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ABSTRACT
There is growing evidence that spear phishing campaigns
are increasingly pervasive, sophisticated, and remain the
starting points of more advanced attacks. Current cam-
paign identification and attribution process heavily relies
on manual efforts and is inefficient in gathering intelligence
in a timely manner. It is ideal that we can automatically
attribute spear phishing emails to known campaigns and
achieve early detection of new campaigns using limited la-
belled emails as the seeds. In this paper, we introduce
four categories of email profiling features that capture var-
ious characteristics of spear phishing emails. Building on
these features, we implement and evaluate an affinity graph
based semi-supervised learning model for campaign attri-
bution and detection. We demonstrate that our system,
using only 25 labelled emails, achieves 0.9 F1 score with a
0.01 false positive rate in known campaign attribution, and
is able to detect previously unknown spear phishing cam-
paigns, achieving 100% ‘darkmoon’, over 97% of ‘samkams’
and 91% of ‘bisrala’ campaign detection using 246 labelled
emails in our experiments.

CCS Concepts
•Security and privacy → Phishing;

Keywords
spear phishing emails, semi-supervised learning

1. INTRODUCTION
Spear phishing emails refer to the emails, appearing legiti-
mate, sent to targeted individuals using relevant contextual
information to trick them into disclosing sensitive informa-
tion to the attackers or installing malware on their com-
puters. After thorough reconnaissance profiling where the
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victims work, what their rankings are within the organi-
sation, what they are interested in, etc., attackers usually
sent out a small number of spear phishing emails to tar-
get a small number of carefully chosen individuals or groups
to gain stealthy access. These emails can even be sent from
legitimate email addresses from compromised machines. At-
tachments of these spear phishing emails usually contain
previously unknown exploits that evade AV engines detec-
tion and are handcrafted for specific organisations.

There are growing evidences that these spear phishing cam-
paigns are increasingly pervasive [25], sophisticated [10], and
remain the starting points to more sophisticated attacks
leading to damaging losses in terms of identity theft, sen-
sitive intellectual property and customer information, and
national-security secrets [16]. Conventional spam detection
techniques, such as filtering emails sent by botnets [19, 11],
behavioural blacklist [20, 12], reputation-based methods [9,
18], linguistic stylometry attribution [17, 2], are less effective
to detect spear phishing emails. For example, spear phish-
ing emails sent from compromised machines render botnet or
reputation-based methods ineffective. Research on phishing
has covered various aspects of phishing attack - social en-
gineering [13], psychology [26], economics [1], awareness [5]
and counter measures [14, 27, 15]. Those techniques mainly
focused on preventing deceptive phishing from redirecting
users to fake Websites through an embedded link within the
email, and can not be easily adapted to campaign attribu-
tion and identification.

It is important to identify series of attack campaigns that are
likely performed by the same organisations as early as possi-
ble to understand their TTP (Tactics, Techniques and Pro-
cedures), and devise countermeasures accordingly. However,
in the real world, spear phishing campaign attribution tasks
require considerable time and manual efforts to incorporate
various aspects such as backchannels, static/dynamic mal-
ware analysis results, shared intelligence, etc. Consequently
only a small number of suspicious emails are attributed and
majority of them are left not investigated. With limited
data accumulated in the manual investigation process, it is
difficult to apply off-the-shelf machine learning techniques
(e.g. SVM [8], Naive Bayes [3]) to achieve automated spear
phishing campaign identification since they require a large
amount of labelled data to train the models so as to reach
high accuracy.

We are particularly interested in two challenges relating to
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spear phishing campaign attribution in this paper: 1) can
we build a campaign attribution system that requires lim-
ited data to train and can achieve high classification accu-
racy? 2) at the same time, can we use this model to identify
previously unknown campaigns from these unlabelled spear
phishing emails? To tackle these challenges, we first iden-
tify four categories of features profiling the characteristics
of spear phishing emails in a holistic way. They are not
only devised to capture various aspects of a spear phishing
email but also are robust to the evolution of spear phish-
ing campaigns. We then design and implement an attribute
graph based semi-supervised learning framework to effec-
tively identify and attribute campaigns.

In this paper, we demonstrate that our proposed method, us-
ing only 11 spear phishing emails from 5 different campaigns
as the training data (1% of manually labelled emails), can
effectively identify 90% of spear phishing emails belonging
to these campaigns in the unlabelled data, while keeping a
low FP less than 0.02%. It is important to note that our
system is able to achieve early detection since limited la-
belled emails are required. We also demonstrate that our
proposed method can accurately detect previously unknown
spear phishing campaigns (e.g. over 97% of ‘samkams’ cam-
paign and 91% of ‘bisrala’ campaign) from unlabelled data
requiring only 336 emails (i.e. 25% of manually labelled
emails), effectively reducing 75% manual labelling efforts.

In summary, this paper makes the following contributions:

• We propose four categories of email profiling features
covering meta-information about origin, recipient, con-
tent and attachment of a spear phishing email. They
form a holistic description of email characteristics, and
provide a solid base for automated campaign attribu-
tion and identification.

• We propose an attribute graph based semi-supervised
learning (SSL) framework to improve the applicability
of machine learning based methods in spear phishing
campaign attribution with limited labelled emails.

• We use the proposed SSL framework to gain insights
on spear phishing emails from different campaigns, and
demonstrate how previous unknown spear phishing cam-
paign can be detected via a detailed case study.

The rest of the paper is organised as follows. In Section 2
we state our goals and present the overall threat intelligence
and attribution system. Section 3 formally presents the chal-
lenges and details our methodology. Section 4 presents ex-
perimental results. We provide a case study on how to iden-
tify newly emerged campaign using the proposed method.
We provide a detailed case study in Section 5 and conclude
our work in Section 6.

2. MODEL OVERVIEW
In this section, we articulate the goals of our research and
present an overview of the spear phishing campaign attribu-
tion and identification model.

Problem Statement. Current spear phishing investiga-
tion process is hampered by considerable manual efforts from

security experts to incorporate various aspects such as backchan-
nels, static/dynamic malware analysis, shared intelligence,
etc. In this paper, we focus on using the features extractable
from spear phishing emails to build an automated spear
phishing campaign attribution model to effectively and au-
tomatically attribute unlabelled suspicious emails to known
campaigns or identify newly emerged spear phishing cam-
paigns.

We also have some non-goals: in this paper, we do not aim to
analyse the attachments and the payloads further dropped
by these attachments, or network-level activity information.
Rather, our main goal is to use an attribute graph based
semi-supervised learning framework to accurately and au-
tomatically attribute unlabelled suspicious emails to either
known or newly emerged campaigns.

System Architecture. Fig. 1 shows the overall work
flow of campaign attribution system. Given a group of la-
belled spear phishing emails (from known campaigns) and
unlabelled suspicious emails mixed together, email profiling
module extracts features from each input email and gen-
erates vectorised emails. Benign email filtering module is
employed at first to filter out benign emails and identify
spear phishing emails from the input data. Detected spear
phishing emails are then fed into the following unknown cam-
paigns identification module to verify whether they emerge
from any known campaigns or brand-new campaigns. If they
belong to previously unknown campaigns, new campaign la-
bels are assigned. If classified as known campaigns, known
campaign attribution module is later employed to attribute
the spear phishing emails into known campaigns.

For each analytical module in the flowchart, semi-supervised
learning is performed following the same process. A K-
Nearest-Neighbouring (KNN) attribute graph is constructed
based on the email profiling features. Each node represents
an email, and an edges represents similarity between nodes.
The topological structure of the attribute graph represents
distribution of email samples in email profiling feature space.
Instead of selecting labelled seeds in emails by pure ran-
dom sampling, a heuristic sampling scheme is applied, al-
lowing automatically locate key emails representing typical
campaign profiles. The system propagates label information
within the attribute graph, and attribute emails to respec-
tive campaigns.

3. METHDOLOGY
Affinity relation between email instances helps to model
classes’ distribution in the feature space given limited la-
belled email samples. Similar email samples tend to be
categorised into the same class. In our work, we propose
a affinity graph based semi-supervised learning method to
build classifier for spear-phishing analysis.

3.1 Building spear phishing email profiles
Four categories of email profiling features: origin features,
text features, attachment features and recipient features, are
used to characterise a spear phishing email.

Origin features. These features are from domain, source
ip, Autonomous System (AS) number, origin country, organ-
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Figure 1: Flowchart of spear phishing email analysis.

isation maintains the AS and sent date of the email. Note
that Stringhini et al. [23] didn’t use origin features as their
approach is user centric and did not have access to such in-
formation; in contrast, our proposed method assumes that
the system has a global view of different spear phishing cam-
paigns. Additionally, time related features are proven useful
to identify candidates of spear phishing attacks. Attackers
maximise the chance that the victims would read emails dur-
ing working hours. We extract day of week from the sent
date as an additional categorical feature.

Text features. Spear phishing emails are tuned to simulate
casual email communication so as to enable the recipient
to “infer the true nature of the email, based on a ‘lens’ of
information (or information cues) that intercedes between
the email and the internal perceptions” [26]. Inspired by
this, we propose the following features to capture the text
characteristics of a spear phishing email.

i) Layout features. We extract length of subject and body
text of each email as layout features. These two are the
essential visual triggers of a spear phishing email.

ii) Topic features. We merge subject and body text of a
spear phishing email and treat the combined text as a docu-
ment. Latent semantic indexing (LSI) [22] is then applied on
the derived documents to find out email topics. We empir-
ically choose top 10 topics and used them as topic features
for each email in this paper.

iii) Readability features. Emails from different spear phish-
ing campaigns usually have different styles of text writing
and organising habits. In light of this, 8 text readability
features are used to describe quantitatively the text writ-
ing and organisation style . They involve Count of function
words[21], Count of complex and simple words, Average word
length, Fog readability index, inverse Fog Index, SMOG in-
dex and Flesph-Kincard index (FKRI)[21].

In addition, we also use categories of character encoding of
email texts to extend description of email texts’ character-
istics.

Attachment features. Email attachment is also an im-
port information source. We measure the size in bytes and
extract the type of attachment as features. Additionally, we
malware family as an additional categorical attribute. In
most cases, malware family is not presented. We cluster at-
tachments based on their fuzzy hash similarity, and assign
a label to each cluster as a malware family.

Recipient features. These categorical features include

recipient’s domain and organisation information. We use
them to validate the targeted characteristics of a spear phish-
ing email since the contextual information provided in such
emails should match the recipient’s organisational interests.
Note that recipient’s detailed domain information is anonymised
for privacy and security reasons.

3.2 Attribute graph propagation based semi-
supervised learning

We firstly construct affinity graph of training data instances.
Each node of the graph represent an email i (i = 1, 2, 3..., n).
The attribute of the node is email profiling feature vector xi
as stated in Section 3.1. The edge weight in the graph re-
flects the similarity between two emails. Each node can be
labelled or unlabelled. Note that labelled means a spear
phishing email has been attributed to a campaign, other-
wise it is unlabelled. Let L and U denote the labelled and
unlabelled emails, and importantly, |L| � |U|. yi denotes
the true class label of an email (i.e. to which campaign the
email belongs). It is encoded as a M -dimensional 0/1 vec-
tor for M -class classification. That is, if the email sample i
belongs to the m-th class, yi,j=m = 1 and yi,j/m = 0. For
emails in L, {xi, yi}i∈L, yi is provided either from human
experts or any other sources. Class labels of emails in U are
unknown and treated as the learning target of the proposed
model. ŷi is the estimated class label of each email sample
i and is also encoded as a M -dimensional 0/1 vector.

We use K-nearest-neighbour (KNN) graph for learning pur-
pose in our work. That is, each node is connected only to its
K nearest neighbouring node in the graph. Similarity mea-
sure between linked nodes is calculated using Eq.1 and Eq.2,
in order to handle both categorical and numerical attributes
in email profiling features:

Si,j = exp (−Di,j
2

σ2
) (1)

Di,j = γ
∑
t∈C

h(xi,t, xj,t) +
∑
t∈R

d(xi,t, xj,t) (2)

where Di,j is the weighted distance between email profiling
feature vector xi and xj of two emails i and j. C and R
denote the set of categorical and numerical attributes re-
spectively. h(·) is hamming distance between categorical
variables. d(·) is cosine distance between numerical variales.
γ is a user-defined weight balancing variable between cate-
gorical and numerical attributes in email profiling features.



As shown in Eq.1, the distance Di,j between the two emails
is mapped to a similarity score Si,j between 0 and 1 through
a gaussian function kernel. Once we have the KNN graph
built, class label information is propagated in the graph

Our objective function to solve the class label estimation
problem in KNN graph is shown in Eq. 3:

Ŷ =

first term︷ ︸︸ ︷
min
Ŷ

∑
i∈L,m={1,2,3..,M}

‖yi,m − ŷi,m‖2

+

second term︷ ︸︸ ︷
w1

∑
i∈{L

⋃
U}

∑
j∈Ni

Si,j‖ŷi,m − ŷj,m‖2

+

third term︷ ︸︸ ︷
w2

∑
i∈{L

⋃
U}

‖ŷi,m − u‖2

(3)

where Ŷ = {yi}, i ∈ {L
⋃
U} represents the estimated class

labels of both labelled and unlabelled emails. Ni represents
all nearest neighbours connected to xi in the KNN attribute
graph. ‖u− v‖2 denotes euclidean distance. The first term
of Eq. 3 requires the estimated class labels ŷi of the labelled
data to be consistent with the corresponding true label yi
of L. The second term, a graph Laplacian constraint [28],
forces similar emails to have same class labels. The third
term represents uncertainty of class label estimate u is val-
ued as 1

M
. It encourages ŷi to be assigned to each class with

equal probability if not preferred to the contrary by the first
two terms. This regularisation term is specially necessary
for sparsely connected KNN graph, which prunes connec-
tion with low similarity, the side effect is disconnecting some
unlabelled nodes from labelled nodes and their neighbours.
The third term ensures the class label estimation of such iso-
lated nodes follow uniform distribution. Empirically, these
disconnected emails correspond to the emails emerging from
previously unknown campaigns. Preserving uncertainty of
class assignment is helpful to detect these spear phishing
emails of unknown campaigns. w1 and w2 are regularisation
coefficients, balancing trade-off between the last two regu-
larisation constraints on the class label estimates and the
supervised term. Eq.4 gives the solution to Eq.3, iteratively
updating class label estimate of the unlabelled emails.

ŷi =
yiδi + w2u+ w1

∑
j∈Ni

Si,j ŷj

δi + w2 + w1

∑
j∈Ni

Si.j
(4)

where δi = 1 if i ∈ L (0, otherwise). Class label of each
unlabelled node xi is finally decided using Eq.5:

m = arg max
m=1,2,..,M

ŷi,m (5)

4. EXPERIMENTS

4.1 Dataset
Datasets. We obtain two datasets from Symantec’s enter-

Campaign name Number of emails

krast 157
CommentCrew/APT1 125

layork 139
Elderwood 770

nitro 153
bisrala 12

darkmoon 33
samkams 78

Table 1: Summary of collected spear phishing email samples

prise email scanning service1. Spear phishing email dataset,
denoted as S, contains 1,467 spear phishing emails from 8
campaigns. Each email is manually examined by security
experts and attributed to a specific campaign with strong
confidence. Campaigns vary from large persistent campaign
like ‘Elderwood’ to small scale ‘darkmoon’ campaign. Be-
nign email dataset, denoted as B, contains 14,043 emails.
These emails were also sent between 2011 and 2013, and
have attachments. It is important to note we preserve class
imbalance between spear phishing email dataset and benign
email dataset, and among different campaigns within spear
phishing email dataset as well. For example, ‘Elderwood’
campaign contains more than 60 times of emails than that of
‘bisrala’ campaign in our data set (as shown in Table 1), and
benign emails are 10 times the size of spear phishing emails.
It is purposely designed to simulate imbalanced data, a com-
mon issue in practical security applications, in order to test
real world robustness of the proposed semi-supervised learn-
ing framework besides its learning accuracy.

4.2 Experiments Overview
Organisation of the experiments. We design three ex-
periments to verify the validity of the proposed semi-supervised
learning approach.

• Experiment 1 - Spear phishing email identification
(Section 4.3) aims at differentiating spear phishing email
from benign emails. That is, given a set of emails
mixed with both benign emails and spear phishing
emails, the learning framework identifies spear phish-
ing emails while filtering out benign ones.

• Experiment 2 - Unknown campaign identification
(Section 4.4) is designed to verify whether the detected
spear phishing emails are from previously unknown
campaigns. Newly emerging campaigns indicate po-
tential zero-day exploits, and they are of high interests
for further security analysis.

• Experiment 3 - Known campaign attribution (Sec-
tion 4.5) focuses on analysing spear phishing at finer
granularity. The learning framework attributes spear
phishing emails into specific known campaigns.

We employ random forest, a popular supervised learning
method as baseline for comparison purpose in Experiment 1
and Experiment 3. It is important to note that supervised

1All PII and customer information are anonymised in these
two datasets.



learning methods, such as random forest, can not identify
unknown campaigns. We provide detailed explanation in
Experiment 2.

Evaluation Methodology. For each experiment, we have
a pre-defined percentage list P = {p1, p2, ..., pk}, pi ∈ (0, 1)
and pi < pj if i < j. Each pi controls the number of labelled
emails extracted from S and B. A smaller pi indicates less
manual effort required to label spear phishing emails by se-
curity experts. We sample S and/or B with replacement
for a given percentage pi to form L, and treat the rest of
emails as U. We then train the proposed method and the
baseline method using L, generate the performance metrics
with respect to the test data U, and repeat this process 20
times. We average their performance metrics and use them
for comparison study.

Parameters. For Experiment 1, we set the number of class
M to be 2. For Experiment 3, M is set to the number of
spear phishing campaigns. For Experiment 2, since there
is only one class ‘known campaign’ existing in the labelled
data, the true class label yi of each labelled email sample
i in L is a scalar value in this case and set to be 1 for
computational convenience in our work. The estimated class
label ŷj of each unlabelled email sample j is also a scalar
value. The closer the derived ŷj is to 1, the more likely
that the corresponding unlabelled email j comes from one of
the known campaigns. For decision purpose, we choose the
best threshold on the derived ŷj to achieve optimal trade-off
between precision and false positive rate. In all experimental
analysis, γ (see Eq.2) is set to be 0.7 and the number of
nearest neighbours K is set to be 10.

Evaluation metrics. Since the true labels of emails in both
S and B are known, we are able to use quite a few evalua-
tion metrics to measure the performance. We report recall
and false positive rate (FPR) in Experiment 1 and Exper-
iment 2. Recall directly evaluates identification/detection
sensitivity, while FPR measures reliability of the identifica-
tion/detection results. For Experiment 3, since campaign
attribution is a multi-class classification test, in addition to
recall and FPR, we also apply F1 score [7] to form compre-
hensive evaluation of classification performance.

4.3 Spear Phishing Email Identification
Experimental Setup. We uniformly sample a given per-
centage p from S and B (Section 4.1) to generate the initial
labelled data L. Spear phishing emails are labelled with ‘+1’
and benign emails are labelled with ‘-1’ in L. The rest of
the data in S and B are treated as unlabelled data U and
used as our test data. The purpose of using a percentage
p is simulating limited labelled training data. We ensure
that at least one email is sampled for each class (i.e. be-
nign and spear phishing) in L. Random forest is used as
the baseline method to evaluate the merits of the proposed
semi-supervised learning method. In this task, a 2000-tree
random forest2 is trained on L and applied on U to identify
spear phishing emails.

Experimental Results. We report the experimental re-
sults in Table. 2 as p is chosen from 1%, 2% 3%,4%,5%

22000-tree random forest is chosen as it empirically as yield
the best classification result.

and 6% respectively. When the number of the labelled data
L is limited, e.g. when p is equal to 1% or 2%, recall of
random forest is distinctively lower than 80%. The major
cause is the class imbalance between spear phishing emails
and benign emails in the data set. There are 9 times more
benign emails than spear phishing emails in our data. Es-
pecially when limited labelled emails (i.e. L) are available,
class imbalance issue becomes even more problematic to su-
pervised methods, i.e. random forest in this case, since they
are trained directly on the imbalance set easily biased to-
wards benign class, consequently giving low identification
precision for spear phishing class.

Notably, our proposed method achieves superior identifica-
tion accuracy for all 6 levels of labelled data percentage.
Especially, when p is fixed to 1% (that is, using only 11 out
of original 1,467 spear phishing emails), our method man-
ages to achieves a high recall of 90%, while keeping a low
FP less than 0.02%. As shown in Table. 2, our method has
a stable recall level when p is greater than 4%, with recall
larger than 96%. The results demonstrate that our proposed
method can effectively identify spear phishing emails using
limited and imbalanced training data.

4.4 Unknown Campaign Detection
Few supervised learning methods handle this one-class den-
sity estimate problem in previous machine learning research.
One-class SVM [4] and one-class random forest [6] are the
most popular variants of supervised learning applied to at-
tack this issue. However, one-class SVM can not handle
categorical types of input attributes due to the limitation
of SVM design. One-class random forest needs strong prior
knowledge about data distribution of unseen class samples,
which is not presented in unseen spear phishing campaign
detection. Both methods don’t fit our requirements. There-
fore, we don’t involve a supervised learning baseline in the
experiment.

Experimental Setup. We choose ‘krast’, ‘CommentCrew/
APT1’, ‘layork’, ‘Elderwood’ and ‘nitro’ campaigns in S as
known campaigns, denoted as KC and treat the other three
campaigns as unknown campaigns to be detected, denoted
as UC. KC is randomly divided into two parts, KCL and
KCU . KCL forms our labelled data L simulating limited
attributed spear phishing emails in threat intelligence inves-
tigation. KCU together with UC forms our unlabelled data
U, simulating to-be-investigated spear phishing emails con-
taining both known and unknown campaigns. Each email
sample in L is labelled as ‘+1’ (i.e. known) regardless spe-
cific campaigns they belong to.

In this experiment, we require that L is minimum 25% of
KC. There are two major reasons to justify such require-
ment. First of all, different from binary or multi-class classi-
fication, more labelled data are needed to describe distribu-
tion of the known campaigns. False positive rate becomes
too high for detection use when emails from known cam-
paigns are extremely limited. Secondly, unknown campaign
detection is used as a successive step following the identi-
fication phase (Experiment 1). Its purpose is to verify the
existence of novel campaigns. Hence it doesn’t require extra
labelling efforts from domain experts. Nevertheless, we as-
sume that |L|<|KC| and UC are less than 8% of the whole



p Avg. no.
of labelled
emails

Avg. recall
(RF)

Avg. FPR
(RF)

Avg. recall
(SSL)

Avg. FPR
(SSL)

1% 11 0.7987 3.6247e-05 0.8700 4.3950e-05
2% 21 0.8000 4.3632e-05 0.8910 4.4910e-05
3% 32 0.8323 4.7608e-05 0.9106 5.1077e-05
4% 43 0.9251 6.3137e-05 0.9460 7.0652e-05
5% 53 0.9399 9.0109e-05 0.9607 9.0109e-05
6% 65 0.9483 8.7266e-05 0.9707 8.7266e-05

Table 2: Average spear phishing email identification performance metrics

Unknown
campaign

Percentage
of unknown
emails in U

Avg. Recall Avg. FP

darkmoon 3.27% 100% 1.34%
samkams 7.73% 97.44% 0.87%
bisrala 1.19% 91.67% 5.65%

Table 3: Average unknown campaign detection performance
of the semi-supervised learning method

unlabelled email set U. The purpose is to demonstrate that
the proposed method reduces considerable labelling efforts
while preserving high precision for the unknown campaign
detection problem and observe how it performs given class
imbalance between the known (1,344 emails) and unknown
campaigns (132 emails).

Experimental Results. Table. 3 illustrates the experi-
mental results. Using only 336 known campaign emails, the
proposed semi-supervised learning method provides excel-
lent detection accuracy for all three campaigns. No sam-
ple of ‘darkmoon’ escapes from detection. Over 97% of
‘samkams’ and 91% of ‘bisrala’ are detected correctly. The
false positive rates are limited. For ‘darkmoon’ campaign,
only 13 email samples among 1,008 spear phishing emails
of known campaigns are misclassified as ‘unknown’. For
‘samkams’ campaign detection, only 9 emails among 1,008
emails from known campaigns are misclassified as ‘unknown’.
For ‘bisrala’ campaign detection, false positive rate is rela-
tively higher that the other two, while still at a ver low ratio.
56 out of 1,008 email samples of known campaigns are mis-
classified. Notably, ‘bisrala’ campaign has only 12 samples.
91.67% recall means only one false rejection out of 12 email
samples in this campaign.

4.5 Campaign Attribution
Experimental Setup. Following the setup in experiment
2, we apply the proposed semi-supervised learning frame-
work on 1,344 emails from the 5 largest spear phishing cam-
paigns, denoted as KC. The rationale behind this setup is
that all input emails experiment 3 shall be spear phishing
emails from known campaigns (see Fig. 1). Initial labelled
data L are sampled from KC uniformly with a given per-
centage p. L must contain at least one sample from each
campaign and their campaign names are used as the labels.
The rest of KC (i.e. 1,344 *(1-p)) form the unlabelled set U.
The learning target is to estimate campaign labels for emails
in U. The supervised baseline solution remains a 2000-tree
random forest built on the labelled data L.

p Average F1
score (RF)

Average F1
score (SSL)

1% 0.6829 0.8169
2% 0.7928 0.9031
3% 0.8153 0.9084
4% 0.8748 0.9276
5% 0.9008 0.9331
6% 0.9038 0.9326

Table 4: Average F1 score of campaign classification

Experimental Results. Table. 4 lists average of the over-
all multi-class F1 score with respect to all 5 campaigns at
each percentage level. From a global viewpoint, our sys-
tem performs consistently better than its supervised coun-
terpart for all given p. Especially, with merely 25 out of
1,344 emails, (2% of the whole dataset), our semi-supervised
learning method can improve F1-score from random forest’s
0.79 to 0.90. And our method keeps producing a stably high
classification accuracy when the number of the labelled seeds
is over 4% of the whole dataset, around 53 labelled emails
out of 1,344 emails.

Figure. 2 illustrates campaign-wise F1 scores. Our system
achieves significant improvement of classification accuracy at
all campaigns given labelled emails L using no more than 54
emails (p=4%) from 5 campaign as seeds. Especially, given
p=2%, our system achieves 100% better F1 score than the
supervised random forest for ‘CommentCrew/APT1’ and
‘Layork’. For ‘Elderwood’ campagin, our system achieves
almost perfect classification with F1 score close to 1 using
merely 14 emails (p=1%) from 5 campaigns. Both learn-
ing methods provide similar accuracy for ‘nitro’ campaign.
However, the improvement of F1 score for ‘nitro’ is more
significant when p ranges from 2% to 4% (e.g. size of L is
between 26 and 54 emails). It demonstrates that our affin-
ity graph based semi-supervised learning model can achieve
effective campaign attribution given only limited labelled
emails, which in turn, reduces the overheads of manual la-
belling efforts.

We demonstrate average confusion matrices of the semi-
supervised learning method and random forest in Table. 5,
given p=4% (e.g. L has 54 emails). For both methods,
the campaign ‘layork’ is often misclassified as the campaign
‘krast’, which leads to deterioration of attribution perfor-
mance. Consistently, as shown in Figure. 2, these two
campaigns are the most difficult classes to distinguish in
our work. The emails from these two campaigns share con-
siderable similarity such as ‘body text’, readability indices,
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(a) Krast campaign.
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(b) CommenCrew/APT1 campaign.
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(c) Layork campaign.

Figure 2: Average campaign-wise F1 score with different number of labelled emails.

Campaign class Krast CommentCrew/APT1 Layork Elderwood nitro

Krast 68.75% 12.32% 2.85% 5.95% 10.13%
CommentCrew/APT1 19.87% 72.90% 0.69% 4.60% 1.94%

Layork 21.66% 17.61% 49.35% 5.86% 5.52%
Elderwood 0.1% 0% 0% 99.90% 0%

nitro 0.52% 0% 0% 1.15% 98.33%

(a) Confusion matrix of the supervised random forest

Campaign class Krast CommentCrew/APT1 Layork Elderwood nitro

Krast 75.87% 10.35% 5.45% 4.17% 4.16%
CommentCrew/APT1 7.55% 90.66% 1.74% 0% 0.05%

Layork 16.01% 8.23% 71.21% 0.10% 4.45%
Elderwood 0.25% 0.01% 0% 99.74% 0%

nitro 0.55% 0% 0% 0.82% 98.63%

(b) Confusion matrix of the semi-supervised learning method

Table 5: Confusion matrix based campaign-wise classification performance measurement

etc. When two spear phishing emails from two different
campaigns share similar features, e.g. topic, readability
features, malware related features are overwhelmed by the
aforementioned text features. Furthermore, when emails are
extremely short, like one sentence or several phrases, the
text features become much less stable and less informative
for classification. One potential solution is to weight com-
plementary email features to build classifiers. This is part
of our future work.

5. ONLINE DETECTION RESULTS AND DIS-
CUSSION

Online Detection. We put our system into an opera-
tional test to detect unknown spear phishing campaigns.
We trained our model using 2% of S and run it in an online
mode to filter incoming suspicious emails. Since we are sim-
ulating online detection, we use a collection of 1,534 emails
(collected in January 2014) from Symantec enterprise ser-
vices as the test data. These emails have been investigated
by security experts but the true labels are withheld during
the test phase. Our system identifies an unknown campaign
with 5 emails, which are later confirmed as the ‘waterbug’
campaign [24]. In terms of ‘waterbug’ emails, they have
both distinct email contents and different attachments com-
pared with the other campaigns (e.g. the campaigns of S
that we used to train the model). Surprisingly, one of the
5 ‘waterbug’ emails have a different type of attachments (in
RAR format) from the other 4 (in PDF format). However,

features relating to layouts and semantic characteristics are
able to compensate the difference of email attachments dur-
ing the affinity graph propagation process. As a result, all
‘waterbug’ emails present high intra-class similarity and are
well separated from the other campaigns.

Discussion. In general, our system are able to identify the
most informative email profiling features to attribute cam-
paigns. These feature include length of email subject, length
of email body text, readability features of email body text,
sender’s IP address and the corresponding Autonomous Sys-
tem number, character encoding, file size, file type and mal-
ware family of email attachments. Attachment related fea-
tures, especially malware families and file types of the email
attachments, are highly correlated to the concrete exploit-
ing strategies of the spear-phishing attacks. For example,
a spear phishing campaign is likely to use a specific exploit
and pack the code in a generic format (e.g. PDF, Excel)
available to the users. Since our system uses fuzzy hashes
to group email attachments, not surprisingly, these features
are thus good indicators of spear-phishing campaigns. More-
over, spear phishing campaigns disguise themselves as emails
from an individual or organisation that the recipients should
know or be interested in. Layouts and semantic characteris-
tics of email text, including email readability, email topics,
length of email texts and the character encoding schemes,
describe psychological pertinence of spear phishing attacks
to the targeted users [26]. These features are also ranked
high in our proposed model. Interestingly, sender’s IP ad-



dress and AS number features also contribute to campaign
attribution. We partially speculate that the attackers are
likely sent a small batch of emails from the same address
due to the targeted nature of such campaigns.

6. CONCLUSIONS
In this paper, we developed an affinity graph based semi-
supervised learning approach based on a well designed email
profiling features. The proposed model can effectively iden-
tify spear phishing emails, detect emails of previously un-
known campaigns and attribute them to known campaigns
accurately. Extensive experiments show the proposed semi-
supervised learning performs better than the state-of-the-
art supervised learning based solution by reducing manual
labelling overheads to much extent and preserving high clas-
sification accuracy at the same time. Our method is insen-
sitive to concrete distribution forms of campaigns in email
profiling feature space, which makes the proposed method
robust against evolution of spear phishing campaigns.
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