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ABSTRACT

Modern password guessing attacks adopt sophisticated prob-
abilistic techniques that allow for orders of magnitude less
guesses to succeed compared to brute force. Unfortunately,
best practices and password strength evaluators failed to
keep up: they are generally based on heuristic rules designed
to defend against obsolete brute force attacks.

Many passwords can only be guessed with significant ef-
fort, and motivated attackers may be willing to invest re-
sources to obtain valuable passwords. However, it is em-
inently impractical for the defender to simulate expensive
attacks against each user to accurately characterize their
password strength. This paper proposes a novel method to
estimate the number of guesses needed to find a password
using modern attacks. The proposed method requires little
resources, applies to a wide set of probabilistic models, and
is characterised by highly desirable convergence properties.

The experiments demonstrate the scalability and general-
ity of the proposal. In particular, the experimental analysis
reports evaluations on a wide range of password strengths,
and of state-of-the-art attacks on very large datasets, includ-
ing attacks that would have been prohibitively expensive to
handle with existing simulation-based approaches.

1. INTRODUCTION

After years spent on unsuccessful attempts to overcome
password-based authentication, researchers have come to ac-
cept that, in the foreseeable future, passwords will still be
used in a large class of scenarios [12]. The recent pub-
lic leaks of very large password datasets (the latest one
in February 2015 involved ten million passwords along with
usernames [3]) can only exacerbate the well-known security
problems of password authentication.

Often, attackers can perform guessing attacks, i.e., at-
tempt to guess a password by trying a large number of can-
didates. Examples include cases where an attacker wants
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to find the password that protects a wireless network or the
master password that unlocks a password manager, or cases
where the attacker has access to a list of hashed passwords
or to a laptop where data is password-encrypted. Advanced
probabilistic guessing schemes [18, 19, 21, 28, 30] use leaked
password lists as training sets, improving their capability to
guess even passwords that have not been leaked.

While passwords remain a key part of security infrastruc-
tures and attacks become more and more efficient, solutions
designed to help users choose better passwords are still un-
satisfactory. “Best practices,” such as mixing uppercase and
lowercase letters with digits, were conceived to defend users
from brute-force attacks that have progressively become ob-
solete. Against current attacks, these practices strike bad
trade-offs between usability and security [10,11,29].

A promising direction that motivates this work is repre-
sented by password meters. Evidence shows that users are
influenced in their password choice when informed about
their “strength” [9,27]. Although password meters encour-
age users to choose better passwords, their output is often
questionable as it is not a reliable assessment of the effort
that attackers need to break a password [6].

These considerations suggest what the objective of pass-
word meters should actually be, and yield the following
widely accepted definition of password strength [1,7,15,18,
19,28,29]: password strength is defined as the number of at-
tempts that an attacker would need in order to guess it. The
definition underlies a guessing strategy, and indicates that
it is possible to compute password strength by emulating it;
however, such an approach is very expensive and — even after
considerable computational efforts — the strength of a sub-
stantial fraction of unguessed passwords remains unknown.
For this reason, as we discuss in Section 2, existing litera-
ture does not provide a satisfactory solution to the problem
of efficiently evaluating password strength.

The best known guessing attacks adopt probabilistic ap-
proaches [18,19, 21,28, 30], which model ways users choose
passwords, resulting in an assignment of a probability to any
password. These probabilities are then used by guessing at-
tacks to determine in what sequence passwords should be
tried. Based on the above definition of password strength,
this paper proposes a novel way to efficiently and accurately
evaluate the strength of any password against a given prob-
abilistic attack. Our method, described in Section 3, esti-
mates password strength by sampling from the model, i.e.,
generating random passwords according to the probabilities
assigned by the model. The appealing properties of our pro-
posal are computational efficiency and accuracy. Computa-



tional efficiency stems from the fact that the sampling step is
cheap and can be precomputed; once this is done, computing
password strength is as cheap as an array lookup through bi-
nary search. Accuracy can be rigorously characterized using
the theory of Monte Carlo sampling, and a key result of the
paper is that our estimate of password strength converges
to the correct value with a convergence rate of O (1/4/n), n
being the number of passwords in the sample.

We evaluate our method by considering very large datasets
of leaked passwords, and state-of-the-art attacks such as the
n-grams proposed by Narayanan and Shmatikov [21], the
probabilistic context free grammars by Weir et al. [30], and
the “backoff” model proposed by Ma et al. [19] (for which
we propose an improvement). Details on the evaluation are
available in Section 4.

In Section 5, we use our method to perform an extensive
empirical evaluation. In the first part of Section 5, we em-
pirically analyze the precision of our method: we find that
sample sizes as small as 100-1,000 are sufficient to obtain
password strength estimates in the right order of magni-
tude, which is suitable for the implementation of a strength
meter. More accurate results can simply be obtained by in-
creasing the sample size, yielding a relative error around 1%
when the sample size is 100,000.

In the second part of Section 5, we use our method to
compare the performance of attack models, overcoming the
limitations of existing studies, as discussed in Section 2.2.
We study passwords that are extremely difficult to guess (re-
quiring up to 2%° attempts), and we find that no approach is
a clear winner. Depending on the number of guesses that an
attacker can afford, different approaches become preferable.

In the third part of Section 5, we analyze the importance
of training sets with respect to attack effectiveness; we show
that larger training sets improve attacks against “average”
passwords, whereas not much is gained for passwords that
are either particularly easy or hard to guess.

We conclude Section 5 by assesssing the impact of tra-
ditional restrictions (i.e., limitations on length or classes of
character composing the password) by evaluating the im-
provements in password strength that such restrictions can
obtain: the results suggest that length requirements are
more advisable than those about character composition.

Contributions. Our main contributions are:

1. A sound method to compute password strength, ac-
cording to the consensus definition of robustness against
guessing attacks. The method is lightweight and easy
to implement, and we provide theorems to prove its
correctness and approximation level.

2. An empirical evaluation of the accuracy of our method,
including the trade-off between computation cost and
precision. We show that accurate estimations can be
obtained at a low computational cost.

3. An extensive empirical evaluation comparing state-of-
the-art attack models, impact of training set and of
restrictions in password choice. Our method allows
performing this analysis while overcoming the limita-
tions of previous research discussed in Section 2.2.

2. RELATED WORK

We first outline the state of the art in terms of password
guessing in general (Section 2.1); we then focus on studies
that gauge password strength, highlighting the limitations
this work improves on (Section 2.2).

2.1 Password Guessing

The first studies on password guessing attacks date back
to 1979, when Morris and Thompson [20] reported that it
was already possible for computers to guess “a substantial
fraction” of the passwords that were used in Unix systems
through brute force and dictionary attacks; similar stud-
ies after more than two decades show that not much has
changed in the meanwhile [16,26].

Rainbow chains [22] are a technique that allows to effi-
ciently memorize a very large set of pre-computed password
hashes and find passwords that appear in them. They are
defeated by the technique of salting, i.e. appending a ran-
dom string of bits to passwords before computing their hash.

More recently, probabilistic attacks have been proposed to
drastically reduce the number of guesses for passwords that
are long and/or do not appear in dictionaries: notable exam-
ples are attacks based on n-gram models [21] and probabilis-
tic context-free grammars (PCFGs) [30]. These approaches
build a model through a training set of passwords in clear-
text; password creation is then seen as a stochastic process
where each password has a given probability of being cho-
sen. To minimize the number of needed guesses, probabilis-
tic attacks enumerate the guesses by descending probability.
Recent improvements to these attacks include the proposal
of a backoff technique to improve n-gram models [19] and
amending PCFGs to include semantic patterns [28] and to
better suit Chinese passwords [18]. In this work, we imple-
mented the n-grams, PCFGs and backoff models; they are
described in detail in Section 4. In Section 5.2, we provide
extensive experimental results to compare them.

A key defense technique against guessing attacks is pass-
word strengthening, or stretching, which amounts to hash-
ing passwords using computationally expensive functions,
resulting in a slowing down of guessing attacks. The de-
sign of strengthening techniques that are resilient to at-
tacks that use parallelization is an active topic of research
[23,25]. Strengthening is a tool that essentially multiplies
the strength of a password by a constant factor, and this
benefit is counterbalanced by the inconvenience of addi-
tional computation whenever a legitimate user’s password
is checked: better knowledge of password strength allows to
better choose a desirable point in this trade-off.

2.2 Password Strength Evaluation

The ubiquity of password authentication makes it obvi-
ously important to evaluate password strength, i.e., how
difficult it is to guess them. Traditionally, simple strate-
gies based on the number of characters and the presence
of special characters such as uppercase characters, digits
and symbols have been used [4]; however, these approaches
have been found to be inadequate to quantify the resistence
against modern attacks [29]. Indeed, recent studies evalu-
ate password strength as the number of attempts an attack
would need to guess it. With this metric, a password of
strength 2% can be considered as strong as a symmetric en-
cryption key of z bits, since an attacker can guess either
with the same effort.



Dell’Amico et al. [7] adopted an approximation technique
to evaluate the number of attempts needed to guess pass-
words when using n-gram models. Besides being limited to
n-grams, this technique has scalability issues with the large
state space produced by state-of-the art attacks with n > 3
and datasets having millions of passwords. Our proposal re-
quires a fraction of the resources and is applicable in general
to any probabilistic password model.

Bonneau [1] studied a large password dataset to consider
the ideal case of probabilistic attacks that perfectly capture
the probability with which users choose passwords. This ap-
proach allows characterizing the strength of the passwords
that appear multiple times in the dataset, but the complete
probability distribution remains unknown: Bonneau reports
that Kolmogorov-Smirnov tests rejected the interpolation
to a power-law distribution with high confidence. Unfortu-
nately, these considerations imply that the behavior of ideal
probabilistic models is still uncertain for the less frequent
(and hence stronger) passwords that most users choose.

Kelley et al. [15] measured the strength of passwords against
Brute Force Markov (BFM) and PCFGs. BFM is a hybrid
between brute force cracking and n-gram models for which
computing exactly the number of guesses needed is easy;
unfortunately, BFM performs definitely worse than n-gram
models that are actually used by attackers, finding very few
passwords within the first 219 — 25 attempts. For PCFGs,
Kelley et al. employed a 64-node Hadoop cluster for several
days to emulate an attack of around 2%° guesses; our ap-
proximated approach, instead, returns an accurate account
of password strength in a fraction of a second even for pass-
words that require around 2%° attempts to be found.

Ma et al. [19] studied probabilistic password models such
as n-grams and PCFGs, and proposed a new “backoff” model
that we consider in the evaluation section of this paper.
Rather than attempting to simulate very expensive attacks,
Ma et al. resorted to analyzing the distribution of prob-
abilities that existing models associate to large password
datasets. As the authors themselves acknowledge, this tech-
nique is useful in “type-1” research where passwords in dif-
ferent datasets are compared against the same attack model,
but it can give misleading results in “type-2” research where
different attack models are compared against the same pass-
word dataset, because two passwords that are assigned the
same probability by two different attack models may be
guessed after a different number of attempts in the two at-
tacks: for example, a password with probability 2% could
be the very first guess in a model and the thousandth one in a
different one. Ma et al. still performed “type-2” comparisons,
based on the conjecture of a roughly linear relationship be-
tween probability and password strength. In Section 5.1, we
show that this conjecture does not hold true for a variety of
datasets and attack models; this motivates the importance
of our proposal that aims at computing password strength
in terms of number of guesses rather than probabilities.

Password strength is typically presented to users through
“strength meters”. Studies show that users put in practice
the suggestions given by strength meters in order to generate
stronger passwords [9,27]; unfortunately, strength meters are
generally based on heuristic methods that do not necessarily
reflect the resistance of passwords to guessing attacks [6].
Castelluccia et al. [5] show the design of a strength me-
ter that outputs strength as the probability that a Markov
model would assign to a password; as argued above, prob-

ability does not give a clear information about the number
of guesses needed to break a password: our mechanism can
be integrated in this framework to transform the password
checker’s output from a probability to the number of guesses.

Telepathwords [17] is a system that highlights easy-to-
guess patterns as users type their passwords: we think this
approach is ideally complementary to a good password me-
ter, helping users understand the reason why a password is
assigned a given strength.

3. EVALUATING PASSWORD STRENGTH

State-of-the-art password research is based on probabilis-
tic password models. Such models attempt to characterize
the way humans choose their passwords by constructing a
mapping between strings and the frequency with which hu-
mans are assumed to choose them as passwords. Let us
denote the (possibly infinite) set of all allowed passwords as
T'; a probabilistic password model is a function p such that

Zp(a)zl.

ael

We call p («) the probability of password o under model p.

Attack models enumerate passwords by descending order
of probability: hence, the strength (or rank) Sy () of a pass-
word a under model p is the number of passwords that have
probability higher than a:

Sp(a) =B el :p(B)>pla)}. (1)

We are interested in approximating S, (o) efficiently and
accurately. In addition to being able to compute p (o), our
only requirement is to be able to generate a sample (with re-
placement) of passwords such that, at any draw, the proba-
bility of choosing password « is exactly p (o). Implementing
this is not difficult for any of the models that we consider in
this work (n-grams, PCFGs and backoff).

In order to use p for a guessing attack, the attacker needs
to enumerate passwords by descending probability; doing
this efficiently is an open problem [8,21]. Our method, in-
stead, relies only on sampling and does not require imple-
menting this enumeration.

3.1 The Method

Evaluating password strength as defined in Equation 1
entails computing the cardinality of the set A C T' of all
passwords weaker than «, i.e., A={8€Tl:p(B) >p(a)}.
Computing S, («) exactly would require generating all ele-
ments of A, which is obviously impractical if A is large. Our
method approximates S, () efficiently based on a subset of
n passwords; we prove its convergence to the true value of
Sp (o) for n going to infinity. In Section 3.2, we show how
this method can be implemented efficiently, yielding a pre-
computed probability vs. rank curve.

We generate a sample © of n passwords. Passwords are
sampled with replacement and each password (3 is sampled
with probability p(8). Then, our estimation Ca for the
cardinality of A is

Ca=2{6’(51>'”

Be©

if p(8) > p(a),
otherwise.

(2)

Note that the values of p (8) can be very low, and these
calculations may overflow or underflow. In our experiments,



we observed these phenomena with 32-bit floating point val-
ues, and we avoided them by using 64-bits arithmetic. To
avoid such problems altogether, one may want to resort to
arbitrary-precision numeric implementations.

In the following, we prove two theorems: first, the ex-
pected value of Ca under the attack model p is |A|, mean-
ing that the expected value of our estimation is indeed the
desired quantity in Equation 1; second, the variance de-
creases as the sample size grows, with a convergence rate
of O (1/4/n) — the standard for Monte Carlo estimators.

Theorem 1. The expected value of Ca is |A| = Sp(a).

Proof. Let us first consider the n = 1 case. Here,

E[Ca) = me{z’&” D I

ber 0 otherwise fen

For n > 1, it is sufficient to note that our estimation is the
mean of n estimates done with n = 1. Since all estimates
are i.i.d., the expected value of the average is again |A|. O

Theorem 2. The standard deviation of Ca is O (1/+/n).

Proof. The variance of a random variable X is E [X 2] —
(E[X])?. For the n = 1 case, we compute the variance as

Var (Ca) = E [C2] — E[CA]? = p(ﬁ)_Az
ar (Ca) [CA] = E[Ca] %p(ﬁf A

1 2
:Zm—\A| .

BeA

We notice that the above value is finite because, by hypoth-
esis, |A| is always finite; let us call this value Vi. Since the
variance of an average of n i.i.d. variables is the variance of
those variables divided by n [2, Section 2.11.1], the generic
expression for the variance will be

L _ A2
HERE Y RS

®3)

Since V7 does not depend on n we obtain that, when n grows,
the variance converges in probability to 0 and C'a converges
in probability to |A|. With a variance in O (1/n), the stan-
dard deviation is O (1/4/n), which is what typically happens
with Monte Carlo estimators [24]. O

n

In Equation 2, we are performing an inverse probability
weighting: we multiply the contribution of each element in
the sample by the inverse of the probability that such ele-
ment has to appear in the sample. This procedure is not new
in Statistics: it has been proposed in 1952 by Horvitz and
Thompson [13] for stratified sampling — a technique where
the analyst has control over sampling, and chooses different
sampling probabilities for different subpopulations (strata).
In our case, the difference lies in the fact that we do not have
control on how to sample from I', and we assume the sam-
pling probabilities as given. Moreover, since I' is extremely
large and possibly infinite, even assuming that uniform sam-
pling was possible, elements from A in the sample would be
very rare or non existent; on the other hand, since A includes
elements with higher probabilities, they are definitely more
likely to appear in our non-uniform sample.

3.2 Optimized Implementation

The method described so far would require to create a
sample © of size n from the model p every time we want to
evaluate the strength of a password «. This is not necessary:
in the following, we show how to precompute the probability-
rank curve, and compute the strength of a new password
simply by performing an O(logn) lookup.

The key idea here is that the sampling step can be per-
formed just once, and it is only necessary to store the prob-
abilities p (3;) for each password 3; in ©. We store the
probabilities in an array A = [p(81),...,p (Bn)] sorted by
descending probability, and we create an array C such that
C’s i-th element is

C[i]:%Z}ﬁ:C[i—I]—&-n_zm.

A probability A[i] indeed corresponds to a rank C[i]. To
compute the strength of a password a, we first lookup the
index j of the rightmost A[j] value in A such that A[j] >
p (a) through binary search; the output for Ca is simply
C[j]- The procedure has O (logn) cost due to binary search.

In Section 5.4, to evaluate mandatory restrictions on pass-
words, we evaluate the cardinality of a different set of pass-
words, a A’ set of passwords that is defined via a boolean
filter function f that identifies allowed passwords, such that
Ar={BeTl:p(B)>p(a)A f(B)} Inthiscase, it is point-
less to store information about passwords for which f (5)
is false, as they will never be taken in consideration when
evaluating Ca ,; therefore, our array A will only contain the
probabilities under model p of passwords that satisfy f (3).

4. EXPERIMENTAL SETUP

Here, we describe the setup we employ to evaluate our pro-
posal. We describe the datasets used in our evaluation and
the state-of-the-art guessing techniques that we consider.

4.1 Datasets

Several very large password datasets have been made pub-
licly available through leaks: the de facto standard in pass-
word research — allowing to compare results between differ-
ent works — is the Rockyou dataset, which contains a set
of 32 million passwords that was released to the public in
2009. On this dataset we measure password strength as fol-
lows. Whenever a password training set is needed, we use
a dataset of 10 million passwords that was recently released
(February 2015) on the Xato.net website [3] — in the follow-
ing, we will label this as the Xato dataset. Most passwords
in the Xato dataset appear to come from Western users,
with the most common language being English. The Xato
dataset does not include passwords from the Rockyou leak.

We performed additional experiments — not reported here
due to space limitations — where we switched the role of
datasets, using Xato as test set and Rockyou as a training
set. Results are largely analogous to those reported here,
reinforcing our confidence on the generality of our results,
confirming that there are no discernible defects in either
dataset, and showing that very large password datasets from
users speaking the same languages exhibit similar properties.

We have chosen Xato and Rockyou because of dataset
quality, uniformity and size. Other large datasets of Web
passwords include the Chinese datasets studied by Li et
al. [18]: the authors commented that “the raw files contain



duplication and blank passwords that can affect the analy-
sis”. To avoid the risk of misleading results due to improper
data cleaning, we left those datasets out of our analysis.

Other large datasets of more than one million passwords
have been leaked from Gawker, eHarmony, LinkedIn, Ever-
note and Adobe. These datasets, however, contain hashed
or encrypted passwords: therefore, they are not suitable for
our analysis which needs passwords in clear-text to train the
attack models and to evaluate strength.

4.2 Attack Models

We now describe the attack models we consider in the
effort of covering the most representative approaches.

4.2.1 N-Grams

Password guessing attacks using n-grams (i.e., substrings
of length n appearing in a training set) have been originally
proposed by Narayanan and Shmatikov [21].

In the following, we denote the number of occurrences of a
string of characters cq . . . ¢y in the training set as o(cq . . . ¢b).
We further denote the frequency with which character cp
follows the string ¢, ...cp—1 as

o(cq...cp) (@)

P (cplca...com1) = o(c o)

In an n-gram model (equivalently known as order n — 1
Markov model), the probability of a password c; ...c¢; is

1+1
Pn-gram (Cl . Cl) = H P (Ci|Ci—n+1 . Ci_1) 5 (5)
=1

where all values ¢; when 7 < 0 or ¢ > [ are considered to be a
special symbol L that does not appear in passwords, which
is used to denote the start or the end of the password.
Higher values of n make it possible to exploit a longer
history when predicting the next character; however, as n
grows, the issue of data sparsity appears: some n-grams may
not be represented in the training set, and the model would
incorrectly label their probabilities as 0. A solution to this
problem is the backoff model described in Section 4.2.3.

Implementation Details.

For each n-gram c¢;_,+1 ... ci, we simplify the notation by
calling ci—n41...ci—1 as its state s and c¢; as its transition
t. We precompute all values of P (t|s) by grouping all the
n-grams by state: in this way, the number of occurrences of
the state s needed for Equation 4 is computed by summing
the occurrences of all the n-grams in the group.

The probabilities that we compute can be very small and
may underflow: to avoid such problems, we store and com-
pute the base-2 logarithms of probabilities rather than prob-
abilities themselves. When computing probabilities, we per-
form similar substitutions also for PCFG and backoff meth-
ods described later in the text.

We also precompute data to facilitate sample creation and
password enumeration: for each state s, we sort all transi-
tions ts,; in descending order of number of occurrences; we
then precompute an array Cs of cumulative probabilities
such that each element Cs[i] = 375, P (ts,5|s) = Cli — 1] +
P (ts,5|s). The creation of a password for the sample needed
in Section 3.1 is then carried out according to the procedure
shown in Algorithm 1: using binary search on C; speeds up
password generation.

Algorithm 1 Password generation for n-grams.

def starting_state():
return “1 ... 1”7 with length n — 1
def update_state(s,t):
drop the first character from s
return s+t # concatenation
s <—starting_state()
g <7 # accumulator for the result
while True:
r <—random number in [0, 1]
# find 7 through binary search
i <—rightmost index s.t. Cs [i] > r
if ts; = L1: return g
append ts,; to g
s <—update_state(s,ts,;)

We also implemented a method to generate explicitly the
passwords with highest probability, in order to evaluate em-
pirically the accuracy of our approach as done in Section 5.1.
To keep memory usage under control we use a depth-first
exploration of the state space rather than using a priority
queue, exploring all states that have probability higher than
a chosen threshold [19]; we sort passwords by decreasing
probability after having generated them.

4.2.2 PCFGs

Probabilistic Context-Free Grammars (PCFGs) have been
proposed by Weir et al. in 2009 [30]: they are based on the
realization that passwords often follow similar structures,
such as for example a word followed by a number.

In the PCFG approach, passwords are grouped by tem-
plates, which are the way sequences of letters, digits and
symbols are concatenated to form the password. For exam-
ple, the “abc123” password has the L3z D3 template, meaning
that it is composed of three letters followed by three digits.
The probability of the password is calculated by multiplying
the frequency of the template P (LsDs3) by the frequency of
each pattern in the template, i.e.,

prora (“abcl23”) = P (LsDs) P (“abc’| Ls) P (1237 Ds)

where P (“abc”|L3) and P (“123”|D3) are the frequency of
“abc” and “123” within the set of three-characters groups of,
respectively, letters and digits.

Weir et al. proposed to obtain the frequencies of tem-
plates, digits and symbols from a training set of passwords
and to get the frequencies of letter groups from a dictio-
nary; however, when the training set is large, PCFGs per-
form better by calculating also letter group frequencies from
the training set [19]. In Section 5.2, we confirm this result.

Implementation Details.

We implemented PCFGs following the specifications by
Weir et al.; implementing the sampling step is trivial.

Instead of storing the frequencies of templates and groups
of characters, we store their number of occurrences. This
allows us to perform evaluations where the test set and
the training set are the same with “leave-one-out” cross-
validation: when computing the probability for a given pass-
word, we subtract the one occurrence which is due to the
password under evaluation.



4.2.3  Backoff

The backoff model has been proposed by Katz in the field
of natural language processing [14], and it has been pro-
posed for password cracking by Ma et al. [19]. This model
addresses sparsity by considering n-grams of all lengths, and
discarding those with less occurrences than a threshold 7.
Intuitively the idea is that, for each choice of a new charac-
ter, the model considers the longest sequence of past char-
acters appearing at least 7 times in the training set.

Given a threshold 7, the probability of a password c1 ... ¢
under the backoff model can be defined by induction, start-
ing from the single character case. The probability of a single
character ¢ is that character’s frequency in the training set:

Dbo (€) = W’

where — as in Section 4.2.1 — o(c1...cn) is the number of
occurrences of the ¢; ...c, string in the training set. The
probability of a string of more than one character is

Dbo (€1 -+ Cng1) =Pbo (C1...¢n) - P(cntilcr...cn),

where

o(cy...cpc)

P(cler...cn) = { o(c1-..cn)

P(clea...cn)r(c1...cn) otherwise

ifo(ci...cnc) >,

and
o(ci...cnc)
o(ci...cn)”

r(ci...cn) = Z

cio(cy...cpc)>T

As for the n-grams case, each password is considered to
end with a L symbol.

We noticed that, by construction, this model often gener-
ates passwords that are suffixes of common ones (e.g., “ss-
word”). To avoid this problem, we propose to prepend — sim-
ilarly to what happens for n-grams — a start symbol ¢, = L
to each password. We will see in Section 5.2 that this mod-
ification improves the quality of the guesses for this model.

Implementation Details.

The output of this method only depends on the number
of occurrences of n-grams with at least 7 occurrences. A
naive way of implementing this model would process the
training set once, count the number of occurrences of all n-
grams for any value of n and, at the end of the process, drop
information for all nm-grams with less than 7 occurrences.
This approach requires very large amounts of memory, most
of which is devoted to temporarily memorizing the (in most
cases low) number of occurrences for n-grams with large n.
It is therefore problematic for our very large datasets.

In our implementation, we proceed by scanning the train-
ing set multiple times, and at the i-th iteration we compute
the number of occurrences of i-grams, discarding those that
have less than 7 occurrences. We know for sure that the
number of occurrences of an i-gram will not be higher than
the number of occurrences of both its prefix and suffix of
length i — 1: therefore, we can avoid storing any information
about i-grams whose prefix or suffix is not included in the
previous iteration. As an additional optimization, at the i-
th iteration we avoid considering passwords that — thanks
to this optimization — had no impact on the calculation in
the previous round.

Algorithm 2 Sample creation for the backoff model.

def starting_state():
if using the start symbol: return “L1”
else: return
def update_state(s,t):
append t to s
while o(s) < 7:
drop the first character in s
Run Algorithm 1 using these functions.

We store the number of occurrences of each m-gram to
facilitate leave-one-out cross validation, for the reasons de-
scribed in Section 4.2.2. However, to make it efficient to
create a sample and to generate passwords, we also precom-
pute the values of each P (c|c1...¢,) when o(cr...cn) > 7.
We consider ¢ ...c¢, as a state and ¢ as a transition, and
we apply the same treatment described in Section 4.2.1 to
generate the C's auxiliary data structures. The sample cre-
ation algorithm then follows the procedure introduced for
n-grams (Algorithm 1), overriding the starting_state and
update_state functions as described in Algorithm 2.

S. EXPERIMENTAL RESULTS

We now proceed with our experimental evaluation, in which
we provide the following contributions: we evaluate the pre-
cision — and the limitations — of our method (Section 5.1).
We then provide a detailed comparison of the efficacy in
cracking passwords of the attack models we consider (Sec-
tion 5.2); we discuss the impact of training set size on the
performance of guessing algorithms (Section 5.3); finally,
we evaluate the strength of passwords that satisfy typical
mandatory restrictions (Section 5.4).

Unless otherwise stated, in the experiments the sample
size n = |©] used by our method is 10,000; results are ob-
tained by evaluating a random subset of 10,000 passwords in
the test (Rockyou) database; the value of 7 for the backoff
model is 10 in line with Ma et al. [19]. Models are always
trained on the full training datasets.

5.1 Method Precision

In Figure 1, we show the relationship between the proba-
bility that models attribute to passwords and their rank (i.e.,
the S, () value introduced in Equation 1). We evaluate the
models that behave best for password guessing (more infor-
mation about them is provided in Section 5.2). For each of
these models, we generated all the passwords having proba-
bility higher than 272°; for each of them, we plot their rank
against their probability. The shaded areas are the ones be-
tween the minimum and maximum estimation provided by
our model, re-generating a sample © for 5 different runs.

In the first plot, estimates are so close to the correct val-
ues that it is impossible to discern the shaded areas; in the
second plot, we show a closeup of a particular area. We ex-
perimentally confirm the result we have proven in Theorem
1: our estimates converge to the correct values. An inter-
esting insight that we gain by looking at the leftmost area
of the password enumeration space, is that the probability-
rank relations can clearly differ between models.

The difference in the probability vs. rank plot is due to
the fact that each model generates passwords with a dif-
ferent probability distribution. In Figure 2, we show the
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Figure 1: Password probability vs. rank. We show the cor-
rect values obtained by enumerating passwords by descend-
ing probabilities and, in the shaded areas, the area between
the minimum and maximum of 5 different estimates.

histograms resulting from binning the generated passwords
in each [2_", 2_"_1) probability interval. From these plots,
it is clear that models have a very different signature in
terms of probabilities attributed to passwords: in particular,
the probability distribution of passwords generated through
PCFGs and the backoff model are clustered on probabilities
between 272° and 272%; n-gram models, instead, are more
likely to generate passwords that have very low probabilities.

It is interesting to note that the training set contains
around 222 unique passwords; as we shall see in the following
results, this means that passwords labeled with a probabil-
ity lower than around 2727 —272% are unlikely to be present
in the original datasets. Models such as 3- and 4-grams are
definitely more likely to generate, when sampled, passwords
that do not appear in the original training set.

Theorem 1 proves that our estimates are correct on av-
erage, but the expression of the variance in Equation 3 is
difficult to interpret, because it depends on an unknown
probability distribution. In Figure 3, we plot the level of un-
certainty we have in our estimation, in the form of relative
sample standard deviation.! We plot the results obtained on
evaluations based on 30 different samples, using the 3-gram
model. This plot helps us in quantifying the precision in
estimating password strength and shows that, as predicted
by Theorem 2, estimates do converge as the sample size

! Relative sample standard deviation is the square root of
sample variance (i.e., variance computed using Bessel’s cor-
rection) divided by the mean of the values.

grows. These results can be used as a guideline to choose
the sample size n: if the user is only interested in a rough
order-of-magnitude estimation of password strength, even a
sample that is as small as 100 elements can be sufficient.

In Figure 4, we investigate the limitations of our approach.
When we start evaluating very strong passwords, our esti-
mation of their strength becomes definitely more uncertain:
the reason is that, if p (a) is low, a password with proba-
bility close to p («) is unlikely to appear in our sample, and
its presence or absence has a strong impact on our strength
estimation since it would add a (large) value 1/p («) to the
estimation. The PCFG and backoff models are less likely
to generate passwords with very low probability (see Figure
2), and this results in higher uncertainty on their strength.
Strength estimation is less precise for stronger passwords:
when these estimates are used to inform users, we deem this
uncertainty acceptable, as these passwords can generally still
be considered strong enough for most evaluation purposes.

In Figure 5, we compare the rank—probability pairs for
ranges that are expensive or prohibitive to evaluate by gen-
erating explicitly the passwords (in this case, to limit the
uncertainty of our estimation for very small probabilities, we
raised the sample size to 100,000). The probability values
diverge between models as the rank grows: the probabili-
ties for passwords having the same rank can differ between
models by orders of magnitude. This result suggests that
it is dangerous to compare probability attributed to pass-
words by different models when what we are interested in is
password strength; our method, instead, provides a sound
solution to this problem.

In Figure 6, we highlight the difference between the mod-
els by plotting the value of probability multiplied by rank.
If models had similar rank values associated with the same
probability, this value should be similar between attack mod-
els; when discussing the opportunity of comparing probabil-
ities between different attack models, Ma et al. [19] conjec-
tured that this value should remain between 272 and 278;
this would have implied a roughly linear relationship be-
tween probability and rank, and justified comparing proba-
bilities output by different models when ranks are expensive
to compute. Our results show that this is not the case:
again, this comes as evidence that comparing the number
of guesses is unavoidable if one wants to compare different
probabilistic password models.

5.2 Comparing Attack Models

With the results of the previous section, we have estab-
lished that our method yields precise estimates of password
strength and that simply comparing probabilities — as done
in other works — is not sufficient to reliably compare attacks.
We now show a comparison in terms of guess-number graphs,
plotting the probability that an attacker would guess a sin-
gle password against the number of guesses; to the best of
our knowledge, this study is the first to report guess-number
graphs comparing several state-of-the-art attacks up to an
extremely large (280) number of attempts. Here and in the
following, results are obtained by evaluating the passwords
in the Rockyou dataset, using Xato as a training set.

Figure 7 shows an overview of the attacks that — as we will
see in the following — perform best. For the first 2'¢ — 220
guesses, backoff and PCFG perform almost equivalently:
this is because both models are essentially guessing the most
frequent passwords in the training dataset. When the num-
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Figure 2: Probability distribution for passwords generated by different models. Each bin contains passwords having proba-
bilities in the [2_”, 2_"_1) interval. The probability distribution varies widely depending on the model used.
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Figure 3: Estimation uncertainty while varying sample size.
Supporting the result from Theorem 2, estimates converge
as the sample size grows.

ber of occurrences of a passwords falls below the backoff
models’ threshold, the PCFG model continues by guessing
words that are in the training set, while the backoff model
starts attempting “generalizations”, attempting words that
are not in the training set. At first, this favors PCFGs,
but they eventually lose efficacy because many existing pass-
words are not represented by the patterns they model.

From Figure 7, we conclude that the optimal attack strat-
egy varies depending on the number of guesses that the at-
tacker can afford: PCFGs perform best at first but they are
not capable of finding a substantial percentage of passwords,
while 4-grams and then 3-grams become preferrable to at-
tack stronger passwords. While never being optimal, the
backoff strategy performs well across the whole spectrum of
passwords, proving that it indeed “self-tunes” to avoid the
dead-ends that models such as PCFGs reach.
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Figure 4: Estimation uncertainty for very small probabilies.
When probabilities reach values for which elements in the
sample are rare (see Figure 2), estimations lose precision.

In Figure 8, we analyze whether different attacks would
require similar effort to guess the same password. In the
scatter-plots, we compare the number of attempts needed
to guess a password between the backoff strategy and the
other ones considered in Figure 7. The correlation between
the approaches is obvious, suggesting that the strength of
a password against an attack is indicative of its strength
against other attacks. In addition, we notice that the backoff
and PCFG strategies are very highly correlated for the pass-
words that are easier to guess (up to around 2'° attempts),
which are in general the ones that appear multiple times in
the training dataset. When a password can ultimately be
guessed by PCFGs, they do this with less efforts than the
backoff attack; however, we stress that roughly a third of
the passwords are never guessed by PCFGs and hence they
do not appear in the graph.
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between 272 and 278, Our results show that this trend does
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The results of Figure 8 highlight that the strength of a
given password against different attacks is obviously corre-
lated; nevertheless we consider that user passwords should
still be checked against several attacks. A resonable con-
servative strategy would be to output to the user the result
yielding the lowest strength value.

In the following, we provide more details about attacks by
examining each class more in detail.

5.2.1 Dictionary Attacks

We take into account dictionary attacks. We consider the
Openwall and dic-0294 dictionaries, two ad-hoc dictionaries
for password guessing that have been evaluated in related
work [7,19,30], and we compare them to using the password
in the Xato dataset as a dictionary, sorted by decreasing
number of occurrences: the results are shown in Figure 9.
It appears that large password datasets make dictionaries
obsolete: guessing passwords as they appear in the Xato
dataset appears always preferable than using dictionaries.
Using PCFGs is essentially equivalent to guessing passwords
as they appear in the training dataset — however, passwords
present in the Xato dataset are useful to find around 40%
of the passwords of the Rockyou dataset; an additional 20%
are found via the mangling made through PCFGs.
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Figure 7: Overview of the best-performing attacks. Depend-
ing on the difficulty of the passwords, different attack strate-
gies perform better. The “backoff” strategy perform not far
from optimally for each probability.

5.2.2 N-Grams

In Figure 10, we compare attack models based on n-grams.
Compared to results based on much smaller training sets [7],
the sheer size of the training dataset makes it possible to
find a large majority of the passwords even with higher-
order models (n = 3 and n = 4). Attack models based
on 2-grams and 1-grams (i.e., simply considering character
frequencies) are unlikely to be helpful for conceivably-sized
guessing attacks.

5.2.3 PCFGs

We analyze the performance of PCFG-based attacks in
Figure 11. As described in Section 4.2.2, our implementa-
tion of the model allows us to perform “leave-one-out” cross-
validation. In this case, we evaluate the benefits that an
attacker might have with a very well tuned training set: the
extreme case is, of course, to perform training on the full
Rockyou database. As per the original description by Weir
et al., we also train the alphabetic patterns of PCFGs from
an external dictionary, rather than from the training set: we
choose Openwall, since it performs best in Figure 9.

A better training set (Rockyou rather than Xato) boosts
performance noticeably, raising the percentage of found pass-
words by around 13%. Two factors are in play here: first,
the Rockyou training set is larger than Xato; second, it is —
of course — more representative of passwords for the Rock-
you website (e.g., the “rockyou” string is very common in
the former and relatively rare in the latter). Again, we find
that the size of training sets available today makes ad-hoc
dictionaries obsolete, confirming previous findings [19].

5.2.4  Backoff

Figure 12 shows the results of evaluating different vari-
ants of the backoff model. Again, we evaluate the Rockyou
dataset as a training set using the “leave-one-out” method.
As before, we observe that using the matching dataset as
a training set improves the attack. In addition, our mod-
ification to include a start symbol improves the quality of
initial guesses, matching at the beginning the one of PCFGs
(compare with Figure 7).

5.3 Impact of Training
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In Figure 13, we consider the effect of training set size
on our results: we consider the backoff model, because it
obtains a good guessing probability for any number of at-
tempts. We vary the training set size between 0.1% and
100% of the training dataset.

It is interesting to point out that a larger training set
has little effect in guessing either the easiest passwords (the
most common passwords are likely to be in smaller subsets
of the original training set) or the hardest ones (they are
most likely unique, and little information about them can be
gleaned even from large training sets). Raising the training
set size, instead, appears useful for the “average” passwords,
i.e., those for which either the given password or a similar
one can be found in a larger dataset.

5.4 Evaluating Mandatory Requirements
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Figure 9: Dictionary attacks. A large sets of leaked pass-
words performs better in cracking passwords than ad-hoc
crafted dictionaries. PCFGs are efficient to generalize
guesses when dictionaries are exhausted.
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Figure 10: n-grams. When trained on very large datasets,
attacks based on 3-grams cover almost all passwords. 4-
grams are slightly more efficient to guess weaker passwords.

We now turn our attention to evaluating mandatory re-
quirements such as the ones that are often included in pass-
words: minimum length and/or including uppercase, nu-
meric and/or symbolic characters. From our datasets, we
only consider the passwords that satisfy such requirements;
we evaluate the number of attempts an attacker would need
in order to guess a password. We assume that the attacker
is aware of the restriction and therefore that passwords that
do not satisfy the requirements will not be guessed.

We think that these results should be regarded as opti-
mistic evaluations of the strength improvements that can be
obtained by imposing such restrictions: indeed, users who
choose weaker passwords might see such restrictions as a
hurdle to bypass with minimum effort, choosing the sim-
plest modification that would satisfy the requirement (e.g.,
appending “1” to satisfy the requirement of including digits).

In this case, given a boolean function f («) that tells us
whether a given password is accepted according to the re-
quirements, our new strength measure should only count the
passwords that have probability higher than p (8) > p(«)
and for which f(8) is true; the procedure to do this is
described in Section 3.2. Passwords that satisfy the most
stringent requirements are rare in our datasets, so to limit
precision problems, we increase the size of our sample set
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© and the test set from the Rockyou dataset, in order to
obtain 10,000 passwords that satisfy f in both sets.

In Figure 14 we plot the distribution of password strength
for passwords with restrictions, according to the procedure
outlined above (policies are described in the caption). Again,
we consider the backoff model as the attack method.

Length requirements increase password strength rather
homogeneously for all passwords — with the exception of the
weakest ones for the length limitation at 8: this is because
several very common passwords have length 8.

We notice that requiring passwords with both letters and
numbers does little to increase security; this may be due to
the fact that passwords including letters and numbers often
have very predictable patterns (e.g., numbers at the end)
which are easily discovered by guessing techniques. Requir-
ing a mix of uppercase and lowercase characters does better,
but the strength improvement on the weakest passwords is
limited: this is because, for weak passwords, uppercase char-
acters are generally placed at the beginning of the password,
and this is easy to guess for attackers. Symbols appear to
be less predictable and placed in different locations of the
password, and that noticeably increases password strength:
in our case, passwords that include symbols are roughly as
strong as those of length at least 12.

6. CONCLUSIONS
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Figure 13: Training set. The legend refers to the percentage
of the full Xato set used for training.

Passwords are an ubiquitous way of handling access con-
trol, and hence properly evaluating their solidity against
state-of-the-art attacks is obviously important. To the best
of our knowledge, this is the first study that provides a reli-
able estimation — backed by proofs of correctness and conver-
gence — for the success rate of very expensive attacks to pass-
words using state-of-the-art guessing techniques. By evalu-
ating the password strength in terms of number of guesses
needed by an attacker, we make it possible to gain better
insights into the actual cost that an attacker should pay to
guess a password, and therefore better understand the us-
ability vs. security trade-off that password strength implies.

Our study shows that the number of attempts needed
to guess a password is correlated between different attacks;
nevertheless, we believe that user passwords should be checked
against several attack models, and that a reasonable strat-
egy would be to conservatively output the result yielding the
lowest strength value.

Our method is generic and extremely lightweight, with the
possibility to increase the level of accuracy in the assessment
of password strength by a quantity that can be directly re-
lated to the number of computations that one is willing to
invest. Our proposal is applicable to any generative prob-
abilistic model; we consider this approach to be reasonably
future-proof, as we believe that new developments in pass-
word guessing will most likely continue to use models that
are (or can be expressed as) generative probabilistic models.

7. REFERENCES

[1] J. Bonneau. The science of guessing: analyzing an
anonymized corpus of 70 million passwords. In S&P.
IEEE, 2012.

[2] G. Bontempi and S. Ben Taieb. Statistical foundations
of machine learning. 2009.

[3] M. Burnett. Today I am releasing ten million
passwords. https://xato.net/passwords/ten—
million-passwords/, February 2015.

[4] W. Burr, D. Dodson, R. Perlner, W. Polk, and
S. Gupta. NIST special publication 800-63-1 electronic
authentication guideline, 2006.

[5] C. Castelluccia, M. Diirmuth, and D. Perito. Adaptive
password-strength meters from markov models. In
NDSS. Internet Society, 2012.



Fig

100%

- ——
80% b -t S e R prs -
2 . . :’ :
0% i A I i
2 .
(s
2
R (N Y A Y ARy all passwords H
g / , -
a . . — length >8
20% f= - S At =+ length>10 H
L length > 12
0% L T
20 216 232 248 64 280
Attempts
100% T
80% b S
2
:z;; 0, . y
T o60% iy
<
o
2 —
g W% no restriction
? ’ - olicy 1
3 policy
20% b - - |- - policy 2 H
policy 3
0% 1 | | I
20 216 232 248 264 280
Attempts
ure 14: Restrictions. We consider the number of at-

tempts an attacker would need to guess passwords that sat-
isfy certain restrictions, when knowing that the restrictions

are

present. Explanation of the labels: “policy 1”7 refers

to passwords that have alphabetic and numeric characters;

“po

licy 2” requires lowercase, uppercase and digits; “policy

3” requires alphabetic and numeric characters in addition to
non-alphanumeric symbols.

[6]

X. de Carné de Carnavalet and M. Mannan. From very
weak to very strong: Analyzing password-strength
meters. In NDSS. Internet Society, 2014.

M. Dell’Amico, P. Michiardi, and Y. Roudier.
Password strength: An empirical analysis. In
INFOCOM. IEEE, 2010.

M. Duermuth, F. Angelstorf, C. Castelluccia,

D. Perito, and A. Chaabane. OMEN: Faster password
guessing using an ordered Markov enumerator. In
ESSoS. IEEE, 2015.

S. Egelman, A. Sotirakopoulos, I. Muslukhov,

K. Beznosov, and C. Herley. Does my password go up
to eleven?: the impact of password meters on
password selection. In SIGCHI. ACM, 2013.

D. Floréncio, C. Herley, and P. C. Van Oorschot. An
administrator’s guide to internet password research. In
LISA. USENIX, 2014.

D. Floréncio, C. Herley, and P. C. Van Oorschot.
Password portfolios and the finite-effort user:
Sustainably managing large numbers of accounts. In
USENIX Security, 2014.

C. Herley and P. Van Oorschot. A research agenda
acknowledging the persistence of passwords. In S&P.
IEEE, 2012.

(13]

(14]

(15]

(16]

(17]

(18]

(19]
20]

(21]

(22]

23]

(24]

[25]

(26]

27]

28]

29]

(30]

D. G. Horvitz and D. J. Thompson. A generalization
of sampling without replacement from a finite
universe. J. Am. Stat. Assoc., 47(260):663-685, 1952.
S. Katz. Estimation of probabilities from sparse data
for the language model component of a speech
recognizer. IEEE TASSP, 35(3):400-401, 1987.

P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay,
T. Vidas, L. Bauer, N. Christin, L. F. Cranor, and

J. Lopez. Guess again (and again and again):
Measuring password strength by simulating
password-cracking algorithms. In S&P. IEEE, 2012.
D. V. Klein. Foiling the cracker: A survey of, and
improvements to, password security. In USENIX
Security, 1990.

S. Komanduri, R. Shay, L. F. Cranor, C. Herley, and
S. Schechter. Telepathwords: Preventing weak
passwords by reading users’ minds. In USENIX
Security, 2014.

Z. Li, W. Han, and W. Xu. A large-scale empirical
analysis of chinese web passwords. In USENIX
Security, 2014.

J. Ma, W. Yang, M. Luo, and N. Li. A study of
probabilistic password models. In S&P. IEEE, 2014.
R. Morris and K. Thompson. Password security: A
case history. CACM, 22(11):594-597, 1979.

A. Narayanan and V. Shmatikov. Fast dictionary
attacks on passwords using time-space tradeoff. In
CCS. ACM, 2005.

P. Oechslin. Making a faster cryptanalytic
time-memory trade-off. In CRYPTO. Springer, 2003.
C. Percival and S. Josefsson. The scrypt
password-based key derivation function. 2012.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical Recipes: The Art of
Scientific Computing. Cambridge University Press, 3rd
edition, 2007.

Solar Designer and S. Marechal. Password security:
past, present, future. Password”12 workshop,
December 2012.

E. H. Spafford. Observing reusable password choices.
In USENIX Security, 1992.

B. Ur, P. G. Kelley, S. Komanduri, J. Lee, M. Maass,
M. L. Magzurek, T. Passaro, R. Shay, T. Vidas,

L. Bauer, et al. How does your password measure up?
the effect of strength meters on password creation. In
USENIX Security, 2012.

R. Veras, C. Collins, and J. Thorpe. On the semantic
patterns of passwords and their security impact. In
NDSS. Internet Society, 2014.

M. Weir, S. Aggarwal, M. Collins, and H. Stern.
Testing metrics for password creation policies by
attacking large sets of revealed passwords. In C'CS.
ACM, 2010.

M. Weir, S. Aggarwal, B. De Medeiros, and

B. Glodek. Password cracking using probabilistic
context-free grammars. In S&P. IEEE, 2009.



