
Content-Agnostic Malware Detection in Heterogeneous
Malicious Distribution Graph ∗

Ibrahim Alabdulmohsin
King Abdullah University of Science & Technology

ibrahim.alabdulmohsin@kaust.edu.sa

Yufei HAN
Symantec Research Labs

yufei_han@symantec.com
Yun Shen

Symantec Research Labs
yun_shen@symantec.com

Xiangliang Zhang
King Abdullah University of Science & Technology

xiangliang.zhang@kaust.edu.sa

ABSTRACT
Malware detection has been widely studied by analysing ei-
ther file dropping relationships or characteristics of the file
distribution network. This paper, for the first time, stud-
ies a global heterogeneous malware delivery graph fusing
file dropping relationship and the topology of the file distri-
bution network. The integration offers a unique ability of
structuring the end-to-end distribution relationship. How-
ever, it brings large heterogeneous graphs to analysis. In
our study, an average daily generated graph has more than
4 million edges and 2.7 million nodes that differ in type, such
as IPs, URLs, and files. We propose a novel Bayesian label
propagation model to unify the multi-source information,
including content-agnostic features of different node types
and topological information of the heterogeneous network.
Our approach does not need to examine the source codes
nor inspect the dynamic behaviours of a binary. Instead, it
estimates the maliciousness of a given file through a semi-
supervised label propagation procedure, which has a linear
time complexity w.r.t. the number of nodes and edges. The
evaluation on 567 million real-world download events vali-
dates that our proposed approach efficiently detects malware
with a high accuracy.

1. INTRODUCTION
Modern cyber criminals employ various sophisticated mech-

anisms to drop malicious files such as adware, ransomware,
and rouge antivirus. They can set up short lived websites
(e.g., using domain fluxing), hire a third party (e.g., pay-
per-install), or utilise exploit kits (e.g., drive-by download)
to deliver the payloads. In recent years, malware delivered
to the endpoints uses various antivirus evasion techniques
to avoid detection. These include environment awareness,
timing-based evasion, repackaging internal data obfuscation
and so on.

∗All authors contributed equally and are ordered alphabetically.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM’16 , October 24 - 28, 2016, Indianapolis, IN, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4073-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2983323.2983700

Despite all the previous efforts [5, 18, 10, 4, 14, 9, 15, 6,
3, 7, 8], how to quickly identify if a new binary is malicious
or benign remains a crucial problem yet to be satisfactorily
solved. Naturally, binary analysis techniques are effective
solutions to this problem as static [15] and dynamic anal-
ysis [3, 8] can offer deep insights of a binary via thorough
low-level examinations. However, such techniques need con-
siderable amount of computational resources to carry out
the inspection. The sheer volume of suspicious binaries, to-
gether with the repackaging and obfuscation techniques used
by cyber criminals make the task of timely analysing binary
files nearly impossible. Even though recent research efforts
in large-scale malware analysis (e.g., [6], [7]) are proven ef-
fective in uncovering clusters of malware that share known
low-level similarity, they are less effective and computation-
ally costly in identifying unknown malware or threats.

On the other hand, content-agnostic approaches have ad-
vantages in coping with the large and heterogeneous space of
malicious binaries by avoiding content inspection, hence be-
coming more popular in recent years to compliment binary
analysis approaches. Previous work in this direction detects
malware from various perspectives, e.g., understanding the
characteristics of malware delivery infrastructures [2, 14],
identifying topological relations among hosts and IPs in the
malicious Web infrastructure used by cyber criminals [18, 10,
5], proactively and efficiently crawling potential malicious
hosting sites [4], mining file co-occurrence relationship [16],
getting insights from downloader-payload relationship of ex-
ecutable files on an endpoint [9], and so on.

It is interesting to note that the aforementioned work ei-
ther focuses on analysing network characteristics of malware
distribution [2, 14, 18, 10, 5] or centres the analysis on file
dropping relationships from the endpoints [9]. It makes more
sense to fuse the aforementioned file dropping graph and file
distribution network to form a global view of end-to-end
distribution network instead of evaluating whether a given
file is malicious or benign from either perspective. This
global view offers the integral ability of structuring the re-
lationship in a scalable manner and handling heterogeneous
sources of information. However, it brings a couple of in-
triguing challenges. It requires a method capable of working
with the heterogeneous graph and, at the same time, the
method should be computationally efficient to handle large
scale graphs while offering a high accuracy.

The contributions of this paper are summarised as follows.

2395

child file SHA2

parent file SHA2

Referrer URL:
http://referrer.url/redirection/path

URL :
http://parent.com/path

URL:
http://download.file.com/path/

IP: 9.8.7.6

IP: 6.7.8.9

Figure 1: Abstract model of malware distribution graph.

• We provide a global heterogeneous malware delivery
graph fusing file dropping relationship and the topol-
ogy of the file distribution network.

• We unify topological information of heterogeneous net-
work and content-agnostic features of different node
types using a novel Bayesian label propagation model.

• We demonstrate our method is efficient and effective
in identifying malicious files from over 567 million real-
world download events.

Comparing to the state-of-the-art research work, our pro-
posed approach has the following advantages:

• It only requires a small amount of labelled data to
achieve high detection precision, thanks to its novel
approach of combining topological information with
content-agnostic features in a unified manner using
Bayesian label propagation.

• The proposed approach is computationally efficient. It
doesn’t need to examine the source codes, nor inspect
the dynamic behaviours of a binary. It estimates the
maliciousness of a given file through a semi-supervised
label propagation procedure. The proposed method’s
time complexity is O((|E|+ |V |)×T), where |V | is the
number of nodes in the graph, |E| is the number of
edges in the graph, and T is the number of iterations.

2. METHODOLOGY
As mentioned earlier, the primary objective of this work

is to be able to detect malware reliably in a content-agnostic
manner. This has the advantage of yielding a computation-
ally efficient solution, since signature-based low-level inspec-
tion of binary files is avoided, as well as providing a more
robust solution to obfuscation techniques, such as polymor-
phism and metamorphism. In order to accomplish the de-
sired goal, we propose to utilise both topological informa-
tion, such as the dropping relationship of files, as well as
content-agnostic features, such as lexical tokens in URLs and
file names. Clearly, topological information and content-
agnostic features are quite different in nature. Yet, we will
show that they can be seamlessly combined in a unified
manner using Bayesian label propagation. In brief terms,
supervised classification via the content-agnostic features
will form the prior to the Bayesian label propagation al-
gorithm. Later, we will demonstrate experimentally that
such a unified approach indeed outperforms label propa-
gation and supervised classification when they are imple-
mented separately.

2.1 Preliminary
To describe the malware detection problems in formal

terms, suppose we have {(x1, z1, y1)...(xl, zl, yl)} instance-
type-label tuples, which are assumed to be drawn i.i.d. from
some fixed unknown probability distributionD over the prod-
uct space X ×Z ×{+1,−1}. Here, a positive label yi = +1
implies that the instance xi ∈ X whose type is zi is ma-
licious. The instance types are the types of nodes avail-
able in the malware distribution network (MDN), which, in
our case, includes files, URLs, and IP addresses. In addi-
tion to the labeled data, we also have unlabelled instances
{(xl+1, zl+1), . . . , (xl+u, zl+u)}, whose underlying (unknown)
true class labels are denoted {yl+1, ..., yl+u}. The goal is to
use the labeled data {(x1, z1, y1), ..., (xl, zl, yl)} and the un-
labelled instances {(xl+1, zl+1), . . . , (xl+u, zl+u)} to predict
the unknown labels {yl+1, ..., yl+u}. In other words, we op-
erate in the transductive learning setting, as opposed to the
inductive learning setting. Operating in the transductive
learning setting is more appropriate for malware detection
since malware distribution networks change over time, with
new URLs, IPs, and files being created on a regular basis.

In our implementation, we classify node types into the
following three categories (see Section 2.2 for a more detailed
descriptions of the features used for each node type):

1. Files: Some of its features include the file size and av-
erage reputation scores of the workstations that down-
loaded the file.

2. URLs: Its features are mostly lexical in nature, which
has been demonstrated in some recent work to be quite
effective for URL classification [11]. Such lexical fea-
tures include the URL length, the number of tokens
in the fully-qualified domain name (FQDN), the num-
ber of common phishing words, such as ebayisapi and
webscr, as well as a the presence or absence of explicit
port numbers in the URL.

3. IP Addresses: Some of its features include the number
of unique top-level domain names hosted by the IP
address and the total number of files downloaded from
the given IP address.

These three node types are clearly related to each other.
Consequently, in addition to the content-agnostic features,
we also assume that the relationships between nodes are cap-
tured in a graph. Hence, we have content-agnostic features
as well as graph-based topological information that both aid
the malware detection task.

The proposed approach is to first implement supervised
classification for each node type separately. These classifiers
output probabilistic scores, which, in turn, are used as pri-
ors to the label propagation algorithm carried out over the
graph. We describe each stage of the process in details next.

2.2 Supervised Classification
The first stage of the proposed algorithm is to implement

a binary classifier for each node type in the graph using its
content-agnostic features. The goal of the classifier is to
output a probability score if the given node is malicious or
benign, i.e. P (yi = +1|xi, zi). These probability scores can
be obtained, for example, using logistic regression, the näıve
Bayes classifier, or support vector machine (SVM) with the
Platt scaling [13]. The classification algorithm used in our

2396

Table 1: Features for file, URL and IP classification.

Category Features Feature Description

Features for
file
classification

in/out degree The number of landing pages to the file and files dropped by the file
src/trgt reputation The average reputation score of droppers/payloads (if any)
src/trgt prevalence The average prevalence score of droppers/payloas

size The size of the file in kilobytes (KB)

Features for
URL
classification

url len The number of characters in the URL
cnt. of dom and path token The number of tokens in FQDN and in the path
avg. of dom and path token The average token length in the domain and in the path

domain is ip A binary indicator if an IP address is used directly, instead of a FQDN
has port A binary indicator if a port is present in the URL

len. dom. token The length of longest token in FQDN
num of dots and hyph The number of ‘.’ and ‘-’ in the URL

has phish The number of phishing words in the list ‘webscr’, ‘secure’, ‘banking’,
‘ebayisapi’, ‘account’, ‘confirm’, ‘login’, ‘signing’

brand present The name of a Fortune 500 company is present in the URL
num of subd. The number of subdomains given in the URL

Features for
IP
classification

size The size of the subgraph rooted on the IP address
num urls / rurls The number of URLs/referrer URLs in the subgraph rooted on the IP address

num files The number of files in the subgraph
uniq url tlds/subd The number of unique top level domains/subdomains hosted by the IP address
avg url/rurl hfiles The average number of files hosted per URL / referred by a referrer URL

rurl file cover The total number of files referred by referrer URLs in the subgraph
uniq rurl tlds / uniq rurl subd The total number of files directly hosted in the URLs / unique subdomains

avg/max/min url priori The average/max/min score of URL priori in the subgraph
avg/max/min file priori The average/max/min score of file priori in the subgraph

implementation is 200-tree random forest for file, URL and
IP, which is implemented using scikit-learn 0.17.1. The full
list of features used is shown in Table 1.

2.3 Bayesian Label Propagation
Having obtained a binary classifier for each node type,

the next stage is to use the predicted score as a prior to the
label propagation algorithm. The basic idea of label prop-
agation is to model the relations between instances using
an undirected unweighted graph G = (V, E) and to use the
adjacency matrix to infer the labels [1, 19, 17]. Each node
vi ∈ V corresponds to a single training instance-type pair
(xi, zi). Each edge ei,j ∈ E represents the relation between
node vi and vj . As mentioned earlier, we have three node
types in our implementation: files, URLs, and IP addresses,
where the set of edges E indicate the file delivery relation.
For example, if one file A is downloaded from URL B and
the URL is hosted by the IP address C, the corresponding
nodes should be linked in the graph G to encode this delivery
relation. These relations are illustrated in Figure 1.

To derive a Bayesian version of label propagation, we
closely follow the proof steps of the SocNL algorithm pro-
posed in [17]. We will show how the supervised classifier can
be incorporated as well in the form of a prior.

First, suppose that for every node in the graph vi ∈
V, there exists a Bernoulli parameter θi such that P (yi =
+1) = θi. Also, suppose that the neighbours Ni of node
vi are labeled. The goal of label propagation is to compute
fi = P (yi = +1 | Ni). In line with the Bayesian spirit, we
will achieve this by first computing:

P (θi | Ni) =
P (θi) · P (Ni | θi)

P (Ni)
(1)

Next, as is used in the derivation of the SocNL algorithm [17],
we impose a smoothness constrain on the graph. In partic-

ular, we assume that θi ≈ θj for all vj ∈ Ni. With this
approximation, we obtain:

P (Ni | θi) =
∏
vj∈Ni

θ
δ(yj=+1)

i · (1− θi)δ(yj=−1) (2)

Next, we use the beta distribution as a prior P (θi) since it
is conjugate to the Bernoulli distribution. So, we write:

P (θi) ∝ θαi−1
i · (1− θi)βi−1, (3)

with shape parameters αi, βi > 0. As a result, we obtain:

P (θi | Ni) ∝ θ
|N+

i |+αi−1

i · (1− θi)|N
−
i |+βi−1, (4)

where |N+
i | and |N−i | is the number of positive and negative

neighbors respectively to node vi. Finally, as shown in [17],
we predict using marginalisation:

fi = P (yi = +1|Ni, αi, βi)

=

∫
θi

P (yi = +1|θi) · P (θi|Ni, αi, βi) dθi

=
|N+

i |+ αi
|Ni|+ αi + βi

(5)

Intuitively, the prediction rule in Eq. (5) states that the
probability P (yi = +1|Ni) is estimated by counting the frac-
tion of positively-labeled neighbours to node vi, where the
prior parameters αi, βi play the role of a bias.

Our next goal is to let the classifier determine the values of
the hyper-parameters αi and βi. The output of the classifier,
denoted ŷi, can be interpreted as the mean of θi. Since
the marginal distribution of θi is a beta distribution, whose
mean is αi/(αi + βi), we write γ = αi + βi and αi = γ ŷi.
Note that E[θi] = ŷi, which is the probability score predicted

2397

by the classifier. Therefore, the prediction rule reduces to:

fi = P (yi = +1|Ni, αi, βi) =
|N+

i |+ γŷi
|Ni|+ γ

(6)

Of course, this rule assumes that all of the neighbours of
node vi are labeled. However, it can be shown (see for in-
stance Section 4.2 in [17]) that the rule above can be trans-
lated into an iterative label propagation rule of the form:

fi =

∑
vj∈Ni

fj + γŷi∑
vj∈Ni

fj + γ
(7)

This is the label propagation algorithm used in our imple-
mentation. The LP update rules in Eq. (7) are guaranteed
to converge as long as γ > 0 [17].

As we can see, the estimated label of an unlabelled in-
stance is decided by the weighted average of label probabil-
ity of its neighbours in addition to the probability estimate
predicted by the supervised classifier. In this way, informa-
tion about class membership is recursively propagated from
labelled instances to unlabelled ones through the connected
paths inside the graph G until convergence is achieved. La-
bel propagation has advantages in terms of time complexity.
The propagation procedure is conducted by simple and fast
local linear weighted averaging operations, as shown in Eq.
(7), which runs in O((|E|+ |V |)× T) time, where |V | is the
number of nodes in the graph, |E| is the number of edges in
the graph, and T is the number of iterations.

3. DATASETS

3.1 Study Dataset and Ground Truth
Study Dataset. We use the user download activity data

provided by Symantec. This dataset is collected from users
who opt in for data sharing program, and client identifiers
are anonymised. It is not possible to link back the collected
data to the client from which the requests originated. The
download activity data provide meta-information about all
download activities on the endpoints. The dataset is further
enriched using binary reputation to include metadata about
reputation band and prevalence of the downloaded files. We
extract over 567 million download events from 17th March
to 11th April 2016 to form our study dataset.

Additional Datasets. We collect benign URLs and
malicious URLs from various sources to build a training
dataset for the URL node classifier (see Section 2). For
benign URLs, we use the top 10,000 of 2015 most popular
search words and get the top 6 URLs of each word from
Google search results. We also get a list of benign URLs
(whitelisted) from the security vendor’s internal database.
In total we have 87,974 benign URLs. For malicious URLs,
we obtain these URLs from publicly available sources - cy-
bercrime tracker, phishtank, and malc0de1. We also get a
list of known malicious URLs from the security vendor’s in-
ternal database. In total we have 36,036 malicious URLs.

Ground Truth. We query VirusTotal (a free online ser-
vice that aggregates files and URLs scanning outputs from
different antivirus engines) for each file SHA2 to obtain its
first seen timestamp, the number of AV products (and asso-
ciated vendor names) that flagged the file as malicious, and

1Respectively at http://cybercrime-tracker.net,
https://www.phishtank.com, http://malc0de.com/database

the total number of AV products that scanned the file. We
consider a file malicious if at least one of the top five AV
vendors (w.r.t. market share) and a minimum of two other
AV vendors detect it as malicious [12]. We also obtained ad-
ditional ground truth about files from the same major secu-
rity company. The verdicts come from the company’s static
and dynamic binary analysis platform. In total, our ground
truth consists of 4,868,770 benign and 1,544,215 malicious
files. We summarise our datasets in Table 2.

Table 2: Graph data size (on average between 17th March
and 11th April 2016), and URLs for priori classifiers training

No. of nodes No. of
Graph (Avg. file URL IP edges

per day) 1,648,458 892,394 155,533 4,047,741

Ground Truth
files (Total) 4,868,770 benign, 1,544,215 malicious

URL 87,974 benign, 36,036 malicious (external)

4. EXPERIMENTAL ANALYSIS

4.1 Experimental setup
Our experiments are organised in two parts. In the first

part, we aim to verify the benefits of the proposed method
and compare its performance against both standard label
propagation [19] and the Bayesian inference based variation
of LP, named SocNL [17]. Note that we neither compare to
NAZCA, due to its scalability issue in large graphs, nor other
malware detection techniques as they have only partial in-
formation regarding malware distribution network. We tra-
verse different sampling ratios of benign files and malicious
files to identify potential malware with different numbers of
initially labelled file nodes in the graph. Both Area Un-
der ROC Curve (AUC) and F1-score of all three algorithms
are used to evaluate detection performances quantitatively.
The second part demonstrates how our method can identify
malware with a real-world case study.

The datasets used to conduct the experimental study were
summarised in Section 3. To conduct malware detection on
day t, we use the features of benign files and malicious files
that have been identified before day t− 1 as the training set
to build the file node classifiers. URL node specific classifier
is trained independently using additional exteriorly labelled
malicious and benign URL samples (see Section 3). To con-
struct the IP-specific node classifier, we borrow the idea
from self-training technology [1] and build the initial train-
ing set using March 16th data. That is, we run the proposed
method on the March 16th graph with non-informative pri-
ors for IP nodes. Once the inference finishes, we set up a
threshold on the derived probabilistic labels of the IP nodes.
IP nodes with the probabilistic score larger/smaller than the
threshold are recognised as a potential malicious/benign IP.
We then extract features from these IP nodes and train the
node classifier accordingly.

To choose the optimal setting of the regularisation param-
eter γ in Eq. (7), we carry out a grid search in the set {0.1,
0.01, 0.001, 0.0001} using cross validation, and report the
results with the best detection performance.

2398

0.01 0.03 0.05 0.07 0.10 0.13 0.15 0.17 0.20
Sampling ratio of malware

0.9000

0.9143

0.9286

0.9429

0.9571

0.9714

0.9857

1.0000
Ar

ea
U

nd
er

C
ur

ve

The proposed method
LP
Socnl

(a) Benign sampling rate = 0.3

0.01 0.03 0.05 0.07 0.10 0.13 0.15 0.17 0.20
Sampling ratio of malware

0.9000

0.9143

0.9286

0.9429

0.9571

0.9714

0.9857

1.0000

Ar
ea

U
nd

er
C

ur
ve

The proposed method
LP
Socnl

(b) Benign sampling rate = 0.5

0.01 0.03 0.05 0.07 0.10 0.13 0.15 0.17 0.20
Sampling ratio of malware

0.9000

0.9143

0.9286

0.9429

0.9571

0.9714

0.9857

1.0000

Ar
ea

U
nd

er
C

ur
ve

The proposed method
LP
Socnl

(c) Benign sampling rate = 0.7

0.01 0.03 0.05 0.07 0.10 0.13 0.15 0.17 0.20
Sampling ratio of malware

0.4000

0.4857

0.5714

0.6571

0.7429

0.8286

0.9143

1.0000

F1
sc

or
e

The proposed method
LP
Socnl

(d) Benign sampling rate = 0.3

0.01 0.03 0.05 0.07 0.10 0.13 0.15 0.17 0.20
Sampling ratio of malware

0.4000

0.4857

0.5714

0.6571

0.7429

0.8286

0.9143

1.0000

F1
sc

or
e

The proposed method
LP
Socnl

(e) Benign sampling rate = 0.5

0.01 0.03 0.05 0.07 0.10 0.13 0.15 0.17 0.20
Sampling ratio of malware

0.4000

0.4857

0.5714

0.6571

0.7429

0.8286

0.9143

1.0000

F1
sc

or
e

The proposed method
LP
Socnl

(f) Benign sampling rate = 0.7

Figure 2: Average AUC and F1 scores with different number
of initially labelled nodes.

Table 3: Comparison of F1 scores between file classifier and
the proposed method

Date File classifier The proposed method
March 30 0.833 0.910
March 31 0.834 0.896
April 1 0.826 0.902
April 2 0.838 0.884

4.2 Comparative Study
To investigate how the proposed method performs given

different numbers of initially labelled file nodes, we vary the
benign file sampling ratio as 0.3, 0.5 and 0.7. For each level
of benign file sampling ratio, we further choose 9 different
malware sampling ratios, respectively 0.01, 0.03, 0.05, 0.07,
0.09, 0.11, 0.13, 0.15, 0.17, and 0.19. The ranges of the two
sampling ratios are selected to reflect the real world scenario;
there are plenty of benign files available while the number
of malware samples is limited.

We use the settings of sampling initially labelled nodes
for all three algorithms involved in the comparison and run
all the algorithms three times on each day. Given a specific
benign file sampling ratio and a fixed malware sampling ra-
tio, AUC values and F1 scores derived from all 26 days are
then averaged. The mean AUC and F1 score of each al-
gorithm evaluate its overall malware detection performance
under the given level of the sampling rates. Figure 2a, Fig-
ure 2b and Figure 2c show the mean AUC value derived by
fixing the benign sampling rate and increasing gradually the
malware sampling rate. Figure 2d, Figure 2e and Figure 2f
shows the mean F1 scores following the same setting.

As shown in the figures, the proposed method provides
superior detection accuracy over the other two algorithms
when the number of sampled malware is limited, e.g., mal-
ware sampling rate less than 0.07, no matter how large the

benign file sampling rate is. In terms of average AUC and
F1 scores, the proposed method yields a more distinctive im-
provement of detection accuracy with increasingly larger be-
nign file sampling rate. This observation is consistent with
the target of the algorithmic design. Given limited num-
ber of initially labelled malware samples and imbalance be-
tween benign and malware samples, the node classifiers built
on the heterogeneous MDN graph provide a discriminative
prior over the class label of graph nodes. This node prior es-
timate provides a complementary supervised information to
the label propagation procedure, which reduces the impact
of the imbalance issue and lack of labelled malware samples.
Such a property of the proposed method makes it well suited
for solving challenging malware detection problems.

We measure also the average F1 score of the content-
agnostic file-specific classifier with each level of malware
sampling rate. Across different malware and benign file sam-
pling rates, the average F1 score of the file-specific classifier
is less than 0.83, distinctively lower than all the label prop-
agation based methods in the comparison. In Table 3, we
illustrate an example by comparing the F1 scores of the file
specific classifier with those of the proposed method from
March 30th to April 2nd, given benign file sampling rate as
0.5 and malware sampling rate as 0.05. These results in-
dicate that the file specific classifier is unable to achieve a
satisfying detection accuracy by itself. However, the proba-
bilistic output of the classifier does produce complementary
prior information to improve the detection accuracy of la-
bel propagation. Increasing the sampling rate of benign file
over 0.5 results in a slight decrease in the AUC scores for
all three algorithms. It is caused by the imbalanced issue of
the training data, which increases slightly the type II error.

We run daily malware detection on the MDN graph, in
order to simulate real-world malware filtering applications.
The MDN graph generated per day has on average 1,648,458
file nodes, 892,394 URL node and 155,533 IP nodes, as sum-
marised in Table 2. Average running time for malware de-
tection on the large-scale MDN graph is 11 minutes, with
8 minutes for building the priori classifiers and 3 minutes
for conducting label propagation concatenated with the pri-
ori information on the graph. Furthermore, as we observed
in our experimental study, the running time of the whole
malware detection increases linearly with the graph size. In
practice, fast computing of the proposed method makes it
possible to conduct semi-real time, e.g. hourly, malware de-
tection on large-scale file collections.

4.3 Real-World Case Study
In this section, we provide a detailed case study show-

ing how our proposed method is able to identify malicious
files in a real-world malware distribution network excerpted
from our March 17th graph. For the sake of simplicity, we
use a tuple (1− fi, fi) in the figures to denote the label in-
ference score of each node, where fi = P (yi = +1 | Ni)
and fi ∈ [0, 1] (see Section 2.3 for details). From our train-
ing data, node 1 is identified as information stealer malware
‘limitail’ (0, 1) and node 3 is a legitimate windows ‘calcu-
lator’ application (1, 0). Note that both files are hosted in
the same site. This is a common strategy taken by cyber-
criminals to target different platforms; depending on various
criteria set by these cybercriminals, either a benign file or
malicious binary could be dropped. However, such strategy
brings issues to graph-based inference methods. Take SocNL

2399

6

8

2

11
IP: 176.103.56.36

7

1

109

3
4

5

URL: http://api.holycrossservices.com
/dri/donate.php

REFERRER URL: http://vxvault.net/URL_list.php

SHA2:FFF5F…
Filename: DLMOKWEB.exe

SHA2: B100E…
Filename: dsfjfjvsd.exe SHA2: 7F362…

Filename: dsfjfjvsd.exe

SHA2: 793C3…
Filename: crypted120med.exe

SHA2: 37121…
Filename: dsfjfjvsd.exe

URL: http://api.holycrossservices.info
/dri/donate.php

URL: http://api.holycrossservices.org
/dri/donate.php

URL: http://api.holycrossservices.net
/dri/donate.php

infostealer.limitail legitimate windows
calc.exe

(0, 1)
(1, 0)

(0.4, 0.269) (0.44, 0.19)

(0.46, 0.2)

(0.3, 0.49)

(0.53, 0.22) (0.41, 0.21)
(0.41, 0.21)

(0.46, 0.23)

(0.527, 0.172)

Figure 3: Real-world malware delivery network example:
SocNL inference result.

6

8

2

11
IP: 176.103.56.36

7

1

109

3
4

5

URL: http://api.holycrossservices.com
/dri/donate.php

REFERRER URL: http://vxvault.net/URL_list.php

SHA2:FFF5F…
Filename: DLMOKWEB.exe

SHA2: B100E…
Filename: dsfjfjvsd.exe SHA2: 7F362…

Filename: dsfjfjvsd.exe

SHA2: 793C3…
Filename: crypted120med.exe

SHA2: 37121…
Filename: dsfjfjvsd.exe

URL: http://api.holycrossservices.info
/dri/donate.php URL: http://api.holycrossservices.org

/dri/donate.php

URL: http://api.holycrossservices.net
/dri/donate.php

infostealer.limitail legitimate windows
calc.exe

(0, 1)
(1, 0)

(0.306, 0.694)

(0.42, 0.58)

(0.46, 0.54)
(0.25, 0.75)

(0.37, 0.63)
(0.85, 0.15) (0.78, 0.22) (0.82, 0.18)

(0.4, 0.6)

Figure 4: Real-world malware delivery network example:
inference result by the proposed method.

for example, without a node priori information, SocNL can
only use node 1 and node 3’s initial labels leaving the rest
of the nodes unlabelled. As we can see in Figure 3, SocNL
is inclined to infer node 2, 4, and 5 as benign with high con-
fidence scores. Thanks to the node classifiers (see Section 2
for details), our method is able to give each node a priori
bias before label propagation begins. As we can observe in
Figure 4, the proposed method is able to convict node 2, 4,
and 5 as malicious. All three nodes are later confirmed in
VirusTotal as ‘Dridex’ malware. Additionally, the proposed
method is also able to convict node 8 as malicious. However,
this graph connects to the whole malware distribution graph
via a single node (node 1). This creates a propagation bot-
tleneck and the proposed method is thus not able to convict
the rest of the nodes.

5. CONCLUSION
In this paper, we propose a content-agnostic approach to

detect malware by constructing a heterogeneous file distri-
bution graph and leveraging semi-supervised learning on the
built graph. Our work avoids the time-consuming binary
analysis of malicious binaries and, at the same time, has the
advantages of detecting malicious files accurately. It inte-
grates exterior node classifiers for different node types (e.g.,
files, URLs and IP addresses) to reduce uncertainty during
the inference process. The proposed approach is computa-
tionally scalable and can be easily parallelised for large-scale
malware detection applications. We intend to measure the
performance of the proposed method in dynamic networks
where temporal factor is considered.

6. REFERENCES
[1] Y. Bengio, O. Delalleau, and N. L. Roux. Label

Propagation and Quadratic Criterion, pages 193–216.
MIT Press, 2006.

[2] J. Caballero, C. Grier, C. Kreibich, and V. Paxson.
Measuring pay-per-install: The commoditization of
malware distribution. In USENIX Conference on
Security, 2011.

[3] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A
survey on automated dynamic malware-analysis
techniques and tools. ACM Comput. Surv., 44(2),
2012.

[4] L. Invernizzi and P. M. Comparetti. Evilseed: A
guided approach to finding malicious web pages. In
IEEE Security and Privacy, 2012.

[5] L. Invernizzi, S. Miskovic, R. Torres, C. Kruegel,
S. Saha, G. Vigna, S. Lee, and M. Mellia. NAZCA:
Detecting malware distribution in large-scale
networks. In NDSS, 2014.

[6] J. Jang, D. Brumley, and S. Venkataraman. Bitshred:
Feature hashing malware for scalable triage and
semantic analysis. In ACM CCS, pages 309–320, 2011.

[7] A. Kapravelos, Y. Shoshitaishvili, M. Cova,
C. Kruegel, and G. Vigna. Revolver: An automated
approach to the detection of evasive web-based
malware. In USENIX Security, 2013.

[8] D. Kirat, G. Vigna, and C. Kruegel. Barecloud:
bare-metal analysis-based evasive malware detection.
In USENIX Security, 2014.

[9] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and
T. Dumitras. The dropper effect: Insights into
malware distribution with downloader graph analytics.
In ACM CCS, pages 1118–1129, 2015.

[10] Z. Li, S. Alrwais, Y. Xie, F. Yu, and X. Wang.
Finding the linchpins of the dark web: A study on
topologically dedicated hosts on malicious web
infrastructures. In IEEE Security and Privacy, 2013.

[11] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker.
Identifying suspicious urls: An application of
large-scale online learning. In ICML, 2009.

[12] T. Nelms, R. Perdisci, M. Antonakakis, and
M. Ahamad. Webwitness: Investigating, categorizing,
and mitigating malware download paths. In USENIX
Security, 2015.

[13] J. Platt. Probabilistic outputs for support vector
machines and comparisons to regularized likelihood
methods. NIPS, 10(3):61–74, 1999.

[14] C. Rossow, C. Dietrich, and H. Bos. Large-scale
analysis of malware downloaders. In DIMVA. 2013.

[15] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager,
M. G. Kang, Z. Liang, J. Newsome, P. Poosankam,
and P. Saxena. Bitblaze: A new approach to computer
security via binary analysis. In Information systems
security. 2008.

[16] A. Tamersoy, K. Roundy, and D. H. Chau. Guilt by
association: Large scale malware detection by mining
file-relation graphs. In SIGKDD, 2014.

[17] Y. Yamaguchi, C. Faloutsos, and H. Kitagawa. Socnl:
Bayesian label propagation with confidence. In
PAKDD, 2015.

[18] J. Zhang, C. Seifert, J. W. Stokes, and W. Lee. Arrow:
Generating signatures to detect drive-by downloads.
In WWW, 2011.

[19] X. Zhu, Z. Ghahramani, and J. Lafferty.
Semi-supervised learning using gaussian fields and
harmonic functions. In ICML, pages 912–919, 2003.

2400

