
This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

AWare: Preventing Abuse of Privacy-Sensitive
Sensors via Operation Bindings

Giuseppe Petracca, The Pennsylvania State University, US; Ahmad-Atamli Reineh, University
of Oxford, UK; Yuqiong Sun, The Pennsylvania State University, US; Jens Grossklags,

Technical University of Munich, DE; Trent Jaeger, The Pennsylvania State University, US

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/petracca

AWare: Preventing Abuse of Privacy-Sensitive Sensors
via Operation Bindings

Giuseppe Petracca
Pennsylvania State University, US

gxp18@cse.psu.edu

Ahmad-Atamli Reineh
University of Oxford, UK

atamli@cs.ox.ac.uk

Yuqiong Sun
Symantec Research Labs, US
yuqiong sun@symantec.com

Jens Grossklags
Technical University of Munich, DE

jens.grossklags@in.tum.de

Trent Jaeger
Pennsylvania State University, US

tjaeger@cse.psu.edu

Abstract

System designers have long struggled with the challenge
of determining how to control when untrusted applica-
tions may perform operations using privacy-sensitive sen-
sors securely and effectively. Current systems request
that users authorize such operations once (i.e., on install
or first use), but malicious applications may abuse such
authorizations to collect data stealthily using such sensors.
Proposed research methods enable systems to infer the op-
erations associated with user input events, but malicious
applications may still trick users into allowing unexpected,
stealthy operations. To prevent users from being tricked,
we propose to bind applications’ operation requests to
the associated user input events and how they were ob-
tained explicitly, enabling users to authorize operations on
privacy-sensitive sensors unambiguously and reuse such
authorizations. To demonstrate this approach, we imple-
ment the AWare authorization framework for Android,
extending the Android Middleware to control access to
privacy-sensitive sensors. We evaluate the effectiveness
of AWare in: (1) a laboratory-based user study, finding
that at most 7% of the users were tricked by examples of
four types of attacks when using AWare, instead of 85%
on average for prior approaches; (2) a field study, showing
that the user authorization effort increases by only 2.28
decisions on average per application; (3) a compatibility
study with 1,000 of the most-downloaded Android appli-
cations, demonstrating that such applications can operate
effectively under AWare.

1 Introduction

Contemporary desktop, web, and mobile operating sys-
tems are continually increasing support for applications to
allow access to privacy-sensitive sensors, such as cameras,
microphones, and touch-screens to provide new useful
features. For example, insurance and banking applications
now utilize mobile platforms’ cameras to collect sensi-

tive information to expedite claim processing1 and check
depositing2, respectively. Several desktop and mobile
applications provide screen sharing3 and screen capturing
features for remote collaboration or remote control of
desktop and mobile platforms. Also, web search engines
now embed buttons to call the businesses linked to the
results directly.

Unfortunately, once an application is granted access
to perform such sensitive operations (e.g., on installa-
tion or first use), the application may use the operation
at will, opening opportunities for abuse. Indeed, cyber-
criminals have built malware applications available online
for purchase, called Remote Access Trojans (RATs), that
abuse authorized access to such sensors to exfiltrate audio,
video, screen content, and more, from desktop and mobile
platforms. Since 75% of operations requiring permissions
are performed when the screen is off, or applications are
running in the background as services [54], these attacks
often go unnoticed by users. Two popular RAT applica-
tions, widely discussed in security blogs and by anti-virus
companies, are Dendroid [1] and Krysanec [19]. In the
“Dendroid case”, the Federal Bureau of Investigations and
the Department of Homeland Security performed an in-
vestigation spanning several years in collaboration with
law enforcement agencies in over 20 countries. The cy-
bercriminal who pleaded guilty for spreading the malware
to over 70,000 platforms worldwide was convicted of 10
years in prison and a $250,000 fine [16, 18]. Several
other cases of abuse have been reported ever since. Some
cases leading to legal actions, including the case of the
NBA Golden State Warriors’ free application that covertly
turns on smartphones’ microphones to listen to and record
conversations [17], school laptops that were found to use
their cameras to spy on students to whom they were given
[13], and others [14, 15].

1Speed up your car insurance claim. www.esurance.com
2PNC Mobile Banking. www.pnc.com
3Remote Screen Sharing for Android Platforms. www.bomgar.com

USENIX Association 26th USENIX Security Symposium 379

Researchers have also designed mobile RAT applica-
tions to demonstrate limitations of access control models
adopted by contemporary operating systems when medi-
ating access to privacy-sensitive sensors. For instance,
PlaceRaider [51] uses the camera and built-in sensors
to construct three-dimensional models of indoor environ-
ments. Soundcomber [46] exfiltrates sensitive data, such
as credit card and PIN numbers, from both tones and
speech-based interaction with phone menu systems. Even
the Meterpreter Metasploit exploit, enables microphone
recording remotely on computers running Ubuntu4.

To address these threats, researchers have proposed
methods that enable the system to infer which opera-
tion requests are associated with which user input events.
Input-Driven [33] access control authorizes the operation
request that immediately follows a user input event, but a
malicious application may steal a user input event targeted
at another application by submitting its request first. User-
Driven [39, 41] access control requires that applications
use system-defined gadgets associated with particular op-
erations to enable the system to infer operations for user
input events unambiguously, but does not enable a user
to verify the operation that she has requested by provid-
ing input. We describe four types of attacks that are still
possible when using these proposed defenses.

In this work, we propose the AWare authorization
framework to prevent abuse of privacy-sensitive sensors
by malicious applications. Our goal is to enable users
to verify that applications’ operation requests correspond
to the users’ expectations explicitly, which is a desired
objective of access control research [24, 28]. To achieve
our objective, AWare binds each operation request to a
user input event and obtains explicit authorization for the
combination of operation request, user input event, and
the user interface configuration used to elicit the event,
which we call an operation binding. The user’s autho-
rization decision for an operation binding is recorded and
may be reused as long as the application always uses the
same operation binding to request the same operation.
In this paper, we study how to leverage various features
of the user interface to monitor how user input events
are elicited, and reduce the attack options available to
adversaries significantly. Examples of features include
the widget selected, the window configuration containing
the widget, and the transitions among windows owned by
the application presenting the widget. In addition, AWare
is designed to be completely transparent to applications,
so applications require no modification run under AWare
control, encouraging adoption for contemporary operating
systems.

We implement a prototype of the AWare authorization
framework by modifying a recent version of the An-

4null-byte.wonderhowto.com

droid operating system and found, through a study of
1,000 of the most-downloaded Android applications, that
such applications can operate effectively under AWare

while incurring less than 4% performance overhead on
microbenchmarks. We conducted a laboratory-based user
study involving 90 human subjects to evaluate the effec-
tiveness of AWare against attacks from RAT applications.
We found that at most 7% of the user study participants
were tricked by examples of four types of attacks when
using AWare, while 85% of the participants were tricked
when using alternative approaches on average. We also
conducted a field-based user study involving 24 human
subjects to measure the decision overhead imposed on
users when using AWare in real-world scenarios. We
found that the study participants only had to make 2.28
additional decisions on average per application for the
entire study period.

In summary, the contributions of our research are:

• We identify four types of attacks that malicious ap-
plications may still use to obtain access to privacy-
sensitive sensors despite proposed research defenses.

• We propose AWare, an authorization framework to
prevent abuse of privacy-sensitive sensors by mali-
cious applications. AWare binds application requests
to the user interface configurations used to elicit user
inputs for the requests in operation bindings. Users
then authorize operation bindings, which may be
reused as long as the operation is requested using the
same operation binding.

• We implement AWare as an Android prototype and
test its compatibility and performance for 1,000 of
the most-downloaded Android applications. We also
evaluate its effectiveness with a laboratory-based
user study, and measure the decision overhead im-
posed on users with a field-based user study.

2 Background
Mobile platforms require user authorization for untrusted
applications to perform sensitive operations. Mobile plat-
forms only request such user authorizations once, either
at application installation time or at first use of the opera-
tion [2, 3] to avoid annoying users.

The problem is that malicious applications may abuse
such blanket user authorizations to perform authorized,
sensitive operations stealthily, without users’ knowledge
and at times that the users may not approve. Operations
that utilize sensors that enable recording of private user
actions, such as the microphone, camera, screen, etc.,
are particularly vulnerable to such abuse. Research stud-
ies have shown that such attacks are feasible in real sys-
tems, such as in commodity web browsers and mobile
apps [21, 29, 37]. These studies report that more than 78%

380 26th USENIX Security Symposium USENIX Association

Figure 1: In mobile platforms, once the system authorizes an application
to perform a operation, the application may perform that operation at any
time, enabling adversaries to stealthily access privacy-sensitive sensors,
e.g., record speech using the microphone, at any time.

of users could be potentially subject to such attacks. Fur-
thermore, security companies, such as Check Point, have
reported several malware apps that performs stealthy and
fraudulent auto-clicking [4], such as Judy, FalseGuide,
and Skinner that reached between 4.5 million and 18.5
million devices worldwide. Figure 1 shows that once an
application is granted permission to perform an operation
using a privacy-sensitive sensor, such as recording via the
microphone, that application may perform that operation
at any time, even without user consent. This shortcom-
ing enables adversaries to compromise user privacy, e.g.,
record the user’s voice and the surrounding environment,
without the user being aware. Research studies have al-
ready shown that users have a limited understanding of
security and privacy risks deriving from installing appli-
cations and granting them permissions [10].

Research [45, 51, 52] and real-world [1, 19] developers
have produced exploits, called Remote Access Trojans
(RATs), that abuse authorized operations to extract audio,
video, screen content, etc., from personal devices while
running in the background to evade detection by users.
Instances of permission abuse have been reported in sev-
eral popular mobile applications such as Shazam, TuneIn
Radio, and WhatsApp [48].

Researchers have proposed defenses to prevent stealthy
misuse of operations that use privacy-sensitive sen-
sors [33, 39, 41]. Figure 1 also provides the insight behind
these defenses: legitimate use of these sensors must be
accompanied by a user input event to grant approval for
all operations targeting privacy-sensitive sensors. First,
Input-Driven Access Control [33] (IDAC) requires ev-
ery application request for a sensor operation to follow a
user input event within a restricted time window. Thus,
IDAC would deny the stealthy accesses shown in Fig-
ure 1 because there is no accompanying user input event.
Second, User-Driven Access Control [39, 41] (UDAC)
further restricts applications to use trusted access control
gadgets provided by the operating system, where each ac-
cess control gadget is associated with a specific operation
for such sensors. Thus, UDAC requires a user input event
and limits the requesting application only to perform the
operation associated with the gadget (i.e., widget) by the
system.

3 Problem Definition
Although researchers have raised the bar for stealthy mis-
use of sensors, malicious applications may still leverage
the user as the weak link to circumvent these protection
mechanisms. Previous research [6, 12, 30] and our user
study (see Section 8.1.1) show that users frequently fail to
identify the application requesting sensor access, the user
input widget eliciting the request, and/or the actual opera-
tion being requested by an application. Such errors may
be caused by several factors, such as users failing to detect
phishing [12], failing to recognize subtle changes in the
interface [20], and/or failing to understand the operations
granted by a particular interface [38]. In this section, we
examine attacks that are still possible given proposed re-
search solutions, and what aspects of proposed solutions
remain as limitations.

3.1 User Interface Attacks
In this research, we identify four types of attacks that ma-
licious applications may use to circumvent the protection
mechanisms proposed in prior work [33, 39, 41].

Figure 2: The user’s perception of the op-
eration that is going to be performed dif-
fers from the actual operation requested
by the application, which abuses a previ-
ous granted permission.

Operation Switching: A malicious application may try
to trick a user into authorizing an unintended operation
by changing the mapping between a widget and the as-
sociated operation, as shown in Figure 2. This type of
attack is possible in IDAC because the relationship be-
tween a user input event and the operation that will be
authorized as a result of that event is implicit. Indeed,
any application can request any operation for which they
have been authorized previously (e.g., by first use) and
will be approved if it is the first request received after the
event. UDAC [39, 41] avoids this type of attack by design
by having the system define a mapping between widgets
(gadgets) and operations, so the operation is determined
precisely by the widget. Any solution we devise must
prevent this kind of attack as well.

Figure 3: A photo capturing application
presents a video camera widget, instead of
a camera widget, to trick the user into also
granting access to the microphone. The win-
dowing display context surrounding the wid-
get shows a camera preview for photo captur-
ing.

Bait-and-Context-Switch: A malicious application
may try to trick the user to authorize an unintended op-
eration by presenting a widget in a misleading display
context, as shown in Figure 3. In this case, the win-

USENIX Association 26th USENIX Security Symposium 381

dowing context surrounding the widget indicates one ac-
tion (e.g., taking a picture) when the widget presented
requests access to a different operation (e.g., taking a
video). This type of attack is possible because users
engaged in interface-intensive tasks may focus on the
context rather than the widget and infer the wrong wid-
get is present, authorizing the wrong operation. Neither
IDAC [33] nor UDAC [39, 41] detect the attack shown.
Although UDAC [39] checks some properties of the dis-
play context5, plenty of flexibility remains for an adver-
sary to craft attacks since applications may choose the
layout around which the widget is displayed.

Figure 4: A malicious application
keeps the windowing display context but
switches the widget to trick users who
have made several similar selections to
grant the malicious application also ac-
cess to the microphone mistakenly.

Bait-and-Widget-Switch: A malicious application may
present the same widget for the same operation to the user
several times in succession, but then substitute another
widget for another operation, hoping that the user will not
notice the widget change. An example of this attack is
shown in Figure 4. Again, this type of attack is possible
because users engaged in interface-intensive tasks may be
distracted, thus, not notice changes in the widget. Again,
UDAC methods to detect deceptive interfaces [39] are not
restrictive enough to prevent this attack in general. For
example, one UDAC check restricts the gadget’s location
for the user input event, but this does not preclude using
different gadgets at the same location.

Figure 5: The
user may mistak-
enly authorize ac-
cess to the micro-
phone to a RAT
application spoof-
ing the graphical
aspect of a well-
known legitimate
application.

Application Spoofing: A malicious application repli-
cates the look-and-feel of another application’s interface
and replaces the foreground activity of that application
with one of its own to gain access to a sensor as shown in
Figure 5, similar to a phishing attack. For example, when
the benign application running in the foreground elicits a
user input event, the malicious application may also try
to elicit a user input event using its own activity window
by replacing the benign application currently in the fore-
ground. If the user supplies an input to the masquerading

5UDAC Audacious [39] checks that the user interface presented
does not have misleading text, that the background and text preserve
the contrast, and that the gadget is not covered by other user interface
elements.

application’s widget, then the masquerading application
can perform any operation for which it is authorized (e.g.,
from first use or its manifest). While researchers have ex-
plored methods to increase the user’s ability to detect the
foreground application [6], mistakes are still possible. In-
deed, prior studies have reported that few users notice the
presence of security indicators, such as the browser lock
icon [9, 53], and that even participants whose assets are at
risk fail to react as recommended when security indicators
are absent [44]. Since IDAC and UDAC [33, 39, 41] both
treat user input as authorization, both will be prone to this
attack6.

3.2 Limitations of Current Defenses
The main challenge is determining when users allow appli-
cations to use particular privacy-sensitive sensors without
creating too much burden on users. As a result, current
mobile platforms only request user authorization once
(e.g., on first use or installation), and proposed research
solutions aim to infer whether users authorize access to
particular sensors from user actions implicitly. However,
inferring user intentions implicitly creates a semantic gap
between what the system thinks the user intended and
what the user actually intended.

Traditionally, access control determines whether sub-
jects (e.g., users and applications) can perform operations
(e.g., read and write) on resources (e.g., sensors). Pro-
posed approaches extend traditional access control with
additional requirements, such as the presence of a user
input event [33, 41] or properties of the user interface [39].
However, some requirements may be difficult to verify,
particularly for users, as described above, so these pro-
posed approaches still grant adversaries significant flexi-
bility to launch attacks. Proposed approaches still demand
users to keep track of which application is in control, the
operations associated with widgets, which widget is being
displayed, and whether the widget or application changes.

Finally, application compatibility is a critical factor
in adopting the proposed approaches. The UDAC solu-
tions [39, 41] require developers to modify their appli-
cations to employ system-defined gadgets. It is hard to
motivate an entire development community to make even
small modifications to their applications, so solutions that
do not require application modifications would be pre-
ferred, if secure enough.

4 Security Model
Trust Model - We assume that applications are isolated
from each other either using separate processes, the same-
origin policy [42], or sandboxing [7, 36], and have no
direct access to privacy-sensitive sensors by default due
to the use of Mandatory Access Control [49, 50].

6UDAC authors [41] did acknowledge this attack, and indicated that
solutions to such problems are orthogonal.

382 26th USENIX Security Symposium USENIX Association

Figure 6: Overview of the AWare authorization framework. The three dashed lines highlight the parts of information used by AWare to generate an
operation binding. The gray arrows represent one-time steps required to obtain an explicit authorization from the user for the creation of a new
operation binding, which are not required when the operation binding has been explicitly authorized by the user in previous interactions.

We assume the presence of a trusted path for users
to receive unforgeable communications from the system
and provide unforgeable user input events to the system.
We assume that trusted paths are protected by mandatory
access control [49, 50] as well, which ensures that only
trusted software can receive input events from trusted
system input devices to guarantee the authenticity (i.e.,
prevent forgery) of user input events.

Trusted path communication from the system to the
user uses a trusted display area of the user interface,
which we assume is available to display messages for
users and applications do not have any control of the
content displayed in this area; thus they cannot interfere
with system communications to or overlay content over
the trusted display area.

These assumptions are in line with existing research
that addresses the problem of designing and building
trusted paths and trusted user interfaces for browsers [55],
X window systems [47, 56], and mobile operating sys-
tems [26, 27]. The design of our prototype leverages
mechanisms provided by the Android operating system
satisfying the above assumptions, as better described in
Section 7.

Threat Model - We assume that applications may
choose to present any user interface to users to obtain
user input events, and applications may choose any opera-
tion requests upon any sensors. Applications may deploy
user interfaces that are purposely designed to be similar
to that of another application, and replay its user inter-
face when another application is running to trick the user
into interacting with such interface to “steal” such user
input event. Applications may also submit any operation
request at any time when that application is running, even
without a corresponding user input event. Applications
may change the operation requests they make in response
to user input events.

5 Research Overview
Our objective is to develop an authorization mechanism
that eliminates ambiguity between user input events and
the operations granted to untrusted applications via those
events, while satisfying the following security, usability,
and compatibility properties:

User Initiation Every operation on privacy-sensitive
sensors must be initiated by an authentic user input event.

User Authorization Each operation on privacy-
sensitive sensors requested by each application must be
authorized by the user explicitly prior to that operation
being performed.

Limited User Effort Ideally, only one explicit user
authorization request should be necessary for any benign
application to perform an operation targeting privacy-
sensitive sensors while satisfying the properties above.

Application Compatibility No application code
should require modification to satisfy the properties
above.

We aim to control access to privacy-sensitive sensors
that operate in discrete time intervals initiated by the user,
such as the cameras, microphone, and screen buffers. We
believe the control of access to continuous sensors, such
as GPS, gyroscope, and accelerometer, requires a different
approach [34], but we leave this investigation as future
work.

To achieve these objectives, we design the AWare au-
thorization framework. The main insight of the AWare de-
sign is to extend the notion of an authorization tuple (i.e.,
subject, resource, operation) used to determine whether
to authorize an application’s operation request to include
the user interface configuration used to elicit the user in-
put event. We call these extended authorization tuples
operation bindings, and users explicitly authorize oper-
ation bindings before applications are allowed to access
sensors. An operation binding may reused to authorize
subsequent operations as long the application uses the
same user interface configuration to elicit input events to
request the same operation.

Approach Overview. Figure 6 summarizes the steps
taken by the AWare to authorize applications’ operation
requests targeting privacy-sensitive sensors.

In a typical workflow, an application starts by specify-
ing a set of user interface configuration, such as widgets
and window features, to the trusted software (step 1) in
charge of rendering such widgets with windows to elicit
user input (step 2). An authentic user interaction with
the application’s widgets in a user interface configuration
generates user input events (step 3), which are captured

USENIX Association 26th USENIX Security Symposium 383

by the trusted software (step 4) together with the current
user interface configuration (e.g., enclosing window, win-
dow features, ancestors windows, etc.) and forwarded to
the application (step 5). Based on the user input events,
the application may generate a request for a particular
operation targeting one or more privacy-sensitive sensors,
which is captured by the trusted software (step 6).

At this stage, the AWare authorization framework (part
of the trusted software layer) has full visibility of: (1) the
application’s identity; (2) the application’s user interface
widget; (3) the authentic user input event associated with
that widget; (4) the user interface configuration within
which the widget is presented to the user; (5) the ap-
plication’s operation request; and (6) the target set of
privacy-sensitive sensors for such an operation. Thus, the
AWare authorization framework can bind these pieces of
information together, creating an operation binding.

Next, the AWare authorization framework checks
whether such an operation binding has already been au-
thorized by the user (step 7). If not, AWare presents
a request for authorization of the operation binding to
the user (Section 7), called the binding request (step 8).
Upon receiving a binding request, the user can explicitly
authorize the use of the set of privacy-sensitive sensors
by the requesting application for the identified operation
binding (step 9). Upon the user’s authorization, the
operation binding is then cached (Section 6.5) for reuse
in authorizing future requests using the same operation
binding automatically (step 10).

After the operation authorization, the trusted software
controlling the set of privacy-sensitive sensors starts the
data collection (step 11), while the user is explicitly no-
tified about the ongoing operation via an on-screen noti-
fications in a trusted display area (step 12). Finally, the
collected data is delivered to the requesting application
for data processing (step 13).

The sequence of events in Figure 6 shows that AWare
relies on a one-time, explicit user authorization that binds
the user input event, the application identity, the widget,
the widget’s user interface configuration, the operation,
and the set of target sensors; then, it reuses this authoriza-
tion for future operation requests.

6 AWare Design
6.1 Operation Bindings
As described above, AWare performs authorization using
a concept called the operation binding.

Definition 1: An operation binding is a tuple b = (app,
S, op, e, w, c), where: (1) app is the application associ-
ated with both the user interface widget and the operation
request; (2) S is the set of sensors (i.e., resources) targeted
by the request; (3) op is the operation being requested on
the sensors; (4) e is the user input event; (5) w is a user

interface widget associated with the user input event; (6)
c is the user interface configuration containing the widget.

The user interface configuration describes the structure
of the user interface when a user input event is produced,
which includdes both features of the window in which the
widget is displayed and application’s activity window call
graph, which relates the windows used by the application.
We define these two aspects of the configuration precisely
and describe their use to prevent attacks in Sections 6.3
and 6.4.

The first part of an operation binding corresponds to
the traditional authorization tuple of (subject, object, oper-
ation). An operating binding links a traditional operation
tuple with a user input event and how it was obtained in
terms of the rest of the operation binding tuple (event e,
widget w, configuration c). AWare’s authorization pro-
cess enables users to authorize operation requests for the
authorization tuple part of the operation binding (app, S,
op) associated with a particular way the user approved
the operation from the rest of the operation binding (e,
w, c). AWare reuses that authorization to permit subse-
quent operation requests by the same application when
user input events are obtained in the same manner.

A user’s authorization of an operation binding implies
that the application will be allowed to perform the re-
quested operation on the set of sensors whenever the user
produces the same input event using the same widget
within the same user interface configuration.

We explain the reasoning behind the operation binding
design by describing how AWare prevents the attacks
described in Section 3.1 in the following subsections.

6.2 Preventing Operation Switching
AWare prevents operation switching attacks by producing
an operation binding that associates a user input event and
widget with an application’s operation request.

Upon a user input event e, AWare collects the wid-
get w, the user interface configuration c in which it is
presented, and the application associated with the user
interface app. With this partial operation binding, AWare
awaits an operation request. Should the application make
an operation request within a limited time window [33],
AWare collects the application app, operation sensors S,
and operation requested op, the traditional authorization
tuple, to complete the operation binding for this operation
request.

The constructed operation binding must be explicitly
authorized by the user. To do so, AWare constructs a bind-
ing request that it presents to the user on the platform’s
screen. The binding request clearly specifies: (1) the iden-
tity of the requesting application; (2) the set of sensors
targeted by the operation request; (3) the type of operation
requested by the application; and (4) the widget receiving
the user input event action.

384 26th USENIX Security Symposium USENIX Association

This approach ensures that the user authorizes the com-
bination of these four components enabling the user to
verify the association between the operation being autho-
rized and the widget used to initiate that operation. Also,
each operation binding is associated with the specific user
interface configuration for the widget used to activate the
operation. Although, this information is not presented
to the user, it is stored for AWare to compare to future
operation requests to prevent more complex attacks, as
described below.

This prevents the operation switching attack on
IDAC [33], where another operation may be authorized
by a user input event. AWare creates a binding between a
widget and operation as UDAC [39, 41] does, but unlike
UDAC AWare creates these bindings dynamically. Ap-
plications are allowed to choose the widgets to associate
with particular operations. In addition, AWare informs
the user explicitly of the operation to be authorized for
that widget, whereas UDAC demands that the user learn
the bindings between widgets and operations correctly.
The cost is that AWare requires an explicit user autho-
rization on the first use of the widget for an operation
request, whereas UDAC does not. However, as long as
this application makes the same operation requests for
user input events associated with the same widget, AWare
will authorize those requests without further user effort.

6.3 Preventing Bait-and-Switch
Applications control their user interfaces, so they may
exploit this freedom to perform bait-and-switch attacks
by either presenting the widget in a misleading window
(Bait-And-Context-Switch) or by replacing the widget
associated with a particular window (Bait-And-Widget-
Switch). Research studies have shown that such attacks
are feasible in real systems and that the damage may be
significant in practice [21, 29, 37]. To prevent such at-
tacks, AWare binds the operation request with the user
interface configuration used to display the widget, in ad-
dition to the widget and user input event.

One aspect of the user interface configuration of the
operation binding describes features of the window en-
closing the widget.

Definition 2: A display context is a set of structural
features of the most enclosing activity window a w con-
taining the widget w.

Structural features describe how the window is pre-
sented, excepting the content (e.g., text and figures inside
web pages), which includes the position, background, bor-
ders, title information, and widgets’ position within the
window. The set of structural features used by AWare are
listed in Table 5. AWare identifies a w as a new activity
window should any of these structural features change.

The hypothesis is that the look-and-feel of an applica-
tion window defined by its structural features should be

Figure 7: Activity window call graphs are created at runtime for the
activity windows that produce authorized operations. (bg) is the back-
ground activity.

constant, while the content may change. Our examination
of Android applications shows that the same windows re-
tain the same look-and-feel consistently, but not perfectly.
For example, the exact location of the window may vary
slightly, so we consider allowing modest ranges for some
feature values. We further discuss the authentication of
display context in Section 7.

This approach prevents Bait-and-Widget-Switch at-
tacks because clearly an instance of the same window
(i.e., display context) with a different widget will not
match the previous operation binding. Similarly, for Bait-
and-Context-Switch attacks, the same widget presented in
a different window (i.e., display context) will not match
the previous operation binding, therefore a new operation
binding request will be prompted to the user.

Once the widget and the display context are bound
together and kept fixed, the adversary is left only with
the content (e.g., text and figures inside a web page) as
possible misleading tool. However, since the display
context also measures the window’s UI elements and their
positions, little space is left to the adversary for attacks.

Therefore, such an approach prevents bait-and-switch
attacks possible in both IDAC [33] and UDAC [39, 41],
where users must continuously check for subtle changes
to the widgets or their display contexts rendered on the
platform’s screen.

6.4 Preventing Application Spoofing
To launch such an attack an application must succeed in
replacing the foreground activity window of one appli-
cation with its own activity window and adopt the same
look-and-feel of the replaced application.

We can prevent applications from presenting their ac-
tivity windows arbitrarily by enforcing the application’s
authorized activity window call sequences.

Definition 3: An activity window call graph G:=
(N,E) is a graph, where each node in N represents an
activity window and each edge in E represents an inter-
activity window transition enabled either via user input
events (i.e., click of a button) or system events (i.e., in-
coming phone call).

An activity window call graph records the relationships
among the windows used by an application. An example
of an activity window call graph is shown in Figure 7,
where events may cause transitions between windows

USENIX Association 26th USENIX Security Symposium 385

a w1 and a w4 and the application may enter the back-
ground only from the activity window a w2. Note that
an application’s activity window call graph can be built
while the application runs, as the user authorizes operation
bindings.

If the malicious application has not used this spoof-
ing window previously, then a binding request will be
created for the user, which then shows the identity of the
application. Thus, the user could prevent the malicious ap-
plication from ever performing this operation in any user
interface configuration. IDAC [33] and UDAC [39, 41]
do not explicitly force the user to check the application
that will be authorized, although UDAC identified the
need for such a mechanism [41].

On the other hand, a malicious application may try to
hijack a foreground activity window of another applica-
tion for a window that has been authorized by the user
previously. However, if the malicious application’s win-
dow is not authorized to transition from the background
(e.g., only the activity window a w2 is authorized in Fig-
ure 7), then the transition will not match the activity call
graph. In this case, a new binding request will be made to
the user, which will clearly identify the (malicious) appli-
cation. We discuss the authentication of the app identity
in Section 7. Both IDAC and UDAC allow such hijacking
and rely on the user to detect these subtle attacks.

A malicious application may try to circumvent the ac-
tivity call graph checking by creating a more fully con-
nected graph that allows more attack paths. However,
such an activity window call graph will require more user
authorizations, which may dissuade the user from that
application. Furthermore, intrusion analysis may lever-
age such activity window call graphs to detect possible
attacks.

6.5 Reusing Operation Bindings
Authorized operation bindings are cached to minimize the
user’s effort in making explicit authorizations of binding
requests to improve usability. Thus, AWare uses a caching
mechanism to require an explicit user’s authorization only
the first time an operation binding is identified, similarly
to the first-use permission mechanism. We hypothesize
that in most benign scenarios an authentic user interaction
with a specific application’s widget is going to gener-
ate a request for the same operation for the same set of
privacy-sensitive sensors each time. Hence, the previous
explicit authorization can be reused securely as implicit
authorization, as long as the integrity of the operation
binding is guaranteed. In Section 8.1.2, we show that
such an approach does not prohibitively increase the num-
ber of access control decisions that users need to make
thus avoiding decision fatigue [11].

However, we must ensure that operation bindings do
not become stale. For example, if the application changes

the way it elicits an operation, we should not allow the
application to reuse old methods to elicit that same oper-
ation. Thus, we require that an operation binding must
be removed from the cache whenever a new operation
binding is created for the same application that partially
matches the existing binding, except for the application
field. For example, this prevents an operation from being
authorized in multiple ways, a widget from being used
for multiple operations or in multiple configurations, etc.

6.6 Supporting Existing Applications
As an alternative to previously proposed approaches
[39, 41], AWare is completely transparent to, and back-
ward compatible with, existing applications. In fact,
AWare does not require any new external libraries, ap-
plication code annotation or rewriting, which would re-
quire significant development effort/burden and impede
backward compatibility for existing applications.

AWare can be integrated with existing off-the-shelf op-
erating systems, as we show with our AWare prototype
discussed in Section 7. AWare only requires the integra-
tion of three software components at the middleware layer.
AWare’s components dynamically monitor the creation of
operation bindings and provide visual output to the user
to enable authorization of operations on privacy-sensitive
sensors. The integration with existing off-the-shelf oper-
ating systems facilitates adoption and deployability.

We discuss how AWare addresses special cases of appli-
cations accessing privacy-sensitive sensors via alternative
methods, such as via background processes and remote
commands, in Appendix A .

7 AWare Implementation
We implemented an AWare prototype by modifying a
recent release of the Android operating system (ver-
sion 6.0.1 r5) available via the Android Open Source
Project (AOSP)7. The AWare prototype is open-sourced
on github.com8. Its footprint is about 500 SLOC in C,
800 SLOC in C++ and 600 SLOC in Java. We tested the
AWare prototype on Nexus 5 and Nexus 5X smartphones.

In the following paragraphs, we describe how we imple-
mented the components required for AWare authorization
mechanism9.

Application Identity: To prove an app’s identity in
binding requests, AWare applies two methods. First,
AWare uses the checksum of the app’s binary signed with
the developer’s private key and verifiable with the devel-
oper’s public key [40], similarly to proposals in related
work [6]. In addition, AWare detects spoofing of apps’
names or identity marks by using the Comparison Algo-

7https://source.android.com
8https://github.com/gxp18/AWare
9For brevity, in this and the following sections, we use the abbrevia-

tion app to refer to an application.

386 26th USENIX Security Symposium USENIX Association

rithm for Navigating Digital Image Databases (CANDID)
[25]. This comparison ensures that malicious apps do not
use the same name or identity mark of other official apps.
AWare collects the developers’ signatures and the apps
identity marks (names and logos) from the Google Play
store.

Widget and Display Context Authentication:
AWare identifies application-defined widgets and display
contexts at runtime before rendering the app’s user
interface to the user on the platform’s screen. AWare

uses the widget and window objects created in memory
by the Window Manager, before rendering them on the
platform’s screen, to collect their graphical features
reliably. A secure operating systems must prevent apps
from being able to directly write into the frame buffers
read by the hardware composer, which composes and
renders graphic user interfaces on the platform screen.
Modern operating systems, such as the Android OS,
leverage mandatory access control mechanisms (i.e.,
SELinux rules) to guarantee that security sensitive device
files are only accessible by trusted software, such as
the Window Manager. Therefore, as shown in Figure 6,
although apps can specify the graphic components that
should compose their user interfaces, only the Window
Manager, a trusted Android service, can directly write
into the screen buffers subsequently processed by the
hardware composer. Thus, the Window Manager is the
man-in-the-middle and controls what apps are rendering
on screen via their user interfaces. In the Appendix,
Tables 4 and Table 5 show comprehensive sets of widgets
and windows’ features used by AWare to authenticate the
widgets and their display contexts.

Activity Window Call Graph Construction: At run-
time, AWare detects inter-activity transitions necessary to
construct the per-application activity window call graph
by instrumenting the Android Activity Manager and Win-
dow Manager components. Also, AWare captures user
input events and system events by instrumenting the An-
droid Input Manager and the Event Manager components.
We discuss nested activity windows in Appendix C.

User Input Event Authentication: AWare leverages
SEAndroid [49] to ensure that processes running apps or
as background services cannot directly read or write input
events from input device files (i.e., /dev/input/*) cor-
responding to hardware interfaces attached to the mobile
platform. Thus, only the Android Input Manager, a trusted
system service, can read such files and forward input
events to apps. Also, AWare leverages the Android screen
overlay mechanism to detect when apps or background
services draw over the app currently in the foreground to
prevent input hijacking and avoid processing of any user
input event on overlaid GUI widgets. Thus, AWare consid-
ers user input events for the identification of an operation
binding only if the widget and the corresponding window

Figure 8: AWare Binding Request
prompted to the user on the mo-
bile platform’s screen at Operation
Binding creation. The app’s iden-
tity is proved by the name and the
graphical mark. For better security,
in mobile platforms equipped with
a fingerprint scanner, AWare recog-
nizes the device owner’s fingerprint
as the only authorized input for cre-
ating a new Operation Binding.

are fully visible on the platform’s screen foreground. To
intercept user input events, we placed twelve hooks inside
the stock Android Input Manager.

Operation Request Mediation: The Hardware Ab-
straction Layer (HAL) implements an interface that al-
lows system services and privileged processes to access
privacy-sensitive sensors indirectly via well-defined APIs
exposed by the kernel. Further, SEAndroid [49] ensures
that only system services can communicate with the HAL
at runtime. Thus, apps must interact with such system
services to request execution of specific operations tar-
geting privacy-sensitive sensors. Thus, AWare leverages
the complete mediation guaranteed at the system services
layer to identify operation requests generated by apps at
runtime, using ten hooks inside the stock Android Audio
System, Media Server, and Media Projection.

Operation Binding Management: The AWare pro-
totype implements the AWare MONITOR to handle call-
backs from the AWare hooks inside the Input Manager
and other system services. The AWare MONITOR is no-
tified of user input events and apps’ requests to access
privacy-sensitive sensors via a callback mechanism. Also,
the AWare MONITOR implements the logic for the opera-
tion binding creation and caching as well as the display
of binding requests and alerts to the user. User approvals
for binding requests are obtained by the AWare MON-
ITOR via authorization messages prompted to the user
on the mobile platform’s screen, as shown in Figure 8.
To protect the integrity of the trusted path for binding
requests, we prevent apps from creating windows that
overlap the AWare windows or modifying AWare win-
dows. To prevent overlapping, AWare leverages the An-
droid screen overlay protection mechanism. To prevent
unauthorized modification, AWare implements the Com-
partmented Mode Workstation model [8] by using isolated
per-window processes forked from the Window Manager.

7.1 Control Points Available to the User
AWare provides the users with control points during au-
thorized use of privacy-sensitive sensors by apps. These
control points allow the users to control the apps’ use of
sensors and correct possible mistakes made during the
authorization process.

USENIX Association 26th USENIX Security Symposium 387

Figure 9: Architecture of the AWare authorization framework.

Figure 10: AWare security message dis-
played on the mobile platform’s sta-
tus bar notifying the user that the
Instagram application is previewing
the back camera (B) for pictures. The se-
curity companion (e.g., a white fish) aids
the user in verifying the authenticity of
the authorization request. Each security
message includes the app identifier (e.g.,
application name and identity mark) and
a text message specifying the ongoing
operation and the set of privacy-sensitive
sensors being accessed.

Figure 9 shows an overview of the AWare prototype
components and how the control points are activated. The
AWare MONITOR is designed to activate the AWare VI-
SUALIZER and the AWare LOGGER, upon the user autho-
rization of an operation binding.

7.1.1 Visualizing Ongoing Operations

AWare displays security messages on a reserved portion
of the screen, drawable only by the Window Manager
and not accessible by untrusted applications, to make
ongoing use of privacy-sensitive sensors visible to users
until they terminate. An example of security message is
shown in Figure 10. A security message includes the app
identifier (e.g., application name and identity mark) and a
text message specifying the ongoing operation and the set
of privacy-sensitive sensors being accessed. The use of
security messages follows the principle of what the user
sees is what is happening [23], in fact, security messages
convey ongoing operations targeting privacy-sensitive
sensors when authorized by the user.

AWare leverages the Compartmented Mode Worksta-
tion principle [8] to ensure integrity and authenticity of
security messages. Also, AWare uses a security compan-
ion, a secret image chosen by the user, to aid users in
verifying the authenticity of security messages. We modi-
fied the stock Android system user interface (SystemUI),
by adding an image view and a text view on the Android
status bar to display the AWare security messages spec-
ifying the application IDs and the ongoing operations,
whenever the AWare MONITOR authorizes system ser-

Figure 11: AWare Users may leverage AWare logs to take retrospective
security actions. The figure at the top right shows the list of operations
targeting the camera in authorized sessions. The figure at the bottom
right summarizes attempted accesses to privacy-sensitive sensors by
the SimpleFilters app, as examples of stealthy operations. The
security companion chosen by the user (e.g., a white fish) aids the user
in authenticating the logs.

vices to operate on privacy-sensitive sensors on behalf
of applications. Also, the AWare prototype leverages the
Android screen overlay mechanism to detect when appli-
cations or background services draw over the application
currently in the foreground, to prevent GUI overlay.

Further, security messages are made visible to the user
even if the application runs in full-screen mode. Re-
serving a small portion of the screen (5%) to convey a
security message is a reasonable trade-off for preventing
unwanted user distraction while delivering critical con-
tent in a timely and appropriate manner [32]. Our evalua-
tion with existing full-screen applications (Section 8.1.2)
reports that security messages do not impair the correct
functioning of full-screen apps. A transparent background
can also be used to reduce overlap with the foreground
application’s window. Lastly, the user can be given the
option to explicitly replace the on-screen notification with
a periodic distinctive sound or a hardware sensor-use in-
dicator LED.

7.1.2 Logging Authorized Operations

AWare produces real-time logs of any operation explic-
itly authorized by the user and of any attempted use of
privacy-sensitive sensors from applications without a user-
initiated input. AWare makes attempted stealthy accesses,
by installed applications, visible to users via full-screen
alert messages and by producing a distinctive sound, or
by enabling a hardware sensor-use indicator LED. AWare
then allows the user to either uninstall suspicious applica-
tions or to terminate ongoing suspicious operations. Logs
are visible to users via a system application called AWare

LOGGER, which is accessible via the applications menu
or by tapping on the AWare security messages/alerts dis-

388 26th USENIX Security Symposium USENIX Association

played on the mobile platform’s screen. Each log entry
reports information regarding the app ID, date, time, and
the privacy-sensitive sensors target of the operation, as
shown in Figure 11. Logs are not accessible to applica-
tions to preserve their integrity and avoid the creation of
side channels.

8 AWare Evaluation
We investigated the following research questions.

To what degree is the AWare operation binding concept
assisting the users in avoiding attacks? We performed a
laboratory-based user study and found that the operation
binding enforced by AWare significantly raised the bar
for malicious apps trying to trick the users in authoriz-
ing unintended operations, going from an average attack
success rate of 85% down to 7%, on average, with AWare.

What is the decision overhead imposed to users due to
per-configuration access control? We performed a field-
based user study and found that the number of decisions
imposed to users by AWare remains confined to less than
four decisions per app, on average, for the study period.

How many existing apps malfunction due to the inte-
gration of AWare? How many operations from legitimate
apps are incorrectly blocked by AWare (i.e., false posi-
tives)? We used a well-known compatibility test suite to
evaluate the compatibility of AWare with existing apps
and found that, out of 1,000 apps analyzed, only five
of them malfunctioned due to attempted operations that
AWare blocked as potentially malicious. However, these
malfunctioning instances have been resolved by features
developed in subsequent versions of the AWare prototype.

What is the performance overhead imposed by AWare

for the operation binding construction and enforcement?
We used a well-known software exerciser to measure the
performance overhead imposed by AWare. We found that
AWare introduced a negligible overhead on the order of
microseconds that is likely to be not noticeable by users.

8.1 Preliminaries for the User Studies
We designed our user studies following suggested prac-
tices for human subject studies in security to avoid com-
mon pitfalls in conducting and writing about security and
privacy human subject research [43]. Participants were in-
formed that the study was about mobile systems security,
with a focus on audio and video, and that the involved
researchers study operating systems security. An Institu-
tional Review Board (IRB) approval was obtained from
our institution. We recruited user study participants via
local mailing lists, Craigslist, and local groups on Face-
book, and compensated them with a $10 gift card. We
excluded friends and acquaintances from participating in
the studies to avoid acquiescence bias. Participants were
given the option to withdraw their consent to participate at
any time after the purpose of the study was revealed. For

all the experiments, we configured the test environment
on Nexus 5X smartphones and used a background service,
automatically relaunched at boot time, to log participants’
responses to system messages/alerts and all user input
actions taken by participants while interacting with the
testing apps.

8.1.1 Laboratory-Based User Study

We performed a laboratory-based user study to evaluate
the effectiveness of AWare in supporting users in avoiding
attacks by malicious apps and compared it with alternative
approaches.

We divided the participants into six groups. Partic-
ipants in Group1 interacted with a stock Android OS
using install-time permissions. Participants in Group2

interacted with a stock Android OS using first-use permis-
sions. Participants in Group3 interacted with a modified
version of the Android OS implementing input-driven
access control, which binds user input events to the op-
eration requested by an app but does not prove the app’s
identity to the user. Participants in Group4 interacted
with a modified version of the Android OS implementing
the first-use permissions and a security indicator that in-
forms the users about the origin of the app (i.e., developer
ID [6]). Participants in Group5 interacted with a modified
version of the Android OS implementing the use of access
control gadgets [41] including basic user interface config-
uration checks (i.e., no misleading text, UI background
and the text must preserve the contrast, no overlay of UI
elements, and user events occur in the correct location
at the correct time [39]) and timing checks for implicit
authorizations. Lastly, participants in Group6 interacted
with a modified version of the Android OS integrating the
AWare authorization framework.

Experimental Procedures: Before starting the experi-
ment, all participants were informed that attacks targeting
sensitive audio and video data were possible during the in-
teraction with apps involved in the experimental tasks, but
none of the participants were aware of the attack source.
Further, the order of the experimental tasks was random-
ized to avoid ordering bias. All the instructions to perform
the experimental tasks were provided to participants via a
handout at the beginning of the user study. Participants
were given the freedom to ignore task steps if they were
suspicious about the resulting app activities.

We used two apps, a well-known voice note recording
app called Google Keep, and a testing app (developed in
our research laboratory) called SimpleFilters, which
provides useful photo/video filtering functionality. How-
ever, SimpleFilters also attempts adversarial use of
privacy-sensitive sensors, such as the microphone and the

USENIX Association 26th USENIX Security Symposium 389

Task Description (Randomized) Attack Scenario Authorization Requests (4 AWare) Attack Success Rate

TASK 1 : Take a picture with the
smartphone’s front camera by using
the SimpleFilters app.

Operation Switching: The SimpleFilters
app also starts recording audio via the
smartphone’s microphone instead of only taking
a picture.

• Allow SimpleFilters to use the
Front Camera and Microphone
to Record Video
when pressing � ?

Group1 (Install-Time):
Group2 (First-Use):
Group3 (Input-Driven):
Group4 (Developer ID):
Group5 (AC Gadgets):
Group6 (AWare):

100%
93%
100%
100%
0%
0%

TASK 2 : Take a picture with the
front camera by using the
SimpleFilters app.

Bait-and-Context-Switch: We make the video camera
widget appear in the photo capture window, with a
camera preview, to trick the user into allowing
SimpleFilters to record audio instead of just take
a picture. 2

• Allow SimpleFilters to use the
Front Camera and Microphone to
Record Video when
pressing i ?

Group1 (Install-Time):
Group2 (First-Use):
Group3 (Input-Driven):
Group4 (Developer ID):
Group5 (AC Gadgets):
Group6 (AWare):

87%
87%
93%
87%
87%
7%

TASK 3 : Take six consecutive
pictures with the smartphone’s front
camera by using the SimpleFilters
app.

Bait-and-Widget-Switch: Before the participants
took the fifth picture, the SimpleFilters
app replaced the camera widget with the
video camera widget to enable video recording instead.
The camera button was restored before the
users took the sixth picture. 2

• Allow SimpleFilters to use the
Front Camera and Microphone
to record Video
when pressing i ?

Group1 (Install-Time):
Group2 (First-Use):
Group3 (Input-Driven):
Group4 (Developer ID):
Group5 (AC Gadgets):
Group6 (AWare):

87%
87%
93%
87%
87%
7%

TASK 4 : Record a voice note
using the Keep app.

Identity Spoofing: We let the participants select
the Keep app from the app menu, however,
we programmatically triggered the SimpleFilters
app to hijack the on-screen activity
and spoof the Keep app.

• Allow SimpleFilters to use
the Microphone to Record
Audio when pressing Á ?

Group1 (Install-Time):
Group2 (First-Use):
Group3 (Input-Driven):
Group4 (Developer ID):
Group5 (AC Gadgets):
Group6 (AWare):

93%
93%
93%
47%
93%
0%

Table 1: Experimental tasks for the laboratory-based user study to evaluate the effectiveness of AWare in preventing four types of user interface
attacks. The authorization requests reported in the third column are due to the fact that AWare requests a new explicit authorization whenever a widget
is presented within a new configuration. 4 Participants from Groups6 received additional authorization requests because the widgets were presented
within new configurations automatically identified by AWare. 2 The camera preview showed a static picture to simulate a photo capture during video
recording.

camera. We explicitly asked the participants to install
such apps on the testing platforms10.

Before starting the experiment tasks, we asked the par-
ticipants to familiarize themselves with Google Keep, by
recording a voice note, and with SimpleFilters, by tak-
ing a picture and recording a video with the smartphone’s
front camera. During this phase, participants were pre-
sented with authorization requests at first use of any of
the privacy-sensitive sensors.

All the user study participants in Groups1-6 were
asked to perform the four experimental tasks reported
in Table 1. We designed such tasks to test the four types
of attacks discussed in Section 3.1. During the experi-
ment, the researchers recorded whether the participants
commented noticing any suspicious activity in the apps’
user interface, while a background service logged whether
the designed attacks took place.

Experimental Results: 90 subjects participated and
completed our experimental tasks. We randomly assigned
15 participants to each group. The last column of Table 1
summarizes the results for the four experimental tasks
used in the laboratory-based user study. The third col-
umn of Table 1 reports additional authorization requests
prompted only to subjects in Group6 using the AWare

system. Indeed, only AWare is able to identify the change
in configuration (e.g., widget in a different activity win-
dow, widget linked to a different operation or different
privacy-sensitive sensor) under which the experimental
applications are attempting access to the privacy-sensitive
sensors (i.e, microphone and cameras).

10SimpleFilters is providing interesting features to convince the
users to install it and grant the required permissions.

Overall, we found that all the operation binding compo-
nents used by AWare were useful in helping the users in
avoiding the four types of attacks. Moreover, AWare out-
performed alternative approaches conspicuously, while
each experimental task revealed interesting facts.

In particular, the analysis of the subjects’ responses to
TASK 1 revealed that the operation performed by the app

was not visible to users in the alternative approaches, thus,
leading them into making mistakes. The only exceptions
were the subjects from Group5 (AC Gadgets) because the
SimpleFilters app was not in control of the requested
operation due to the use of a system-defined access control
gadget. Furthermore, all subjects from Group6 (AWare)
did not authorize SimpleFilters to access the micro-
phone. Thus, the binding request clearly identifying the
operation requested by the app aided them in avoiding to
be tricked into granting an unintended operation.

The analysis of the subjects’ responses to TASK2 and
TASK3 revealed that the users were successfully tricked

by either switching the user interface configuration within
which a widget is presented, or by changing the widget
presented within the same configuration, thus, leading
them into making mistakes. Interestingly, there was no
noticeable improvement for subjects in Group5 (AC Gad-
gets) where the system put in place some basic user in-
terface configuration checks [39] for the presentation of
the access control gadgets. The reason was that such ba-
sic checks were insufficient to identify the user interface
modifications made by the malicious app when perform-
ing the attacks described in Table 1. Furthermore, one
subject from Group6 (AWare) had mistakenly authorized
SimpleFilters to carry out an unintended operation

390 26th USENIX Security Symposium USENIX Association

Explicit User
Authorizations

Total Operation
AuthorizationsApp

Category
App

Name First-Use AWare Avg. (s.d.)

Audio
Recording

WhatsApp
Viber
Messenger

3
1
3

6 (±1)
1 (±1)
7 (±2)

1,217 (±187)
88 (±9)

2,134 (±176)
Photo and
Video
Recording

Facebook
SilentEye
Fideo

2
2
2

4 (±1)
5 (±1)
4 (±1)

3,864 (±223)
234 (±20)
213 (±23)

Screenshot
Capture

Ok Screenshot
Screenshot Easy
Screenshot Capture

1
1
1

2 (±1)
2 (±1)
2 (±1)

49 (±8)
76 (±7)
64 (±4)

Screen
Recording

REC Screen Recorder
AZ Screen Recorder
Rec.

2
2
2

3 (±1)
4 (±2)
3 (±1)

41 (±8)
49 (±7)
66 (±4)

Full Screen
Mode

Instagram
Snapchat
Skype

2
2
2

6 (±1)
6 (±1)
9 (±3)

3,412 (±182)
5,287 (±334)

468 (±62)

Remote
Control

Prey Anti Theft
Lost Android
Avast Anti-Theft

2
2
2

8 (±2)
6 (±1)
4 (±1)

47 (±5)
37 (±6)
34 (±7)

Hands-Free
Control

Google Voice Search
HappyShutter
SnapClap

1
1
1

1 (±1)
1 (±0)
1 (±0)

1,245 (±122)
3 (±1)
4 (±2)

Table 2: Applications tested during the field-based user study, selected
among the most popular apps from the Google Play store. The last
column reports the average and standard deviation for the total number of
operation authorizations automatically granted by AWare after the user’s
explicit authorizations. The values are rounded to ease the presentation.

even after receiving a binding request clearly identifying
the operation. This event hints to the fact that users may
still make mistakes even after they are given an explicit
authorization request specifying the actual app-requested
operation. However, users who make mistakes have still
control points provided by AWare via the security mes-
sages and logs, which allow addressing such mistakes by
means of retrospective actions (Section 7.1).

Lastly, the analysis of the subjects’ responses to
TASK 4 revealed that the real identity of the app perform-

ing the operation was not visible to users in the alternative
approaches, thus, leading them into making mistakes.
However, no subjects from Group6 (AWare) authorized
SimpleFilters to access the microphone. Therefore,
the security message including the app’s identity aided
the user in identifying the attack.

8.1.2 Field-Based User Study

We performed a field-based user study to address the
concern that AWare may increase the decision overhead
imposed on users as a result of finer-grained access con-
trol. We measured the number of explicit authorizations
users had to make when interacting with AWare under
realistic and practical conditions. We also measured the
total number of authorizations handled by AWare via the
operation binding cache mechanism that, transparently to
users, granted previously authorized operations.

Experimental Procedures: Participants were asked to
use, for a period of one week, a Nexus 5X smartphone
running a modified version of the Android OS integrating
the AWare authorization framework. During this period,

participants interacted with 21 popular apps (i.e., average
number of apps users have installed on personal smart-
phones11) selected among the most popular apps with
up to millions of downloads from the Google Play store.
A description of the functionality provided by each app
was given to participants. We then asked participants to
explore each app and interact as they would normally do.
Table 2 summarizes all the apps that were pre-installed
on the smartphones for the field-based user study. The
smartphones provided to participants were running a back-
ground service with a run-time log enabled, automatically
restarted at boot time, to monitor the number of app acti-
vations, the number of widgets per app, and the number
of decisions per app made by the users.

Experimental Results: 24 subjects participated and
completed the field-based user study. Table 2 reports
the average number of explicit authorizations performed
by the participants when using AWare, for each of the 21
apps used in the field-based user study. We compare them
with the number of explicit authorizations that would be
necessary if the first-use permission mechanism was used
instead. The results show that 4 apps required the same
number of explicit authorizations as for the first-use per-
mission approach. For the remaining 17 apps, the number
of decisions imposed to the users remains very modest.
Over the 21 apps, an average of 2.28 additional explicit
user authorizations are required per app.

Also, as expected, the number of explicit authorizations
made by the users remained a constant factor compared to
the number of operation authorization requests, automati-
cally granted by AWare (last column of Table 2), which
instead grew linearly during the experiment period. In-
deed, all the successive authorizations were automatically
granted by AWare.

8.2 Compatibility Analysis
We used the Compatibility Test Suite (CTS)12, an auto-
mated testing tool, to evaluate the compatibility of AWare
with 1,000 existing apps selected from the Google Play
store among the most downloaded apps13.

The experiment took 13 hours and 28 minutes to com-
plete, and AWare passed 126,681 of the 126,686 executed
tests. Two of the failed tests were minor compatibility
issues due to attempted programmatic accesses to the plat-
form’s camera and microphone, respectively. The first
failure was due to HappyShutter, an app that automat-
ically takes pictures when the user smiles. The second
failure was due to SnapClap, an app that automatically
takes snapshots when the user claps. By default, AWare
blocks apps from programmatically accessing privacy-

11https://www.statista.com/chart/1435/top-10

-countries-by-app-usage/
12https://source.android.com/compatibility/cts/
13The Absolute 1,000 Top Apps for Android. http://bestapps

USENIX Association 26th USENIX Security Symposium 391

sensitive sensors by intercepting API calls from running
apps and verifying if the user has indeed initiated the op-
eration. These checks provide a high level of protection.
Thankfully, as described in Appendix A, less than 1%
of the 1,000 analyzed apps require programmatic access
to privacy-sensitive sensors. However, we enhanced the
original AWare prototype to notify the user the first time
that a programmatic access is attempted by an app. Such
notification asks the user for an explicit authorization to
grant the app persistent access to the privacy-sensitive
sensor. The user is notified of the inherent high risk and is
discouraged from granting such type of permission. We
evaluated such feature in our field-based study as reported
in Table 2. From our experiments, we found that only 1
of the 24 users granted persistent access to the front cam-
era for the HappyShutter app, whereas, only 2 other
users granted persistent access to the microphone for the
SnapClap app.

The other two failures were due to remote access to
the smartphone’s camera attempted by two apps, namely
Lockwatch and Prey Anti-Theft, which can capture
pictures with the front camera when someone tries to
unlock the smartphone’s screen with a wrong passcode.
However, as described in Appendix A, we anticipated this
issue and suggested the extension of the mechanisms pro-
vided by AWare also to the remote app components that
enable remote access. To validate the proposed extension,
we have developed a proof-of-concept app that receives
remote commands for the initiation of video recording
via the mobile platform’s back camera. We successfully
tested it on a Nexus 5X smartphone running the Android
OS integrating AWare.

Lastly, AWare caused another spurious false positive
with the Viber app, which attempted access to the cam-
eras and microphone at each system reboot. AWare, iden-
tified the access without a user input action and blocked
the operation after displaying an onscreen alert and log-
ging the attempted operation. After analyzing the Viber
app, we noticed that the app was testing the sensors (e.g.,
cameras and microphone) at each reboot. However, pre-
venting the Viber app from using the sensors for testing
purposes did not cause subsequent video or voice calls to
fail. Thus, we believe that blocking such attempts is the
desired behavior to prevent stealthy operations targeting
privacy-sensitive sensors.

8.3 Performance Measurements
We measured the overall system performance overhead
introduced by AWare by using a macrobenchmark that
exercises the same 1,000 apps selected from the Google
Play store via the Android UI/Application Exerciser Mon-
key14. Although software exercisers only achieve a low

14https://developer.android.com/studio/test/

monkey.html

code coverage, they can create events that target specific
high-level operations and generate the same sequence of
events for comparison among several testing platforms.
Indeed, the Monkey was configured to exercise apps by
generating the exact same sequence of events and target
all operations on privacy-sensitive sensors on both the
Nexus 5X and Nexus 5 smartphones when running both
the stock Android OS and the modified version of An-
droid with AWare enabled. We open-sourced the exerciser
script for the macrobanchmark on github.com15.

The experimental results reported in the first row of Ta-
ble 3 show that the average recorded system-wide perfor-
mance overhead is 0.33% when measuring the additional
time required by AWare to handle the operation binding
construction, authorization and caching.

We also performed a microbenchmark to measure the
overhead introduced by AWare while specifically handling
access requests for operations targeting privacy-sensitive
sensors, such as the camera to take photos and videos,
the microphone to record audio, and the screen to capture
screenshots; and to measured the overhead introduced
for the authentication of app-specific widgets and their
display contexts. The overhead for operations targeting
privacy-sensitive sensors was calculated by measuring
the time interval from the time a user input action was
detected to the time the corresponding app request was
granted/denied by AWare. Instead, the overhead for the
widgets’ and display contexts’ authentication was calcu-
lated by measuring the time interval from the time the app
provided the user interface to the Window Manager to the
time such interface was rendered on the platform’s screen
by AWare. Table 3 reports the average time and stadard
deviation over 10,000 operation/rendering requests, and
the recorded overhead introduced by AWare.

Our measurements show that AWare performs effi-
ciently, with the highest overhead observed being below
4%, as shown in Table 3. Notice, the experiment artifi-
cially stressed each operation with unusual workloads,
and the overhead for a single operation/rendering is on
the order of microseconds. Thus, the overhead is likely
not to be noticeable by users.

Lastly, we recorded the average cache size used by
AWare to store authorized operation bindings and the ac-
tivity window call graphs, which was around 3 megabytes.
Overall, we did not observe a discernible performance
drop compared to the stock Android OS.

9 Related Work
Security-Enhanced Android [49] and Android Security
Framework [5] deploy restrictive security models based
on the Android Permission mechanism. However, such
models mainly operate at the kernel level, therefore, do

15https://github.com/gxp18/AWare

392 26th USENIX Security Symposium USENIX Association

Stock Android AWare

Nexus 5 Nexus 5X Nexus 5 Nexus 5X Average
Overhead

System-Wide 32,983.38
±103.76

31,873.71
±217.82

33,001.32
±109.79

31,981.02
±207.81 0.33%

Front Camera 15.90±1.54 14.39±1.12 16.11±1.77 15.01±1.38 3.22%
Back Camera 16.08±1.32 15.68±1.87 16.44±1.06 16.37±1.91 3.13%
Microphone 12.36±2.01 11.86±1.99 12.65±2.15 12.32±1.85 3.01%
Screen 17.76±0.99 16.23±0.69 18.61±0.90 17.02±1.01 3.98%

Widget 22.12±0.35 21.66±0.54 24.61±0.32 23.45±0.12 2.79%

Table 3: AWare performance overhead in microseconds (µs). Numbers
give mean values and corresponding standard deviations after 5 indepen-
dent runs for the system-wide experiment and after 10,000 independent
requests for the device-specific microbenchmark.

not have the necessary information regarding higher level
events required to associate app requests to user input
actions for operations targeting privacy-sensitive sensors.

Input-Driven Access Control (IDAC) [33] mediates
access to privacy-sensitive sensors based on the temporal
proximity of user interactions and applications’ access
requests. However, if another application’s request occurs
first after a user input event and within the given temporal
threshold, then the user input is directly used to authorize
the other applications request, no matter what operation
the application is requesting.

In What You See is What They Get [23] the authors pro-
pose the concept of a sensor-access widget. This widget
is integrated into the user interface within an applica-
tions display and provides a real-time representation of
the personal data being collected by a particular sensor
to allow the user to pay attention to the application’s at-
tempt to collect the data. Also, a widget is a control point
through which the user can configure the sensor to grant
or deny the application access. Such widgets implement
a so-called Show Widget and Allow After Input and De-
lay (SWAAID) policy. According to such policy, any
active user input, upon notification, is implicitly consid-
ered as an indication that the user is paying attention to
the widget. Thus, after a waiting period, the application
is directly authorized to access the sensor. However, the
delay introduced for the waiting time (necessary to allow
explicit denial) may cause issues for time-constrained
applications and may frustrate users.

User-Driven Access Control (UDAC) [39, 41] proposes
the use of access control gadgets to prevent malicious
operations from applications trying to access privacy-
sensitive sensors without a user-initiated input. However,
access control gadgets define the start points for when
permissions are granted but do no provide an end limit
for the sensor’s use or control points (Section 7.1) to the
users. Moreover, each sensor’s usage should be limited
to the particular configuration within which it has been
authorized by the user and should be terminated when the
application tries to continue using the sensor in a different
configuration.

Researchers have also explored a trusted output solu-
tion to provide the user with an on-screen security indica-

tor to convey the application developer’s identity for the
application with which the user is interacting [6]. Such
a solution aids the user in identifying applications devel-
oped by trusted sources (i.e., Google Inc.), but it does not
provide the user with the actual application identity or
information about when and how such an application uses
privacy-sensitive sensors.

Lastly, researchers have proposed a new operating sys-
tem abstraction called object recognizer for Augmented
Reality (AR) applications [22]. A trusted object recog-
nizer takes raw sensor data as input and only exposes
higher-level objects, such as a skeleton of a face, to appli-
cations. Then, a fine-grained permission system, based
on the visualization of sensitive data provided to AR ap-
plications, is used to request permission at the granularity
of recognizer objects. However, the proposed approach
applies only to AR applications which are a very small
fraction of the applications available on the app market.
Indeed, among the 1,000 applications used for our eval-
uation, fewer than 1% of them provide AR features. All
the other applications require full access to the raw data
in order to function properly.

10 Conclusion

To prevent abuse of privacy-sensitive sensors by untrusted
applications, we propose that user authorizations for oper-
ations on such sensors must be explicitly bound to user in-
put events and how those events are obtained from the user
(e.g., widgets and user interface configuration), called
operation bindings. We design an access control mech-
anism that constructs operation bindings authentically
and gains user approval for the application to perform
operations only under their authorized operation bindings.
By reusing such authorizations, as long as the applica-
tion always requests that operation using the same user
input event obtained in the same way, the number of ex-
plicit user authorizations can be reduced substantially. To
demonstrate the approach, we implemented the AWare

framework for Android, an extension of the Android Mid-
dleware that controls access to privacy-sensitive sensors.
We evaluated the effectiveness of AWare for eliminat-
ing ambiguity in a laboratory-based user study, finding
that users avoided mistakenly authorizing unwanted op-
erations 93% of the time on average, compared to 19%
on average when using proposed research methods and
only 9% on average when using first-use or install-time
authorizations. We further studied the compatibility of
AWare with 1,000 of the most-downloaded Android ap-
plications and demonstrated that such applications can
operate effectively under AWare while incurring less than
4% performance overhead on microbenchmarks. Thus,
AWare offers users an effective additional layer of defense
against untrusted applications with potentially malicious

USENIX Association 26th USENIX Security Symposium 393

purposes, while keeping the explicit authorization over-
head very modest in ordinary cases.

Acknowledgements
Thanks to our shepherd Matt Fredrikson and the anony-
mous reviewers. This research was sponsored by the
Army Research Laboratory and was accomplished un-
der Cooperative Agreement Number W911NF-13-2-0045
(ARL Cyber Security CRA). The views and conclusions
contained in this document are those of the authors and-
should not be interpreted as representing the official poli-
cies,either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Government purposes not with standing any copyright no-
tation here on. The research activities of Jens Grossklags
are supported by the German Institute for Trust and Safety
on the Internet (DIVSI).

References
[1] Dendroid malware can take over your camera, record audio, and

sneak into Google play. 2014.

[2] Runtime and security model for web applications. 2015.

[3] App permissions explained-what are they, how do they work, and
should you really care? 2016.

[4] The Judy Malware: Possibly the largest malware campaign found
on Google Play. 2017.

[5] M. Backes, S. Bugiel, S. Gerling, and P. von Styp-Rekowsky. An-
droid security framework: Extensible multi-layered access control
on android. In Proceedings of the 30th annual computer security
applications conference, pages 46–55. ACM, 2014.

[6] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel,
and G. Vigna. What the app is that? deception and countermea-
sures in the Android user interface. In 2015 IEEE Symposium on
Security and Privacy, pages 931–948, May 2015.

[7] F. Chang, A. Itzkovitz, and V. Karamcheti. User-level resource-
constrained sandboxing. In Proceedings of the 4th USENIX Win-
dows Systems Symposium, volume 91. Seattle, WA, 2000.

[8] P. T. Cummings, D. Fullan, M. Goldstien, M. Gosse, J. Picciotto,
J. L. Woodward, and J. Wynn. Compartmented model workstation:
Results through prototyping. In Security and Privacy, 1987 IEEE
Symposium on, pages 2–2. IEEE, 1987.

[9] R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing works.
In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’06, pages 581–590, New York, NY,
USA, 2006. ACM.

[10] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner.
Android permissions: User attention, comprehension, and behav-
ior. In Proceedings of the Eighth Symposium on Usable Privacy
and Security, SOUPS ’12, pages 3:1–3:14, New York, NY, USA,
2012. ACM.

[11] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner.
Android permissions: User attention, comprehension, and behav-
ior. In Proceedings of the Eighth Symposium on Usable Privacy
and Security, SOUPS ’12, pages 3:1–3:14, New York, NY, USA,
2012. ACM.

[12] A. P. Felt and D. Wagner. Phishing on mobile devices, 2011.

[13] https://en.wikipedia.org/. Robbins v. Lower merion school district
federal class action lawsuit.

[14] https://www.ftc.gov. FTC letters warn companies of privacy risks
in audio monitoring technology. 2016.

[15] http://www.nytimes.com. How spy tech firms let governments see
everything on a smartphone. 2016.

[16] http://www.scmagazine.com. Fireeye intern pleads guilty in dark-
ode case. 2015.

[17] http://www.sfgate.com. Lawsuit claims popular warriors app ac-
cesses phone’s microphone to eavesdrop on you. 2016.

[18] http://www.tripwire.com. Fireeye intern pleads guilty to selling
dendroid malware on darkode. 2014.

[19] http://www.welivesecurity.com. Krysanec trojan: Android back-
door lurking inside legitimate apps. 2014.

[20] L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schechter, and C. Jack-
son. Clickjacking: Attacks and defenses. In Proceedings of the
21st USENIX Conference on Security Symposium, Security’12,
pages 22–22, Berkeley, CA, USA, 2012. USENIX Association.

[21] L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schecter, and C. Jack-
son. Clickjacking: Attacks and defenses. In USENIX Security
Symposium, pages 413–428, 2012.

[22] S. Jana, D. Molnar, A. Moshchuk, A. M. Dunn, B. Livshits, H. J.
Wang, and E. Ofek. Enabling fine-grained permissions for aug-
mented reality applications with recognizers. In USENIX Security,
pages 415–430, 2013.

[23] S. S. Jon Howell. What you see is what they get: Protecting users
from unwanted use of microphones, cameras, and other sensors.
In Web 2.0 Security and Privacy. IEEE, May 2010.

[24] J. Jung, S. Han, and D. Wetherall. Short paper: enhancing mobile
application permissions with runtime feedback and constraints. In
Proceedings of the second ACM workshop on Security and privacy
in smartphones and mobile devices, pages 45–50. ACM, 2012.

[25] P. M. Kelly, T. M. Cannon, and D. R. Hush. Query by image
example: the comparison algorithm for navigating digital im-
age databases (candid) approach. In IS&T/SPIE’s Symposium
on Electronic Imaging: Science & Technology, pages 238–248.
International Society for Optics and Photonics, 1995.

[26] W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K. Chu, and T. Li.
Building trusted path on untrusted device drivers for mobile de-
vices. In Proceedings of 5th Asia-Pacific Workshop on Systems,
page 8. ACM, 2014.

[27] W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K. Chu, and T. Li.
Building trusted path on untrusted device drivers for mobile de-
vices. In Proceedings of 5th Asia-Pacific Workshop on Systems,
page 8. ACM, 2014.

[28] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and J. Zhang.
Expectation and purpose: understanding users’ mental models of
mobile app privacy through crowdsourcing. In Proceedings of the
2012 ACM Conference on Ubiquitous Computing, pages 501–510.
ACM, 2012.

[29] T. Luo, X. Jin, A. Ananthanarayanan, and W. Du. Touchjacking
attacks on web in android, ios, and windows phone. In Interna-
tional Symposium on Foundations and Practice of Security, pages
227–243. Springer, 2012.

394 26th USENIX Security Symposium USENIX Association

[30] L. Malisa, K. Kostiainen, and S. Capkun. Detecting mobile ap-
plication spoofing attacks by leveraging user visual similarity
perception. IACR Cryptology ePrint Archive, 2015:709, 2015.

[31] B. McCarty. SElinux: NSA’s open source security enhanced linux.
O’Reilly Media, Inc., 2004.

[32] D. S. McCrickard and C. M. Chewar. Attuning notification design
to user goals and attention costs. Commun. ACM, 46(3):67–72,
Mar. 2003.

[33] K. Onarlioglu, W. Robertson, and E. Kirda. Overhaul: Input-
driven access control for better privacy on traditional operating
systems. In 2016 46th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN), pages 443–454,
June 2016.

[34] G. Petracca, L. M. Marvel, A. Swami, and T. Jaeger. Agility
maneuvers to mitigate inference attacks on sensed location data.
In Military Communications Conference, MILCOM 2016-2016
IEEE, pages 259–264. IEEE, 2016.

[35] G. Petracca, Y. Sun, T. Jaeger, and A. Atamli. Audroid: Preventing
attacks on audio nels in mobile devices. In Proceedings of the
31st Annual Computer Security Applications Conference, pages
181–190. ACM, 2015.

[36] V. Prevelakis and D. Spinellis. Sandboxing applications. In
USENIX Annual Technical Conference, FREENIX Track, pages
119–126, 2001.

[37] U. U. Rehman, W. A. Khan, N. A. Saqib, and M. Kaleem. On
detection and prevention of clickjacking attack for osns. In Fron-
tiers of Information Technology (FIT), 2013 11th International
Conference on, pages 160–165. IEEE, 2013.

[38] C. Ren, Y. Zhang, H. Xue, T. Wei, and P. Liu. Towards discover-
ing and understanding task hijacking in android. In 24th USENIX
Security Symposium (USENIX Security 15), pages 945–959, Wash-
ington, D.C., Aug. 2015. USENIX Association.

[39] T. Ringer, D. Grossman, and F. Roesner. Audacious: User-driven
access control with unmodified operating systems. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’16, pages 204–216, New York, NY, USA,
2016. ACM.

[40] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications
of the ACM, 21(2):120–126, 1978.

[41] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan. User-driven access control: Rethinking permission
granting in modern operating systems. In Proceedings of the 2012
IEEE Symposium on Security and Privacy, SP ’12, pages 224–238,
Washington, DC, USA, 2012. IEEE Computer Society.

[42] J. Ruderman. The same origin policy, 2001.

[43] S. Schechter. Common pitfalls in writing about security and
privacy human subjects experiments, and how to avoid them. Mi-
crosoft Technical Report, January 2013.

[44] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The
emperor’s new security indicators. In 2007 IEEE Symposium on
Security and Privacy (SP ’07), pages 51–65, May 2007.

[45] R. Schlegel, K. Zhang, X. yong Zhou, M. Intwala, A. Kapadia,
and X. Wang. Soundcomber: A stealthy and context-aware sound
trojan for smartphones. In NDSS. The Internet Society, 2011.

[46] R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala, A. Kapadia, and
X. Wang. Soundcomber: A stealthy and context-aware sound
trojan for smartphones. In NDSS, volume 11, pages 17–33, 2011.

[47] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chizmadia.
Design of the eros trusted window system. In Proceedings of
the 13th conference on USENIX Security Symposium-Volume 13,
pages 12–12. USENIX Association, 2004.

[48] M. Sheppard. Smartphone apps, permissions and privacy. Office
of the Privacy Commissioner of Canada, 2013.

[49] S. Smalley and R. Craig. Security enhanced (se) android: Bringing
flexible mac to android. In NDSS, volume 310, pages 20–38, 2013.

[50] S. Smalley, C. Vance, and W. Salamon. Implementing selinux as
a linux security module. NAI Labs Report, 1(43):139, 2001.

[51] R. Templeman, Z. Rahman, D. Crandall, and A. Kapadia. Plac-
eRaider: Virtual theft in physical spaces with smartphones. In The
20th Annual Network and Distributed System Security Symposium
(NDSS), To appear, Feb 2013.

[52] G. S. Tuncay, S. Demetriou, and C. A. Gunter. Draco: A sys-
tem for uniform and fine-grained access control for web code
on android. In Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’16, pages
104–115, New York, NY, USA, 2016. ACM.

[53] T. Whalen and K. M. Inkpen. Gathering evidence: Use of vi-
sual security cues in web browsers. In Proceedings of Graphics
Interface 2005, GI ’05, pages 137–144, School of Computer Sci-
ence, University of Waterloo, Waterloo, Ontario, Canada, 2005.
Canadian Human-Computer Communications Society.

[54] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner,
and K. Beznosov. Android permissions remystified: A field study
on contextual integrity. In 24th USENIX Security Symposium
(USENIX Security 15), pages 499–514, 2015.

[55] Z. E. Ye, S. Smith, and D. Anthony. Trusted paths for browsers.
ACM Transactions on Information and System Security (TISSEC),
8(2):153–186, 2005.

[56] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. Building
verifiable trusted path on commodity x86 computers. In 2012
IEEE Symposium on Security and Privacy, pages 616–630. IEEE,
2012.

Appendices
A Compatibility Discussion
Here, we discuss how AWare addresses special cases of
applications’ accesses to privacy-sensitive sensors.

Background Access: To enable background access,
AWare still uses the explicit authorization mechanism
via the creation of a binding request. However, as soon
as the application goes in the background, any on-screen
security message used to notify ongoing operations over
privacy-sensitive sensors is replaced with a periodic dis-
tinctive sound or a small icon on the system status bar
(Section 7.1), if the platform’s screen is on, or a hardware
sensor-use indicator LED when the platform’s screen goes
off. These periodic notifications will be active until the
user terminates the background activity explicitly. Our

USENIX Association 26th USENIX Security Symposium 395

notification mechanism leverages the concept introduced
in previous work [23] and extends the mechanism used in
modern operating systems for location.

Remote Access: Remote commands are instantiated
by the user via an application’s user interface displayed
on the remote terminal, thus, the AWare mechanisms are
also applicable to the widgets displayed by such remote
user interfaces. Therefore, as long as remote commands
are coming from AWare-enabled remote platforms, AWare
may pair the AWare modules running on the two platforms
by creating a Secure Socket Layer (SSL) connection to
allow secure and remote control of the privacy-sensitive
sensors by the user.

Programmatic Access: There are very rare cases of
legitimate applications requiring programmatic access to
privacy-sensitive sensors, as shown by our large-scale
compatibility analysis reported in Section 8.2. Examples
are anti-theft applications that capture pictures with the
front camera in the attempt to identify the thief when
trying to unlock the screen by guessing the passcode. Or
even, an application that uses the camera to take a picture
when the user smiles. However, only trusted software
(as part of the operating system) should be allowed to
perform such operations to be inline with our research
objective of ensuring a secure use of privacy-sensitive
sensors.

Hardware Peripheral Access: An application may use
hardware peripherals (e.g., Bluetooth R© remotes, selfie
sticks, headphone jacks or built-in hardware buttons) as
user interface. However, hardware peripherals are typ-
ically managed by a trusted software component, i.e.,
the Input Manager, and mandatory access control mech-
anisms (i.e., SELinux [31]) are adopted to ensure that
peripheral driver files are not accessible by untrusted ap-
plications. By monitoring input events received by the
Input Manger, AWare can identify user input events com-
ing from such hardware peripherals and bind them with
the corresponding operation requests from applications.

Access through Voice Commands: AWare enables per-
sonal assistant services that recognize voice commands,
such as Apple’s Siri, Google Now, and Windows’ Cor-
tana, by leveraging recent work that prevents untrusted
application from exploiting voice commands by control-
ling access over audio channels created by applications
and system services through the platform’s microphone
and speaker [35].

B UI Elements’ Features Analysis
We performed a large-scale analysis by using the 10,000
most popular application from the Google Play store,
Ubuntu Software Center and Chrome Extensions to eval-
uate how frequently the widgets’ and activity windows’

features used by AWare change among subsequent render-
ing events on the platform screen. We rendered a widget
and its activity window 50 times under different system
settings and configurations to cause the a widget or its
activity window to be rendered in different ways (i.e.,
screen orientation, concurrent activity windows, etc.).

ID Width Height X
Coord.

Y
Coord.

Text
Label

Text
Font

Text
Size

100%
100%
100%

99%
99%
99%

99%
99%
99%

97%
97%
99%

97%
97%
99%

100%
100%
100%

100%
100%
100%

100%
100%
100%

Text
Alignment

Default
Status

Background
Color

Background
Image

Border
Color

Border
Size

Border
Padding Transp.

100%
100%
100%

99%
99%

100%

96%
97%

100%

99%
99%
99%

99%
98%
98%

99%
99%

100%

98%
99%
N/A

100%
100%
100%

Table 4: Study of fixed features for GUI widget objects in X Window
Manager, Aura (Chrome Browser) Window Manager (in italic), and An-
droid Window Manager (in bold). The percentage values indicate how
many times the widget’s features did not change when the same widget
was rendered by the Window Manager. We used 1,000 applications for
each Window Manager system.

ID Title
Text

Title
Font

Title
Size

Title
Color

Title
Align.

Title
Background

100%
100%
100%

99%
99%

100%

100%
100%
100%

100%
100%
100%

99%
99%

100%

100%
100%
100%

99%
99%

100%

Width Height X
Coord.

Y
Coord.

Background
Color

Background
Image Transp.

100%
100%
100%

100%
100%
100%

96%
97%
99%

96%
97%
99%

99%
98%
99%

99%
98%
98%

99%
99%

100%

Shadow Border
Size

Border
Color

Border
Padding

Set of
UI Elements

UI Elements
Position

Window
Hierarch. Order

98%
99%
N/A

100%
100%
100%

100%
100%
100%

99%
98%

100%

91%
98%
99%

99%
98%
99%

89%
98%
99%

Table 5: Study of fixed features for GUI activity window objects in
X Window Manager, Aura (Chrome Browser) Window Manager (in
italic), and Android Window Manager (in bold). The percentage values
indicate the times the features did not change when the same window
was rendered by the Window Manager.

C Discussion on Activity Windows
For the ease of presentation we used the general case
where a widget appears within an activity window. How-
ever, desktop and web operating system may allow more
sophisticated user interfaces, or GUI scaling for different
screen sizes. Thus, we recognize that an activity window
could be embedded inside another activity window and
such innermost activity window could be reused across
several activity windows even in a hierarchy. Therefore,
AWare does not limit the use of nested activity windows
or prohibit activity window reuse but rather ensures that
the context is defined by the entire hierarchy of nested
activity windows. As a consequence, an application may
be authorized by the user to use a widget in a nested ac-
tivity window X in the outer activity window Y, but this
authorization does not extend for another outer activity
window Z.

396 26th USENIX Security Symposium USENIX Association

