Comparisons for models with attacker
budget as (a) 5 (b) 10.

We now perform a comparison of the same classifier and
feature combinations presented in Section 4.2, but we now
evaluate these classifiers using evasion attacks, as shown in
Figures 6 (a) and (b) with budgets B = 5% and B = 10%,

respectively. These figures highlight a significant trend: whereas
the RNN’s performance was previously rather close to that
of the SVM with filename, static, and imported function fea-
tures, the former has displays poor adversarial resistance,
while the latter is far more robust. The RNN’s AUC drops
to 0.857 under pressure from a weaker attacker, and to 0.78
when pressured by a stronger one, whereas the AUC for the
SVM with the largest feature set only drops to 0.92 under a
smaller adversarial budget, and to 0.88 with a larger one).
The SVM based only on filename features performed even
worse than the RNN. Interestingly, while adding static fea-
tures (and not imported function features) to the SVM de-
grades its adversary-free performance, the classifier performs
considerably better than the RNN and SVM with filename
features, in the presence of an adversary.

In summary, our experimental results point consistently to
the use of a Support Vector Machine with features derived
from the filename, path, static properties of the file, and
imported functions, as the model that performs the best,
even against an active adversary. Thus, the best version of
our overall pipeline leverages this support vector machine as
its classifier, achieving the overall performance results shown
in Figure 4.

5. RELATED WORK
The problem of detecting malicious files has been stud-

ied extensively. Perdisci et al. have dealt with the static
detection of malware files [25] and malware clustering us-
ing HTTP features [26]. Other malware detection systems
have also been proposed [15, 7, 5]. Particularly relevant is
work that is designed to deal with low-prevalence malware.
This prior art includes work designed to reverse the effect of
packing-based obfuscation tools by either statically decom-
pressing or decrypting the malicious payload [27], or simply
executing the program until it has unrolled its malicious
payload into main memory [12]. At this point, traditional
anti-virus signatures may be applied [22], and clustering may
serve to identify new malicious samples based on their sim-
ilarity to known malicious samples [13, 14]. By contrast,
we make no effort to undo obfuscation attempts, which are
frequently evidence of malicious intent. Whereas these re-
searchers have focused on the causes behind low-prevalence
malware, we augment this by providing the first detailed
study of benign singleton files.

The importance of an adversarially robust approach to
malicious singleton detection is evident, given that the high
volume of singleton malware is largely the byproduct of
adaptations to anti-virus technology [1, 17, 2]. Researchers
have formalized the notion of evasion attacks on classifiers
through game theoretic modeling and analysis [8, 24]. In one
of the earliest such efforts, Dalve et al. [8] play out the first
two steps of best response dynamics in this game. However,
there has been a disconnect between the learner-attacker
game models and real world dataset validation in these prior
work. We bridge this gap by considering a very general ad-
versarial learning framework based on an evaluation of a
real, large-scale dataset.

6. CONCLUSIONS
We analyzed a large dataset to extract insights about the

properties and distribution of singleton program binary files
and their relationships to non-singleton software. We lever-
age the context in which singletons appear to filter benign
files from our dataset, allowing us to train a model over a

more balanced set of positive and negative examples. We
build a classifier and feature set over the static contents of
the file to effectively label benign and malicious singletons,
in a way that is adversarial robust. Together, these com-
ponents of our pipeline classify singletons much more effec-
tively than either a context or a content-based approach can
do on its own.

7. ACKNOWLEDGMENTS
This research was partially supported by the NSF (CNS-

1238959, IIS-1526860), ONR (N00014-15- 1-2621), ARO (W911NF-
16-1-0069), AFRL (FA8750-14-2-0180), Sandia National Lab-
oratories, and Symantec Labs Graduate Research Fellow-
ship.

8. REFERENCES
[1] Brückner, M., and Scheffer, T. Nash equilibria of

static prediction games. In Advances in neural
information processing systems (2009), pp. 171–179.

[2] Bruckner, M., and Scheffer, T. Stackelberg
games for adversarial prediction problems. In
Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining
(2011), ACM, pp. 547–555.

[3] Chang, C.-C., and Lin, C.-J. LIBSVM: A library
for support vector machines. ACM Transactions on
Intelligent Systems and Technology 2 (2011),
27:1–27:27.

[4] Chau, D. H., Nachenberg, C., Wilhelm, J.,
Wright, A., and Faloutsos, C. Polonium:
Tera-scale graph mining and inference for malware
detection. In SIAM International Conference on Data
Mining (2011), vol. 2.

[5] Christodorescu, M., Jha, S., Seshia, S. A., Song,
D., and Bryant, R. E. Semantics-aware malware
detection. In Security and Privacy, 2005 IEEE
Symposium on (2005), IEEE, pp. 32–46.

[6] Corporation, M. Microsoft portable executable and
common object file format specification. Revision 6.0.

[7] Dahl, G. E., Stokes, J. W., Deng, L., and Yu, D.
Large-scale malware classification using random
projections and neural networks. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE
International Conference on (2013), IEEE,
pp. 3422–3426.

[8] Dalvi, N., Domingos, P., Sanghai, S., Verma, D.,
et al. Adversarial classification. In Proceedings of the
tenth ACM SIGKDD international conference on
Knowledge discovery and data mining (2004), ACM,
pp. 99–108.

[9] Dong, W., Moses, C., and Li, K. Efficient k-nearest
neighbor graph construction for generic similarity
measures. In Proceedings of the 20th international
conference on World wide web (2011), ACM,
pp. 577–586.

[10] Dumitras, T., and Shou, D. Toward a standard
benchmark for computer security research: the
worldwide intelligence network environment (wine). In
Proceedings of the First Workshop on Building
Analysis Datasets and Gathering Experience Returns
for Security (BADGERS) (Salzburg, Austria, 2011).

[11] Gionis, A., Indyk, P., and Motwani, R. Similarity
search in high dimensions via hashing. In Proceedings
of the 25th International Conference on Very Large
Data Bases (VLDB) (Edinburgh, Scotland, UK, 1999).

[12] Guo, F., Ferrie, P., and Chiueh, T. A study of the
packer problem and its solutions. In Symposium on
Recent Advances in Intrusion Detection (RAID)
(Cambridge, MA, 2008), Springer Berlin / Heidelberg.

[13] Hu, X., Shin, K. G., Bhatkar, S., and Griffin, K.
Mutantx-s: Scalable malware clustering based on
static features. In Presented as part of the 2013
USENIX Annual Technical Conference (USENIX ATC
13) (San Jose, CA, 2013), USENIX, pp. 187–198.

[14] Jang, J., Brumley, D., and Venkataraman, S.
Bitshred: feature hashing malware for scalable triage
and semantic analysis. In Proceedings of the 18th
ACM conference on Computer and communications
security (2011), ACM, pp. 309–320.

[15] Kolbitsch, C., Comparetti, P. M., Kruegel, C.,
Kirda, E., Zhou, X.-y., and Wang, X. Effective
and efficient malware detection at the end host. In
USENIX security symposium (2009), pp. 351–366.

[16] Kolter, J. Z., and Maloof, M. A. Learning to
detect and classify malicious executables in the wild.
Journal of Machine Learning Research 7 (2006),
2721–2744.

[17] Li, B., and Vorobeychik, Y. Feature
cross-substitution in adversarial classification. In
Advances in Neural Information Processing Systems
(2014), pp. 2087–2095.

[18] Li, B., and Yevgeniy, V. Scalable optimization of
randomized operational decisions in adversarial
classification settings. In Proc. International
Conference on Artificial Intelligence and Statistics
(2015).

[19] Liu, H., and Setiono, R. Chi2: Feature selection
and discretization of numeric attributes. In
Proceedings of 7th Intenational Conference on Tools
with Artificial Intelligence (ICTAI), pp. 388–391.

[20] Lowd, D., and Meek, C. Adversarial learning. In
Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in
data mining (2005), ACM, pp. 641–647.

[21] LukošEvičIus, M., and Jaeger, H. Reservoir
computing approaches to recurrent neural network
training. Computer Science Review 3, 3 (2009),
127–149.

[22] Martignoni, L., Christodorescu, M., and Jha, S.
Omniunpack: Fast, generic, and safe unpacking of
malware. In Annual Computer Security Applications
Conference (ACSAC) (Miami Beach, FL, 2007).

[23] Mikolov, T., Kombrink, S., Burget, L.,
Cernocky, J., and Khudanpur, S. Extensions of
recurrent neural network language model. In IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (ICASSP) (Prague,
Czech Republic, 2011).

[24] Parameswaran, M., Rui, H., and Sayin, S. A game
theoretic model and empirical analysis of spammer
strategies. In Collaboration, Electronic Messaging,
AntiAbuse and Spam Conf (2010), vol. 7.

[25] Perdisci, R., Ariu, D., and Giacinto, G. Scalable
fine-grained behavioral clustering of http-based
malware. Computer Networks 57, 2 (2013), 487–500.

[26] Perdisci, R., Lanzi, A., and Lee, W. Mcboost:
Boosting scalability in malware collection and analysis
using statistical classification of executables. In
Computer Security Applications Conference, 2008.
ACSAC 2008. Annual (2008), IEEE, pp. 301–310.

[27] Perriot, F., and Ferrie, P. Principles and practise
of x-raying. In Virus Bulletin Conference (Chicago,
IL, 2004).

[28] Roundy, K. A., and Miller, B. P. Binary-code
obfuscations in prevalent packer tools. ACM
Computing Surveys (CSUR) 46, 1 (2013).

[29] Security, and Group, R. Internet security threat
report, 2015.

[30] Suykens, J. A., and Vandewalle, J. Least squares
support vector machine classifiers. Neural processing
letters 9, 3 (1999), 293–300.

[31] Tamersoy, A., Roundy, K., and Chau, D. H. Guilt
by association: large scale malware detection by
mining file-relation graphs. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge
discovery and data mining (2014), ACM,
pp. 1524–1533.

[32] Vorobeychik, Y., and Li, B. Optimal randomized
classification in adversarial settings. In International
Joint Conference on Autonomous Agents and
Multiagent Systems (2014), pp. 485–492.

[33] Zaharia, M., Chowdhury, M., Franklin, M. J.,
Shenker, S., and Stoica, I. Spark: cluster
computing with working sets. In Proceedings of the
2nd USENIX conference on Hot topics in cloud
computing (2010), vol. 10, p. 10.

[34] Zhang, J., and Zhang, Q. Stackelberg game for
utility-based cooperative cognitiveradio networks. In
Proceedings of the tenth ACM international
symposium on Mobile ad hoc networking and
computing (2009), ACM, pp. 23–32.

