
HFSP: Bringing Size-Based Scheduling To Hadoop

Mario Pastorelli, Damiano Carra, Matteo Dell’Amico and Pietro Michiardi*†

Abstract—Size-based scheduling with aging has been recog-
nized as an effective approach to guarantee fairness and near-
optimal system response times. We present HFSP, a scheduler
introducing this technique to a real, multi-server, complex and
widely used system such as Hadoop.

Size-based scheduling requires a priori job size information,
which is not available in Hadoop: HFSP builds such knowledge
by estimating it on-line during job execution.

Our experiments, which are based on realistic workloads
generated via a standard benchmarking suite, pinpoint at a
significant decrease in system response times with respect to
the widely used Hadoop Fair scheduler, without impacting the
fairness of the scheduler, and show that HFSP is largely tolerant
to job size estimation errors.

Index Terms—MapReduce, Performance, Data Analysis,
Scheduling

I. INTRODUCTION

THE advent of large-scale data analytics, fostered by
parallel frameworks such as Hadoop [1], [2], Spark [3],

[4], and Naiad [5], [6], has created the need to manage the re-
sources of compute clusters operating in a shared, multi-tenant
environment. Within the same company, many users share
the same cluster because this avoids redundancy in physical
deployments and in data storage, and may represent enormous
cost savings. Initially designed for few very large batch
processing jobs, data-intensive scalable computing frameworks
such as MapReduce are nowadays used by many companies
for production, recurrent and even experimental data analysis
jobs. This heterogeneity is substantiated by recent studies [7]–
[9] that analyze a variety of production-level workloads.

An important fact that emerges from previous works is
that there exists a stringent need for short system response
times. Many operations, such as data exploration, preliminary
analyses, and algorithm tuning, often involve interactivity, in
the sense that there is a human in the loop seeking answers
with a trial-and-error process. In addition, workflow schedulers
such as Oozie [10] contribute to workload heterogeneity by
generating a number of small “orchestration” jobs. At the
same time, there are many batch jobs working on big datasets:
such jobs are a fundamental part of the workloads, since they
transform data into value. Due to the heterogeneity of the

*M. Pastorelli is with Teralytics AG, Switzerland; this work has been
done while he was at EURECOM. Email: pastorelli.mario@gmail.com

D. Carra is with the Computer Science Department, University of Verona,
Verona, Italy. E-mail: damiano.carra@univr.it

M. Dell’Amico is with Symantec Research Labs, France; this work has
been done while he was at EURECOM. Email: della@linux.it

P. Michiardi is with the Networking and Security Department, EURECOM,
France. Email: michiard@eurecom.fr

†Manuscript received July 7, 2014; revised November 26, 2014.

workload, it is very important to find the right trade-off in
assigning the resources to interactive and batch jobs.

In this work, we address the problem of job scheduling,
that is how to allocate the resources of a cluster to a num-
ber of concurrent jobs, and focus on Hadoop [1], the most
widely adopted open-source implementation of MapReduce.
Currently, there are mainly two different strategies used to
schedule jobs in a cluster. The first strategy is to split the clus-
ter resources equally among all the running jobs. A remarkable
example of this strategy is the Hadoop Fair Scheduler [11],
[12]. While this strategy preserves fairness among jobs, when
the system is overloaded, it may increase the response times of
the jobs. The second strategy is to serve one job at a time, thus
avoiding the resource splitting. An example of this strategy is
First-In-First-Out (FIFO), in which the job that arrived first
is served first. The problem with this strategy is that, being
blind to job size, the scheduling choices lead inevitably to poor
performance: small jobs may find large jobs in the queue, thus
they may incur in response times that are disproportionate
to their size. As a consequence, the interactivity is difficult
to obtain. Both strategies have drawbacks that prevent them
from being used directly in production without precautions.
Commonly, a manual configuration of both the scheduler
and the system parameters is required to overcome such
drawbacks. This involves the manual setup of a number of
“pools” to divide the resources to different job categories, and
the fine-tuning of the parameters governing the resource allo-
cation. This process is tedious, error prone, and cannot adapt
easily to changes in the workload composition and cluster
configuration. In addition, it is often the case for clusters to be
over-dimensioned [7]: this simplifies resource allocation (with
abundance, managing resources is less critical), but has the
downside of costly deployments and maintenance for resources
that are often left unused.

In this paper we present the design of a new scheduling pro-
tocol that caters both to a fair and efficient utilization of cluster
resources, while striving to achieve short response times. Our
approach satisfies both the interactivity requirements of small
jobs and the performance requirements of large jobs, which
can thus coexist in a cluster without requiring manual setups
and complex tuning: our technique automatically adapts to
resources and workload dynamics.

Our solution implements a size-based, preemptive schedul-
ing discipline. The scheduler allocates cluster resources such
that job size information – which is not available a priori – is
inferred while the job makes progress toward its completion.
Scheduling decisions use the concept of virtual time, in which
jobs make progress according to an aging function: cluster

1



IEEE TRANSACTIONS ON CLOUD COMPUTING 2

resources are “focused” on jobs according to their priority,
computed through aging. This ensures that neither small nor
large jobs suffer from starvation. The outcome of our work
materializes as a full-fledged scheduler implementation that
integrates seamlessly in Hadoop: we called our scheduler
HFSP, to acknowledge an influential work [13] in the size-
based scheduling literature.

The contribution of our work can be summarized as follows:
• We design and implement the system architecture of

HFSP (Section III), including a (pluggable) component
to estimate job sizes and a dynamic resource allocation
mechanism that strives at efficient cluster utilization.
HFSP is available as an open-source project.1

• Our scheduling discipline is based on the concepts of
virtual time and job aging. These techniques are con-
ceived to operate in a multi-server system, with tolerance
to failures, scale-out upgrades, and multi-phase jobs – a
peculiarity of MapReduce.

• We reason about the implications of job sizes not being
available a priori, both from an abstract (Section III) and
from an experimental (Section IV) point of view. Our
results indicate that size-based scheduling is a realistic
option for Hadoop clusters, because HFSP sustains even
rough approximations of job sizes.

• We perform an extensive experimental campaign, where
we compare the HFSP scheduler to a prominent sched-
uler used in production-level Hadoop deployments: the
Hadoop Fair Scheduler. For the experiments, we use
PigMix, a standard benchmarking suite that performs real
data analysis jobs. Our results show that HFSP represents
a sensible choice for a variety of workloads, catering to
fairness, interactivity and efficiency requirements.

II. BACKGROUND: TRADITIONAL SCHEDULING

First Come First Serve (FCFS) and Processor Sharing (PS)
are arguably the two most simple and ubiquitous scheduling
disciplines in use in many systems; for instance, FIFO and
Fair are two schedulers for Hadoop, the first inspired by FCFS,
and the second by PS. In FCFS, jobs are scheduled in the
order of their submission, while in PS resources are divided
equally so that each active job keeps progressing. In loaded
systems, these disciplines have severe shortcomings: in FCFS,
large running jobs can delay significantly small ones; in PS,
each additional job delays the completion of all the others.

In order to improve the performance of the system in terms
of delay, it is important to consider the size of the jobs. Size-
based scheduling adopts the idea of giving priority to small
jobs: as such, they will not be slowed down by large ones. The
Shortest Remaining Processing Time (SRPT) policy, which
prioritizes jobs that need the least amount of work to complete,
is the one that minimizes the mean response time (or sojourn
time), that is the time that passes between a job submission
and its completion [14].

Figure 1 provides an example that compares PS to SRPT:
in this case, two small jobs – j2 and j3 – are submitted while
a large job j1 is running. While in PS the three jobs run

1https://github.com/bigfootproject/hfsp

100
usage (%)

cluster

50

10 15 37.5 42.5 50

time
(s)

100
usage (%)

cluster

10 5020 30

50

time
(s)

job 1

job 2

job 3

job 1 job 3job 2 job 1

Fig. 1: Comparison between PS (top) and SRPT (bottom).

(slowly) in parallel, in a size-based discipline j1 is preempted:
the result is that j2 and j3 complete earlier. Like most
size-based scheduling techniques, SRPT temporarily suspends
the progress of lower-priority jobs; fortunately, this is not a
problem in a batch system like Hadoop, for which results are
usable only after the job is completed.

While policies like SRPT improve mean response time,
they may incur in starvation: if small jobs are continuously
submitted, large ones may never receive service [15]–[17]; this
results in job mistreatment. To avoid starvation, a common
solution is to perform job aging. With job aging, the system
decreases virtually the size of jobs waiting in the queue, and
keeps them sorted according to their virtual size, serving the
one with the current smaller virtual size. Job aging assures
that, as time goes by, each job is eventually scheduled; in the
abstract case that job size is perfectly known a priori, the FSP
discipline [13] exploits aging to provide a strong dominance
fairness guarantee: no job completes in FSP later than it would
in PS. FSP also guarantees excellent results in terms of both
job response time and fairness when job sizes are not known
exactly [18]; for these reasons, the design of HFSP is guided
by the abstract ideas beyond FSP.

III. THE HADOOP FAIR SOJOURN PROTOCOL

The Hadoop Fair Sojourn Protocol (HFSP) is a size-based
scheduler with aging for Hadoop. Implementing HFSP raises
a number of challenges: a few come from MapReduce itself
– e.g.,, the fact that a job is composed by tasks – while others
come from the size-based nature of the scheduler in a context
where the size of the jobs is not known a priori. In this section
we describe each challenge and the proposed solutions.

Jobs: In MapReduce, jobs are scheduled at the granular-
ity of tasks, and they consist of two separate phases, called
MAP and REDUCE. We evaluate job sizes by running a subset
of sample tasks for each job; however, REDUCE tasks can
only be launched only after the MAP phase is complete. Our
scheduler thus splits logically the job in the two phases and
treats them independently; therefore the scheduler considers
the job as composed by two parts with different sizes, one
for the MAP and the other for the REDUCE phase. When a
resource is available for scheduling a MAP (resp. REDUCE)
task, the scheduler sorts jobs based on their virtual MAP (resp.



IEEE TRANSACTIONS ON CLOUD COMPUTING 3

REDUCE) sizes, and grants the resource to the job with the
smallest size for that phase.

Estimated and Virtual Size: The size of each phase,
to which we will refer as real size, is unknown until the
phase itself is complete. Our scheduler, therefore, works using
an estimated size: starting from this estimate, the scheduler
applies job aging, i.e., it computes the virtual size, based on
the time spent by the job in the waiting queue. The estimated
and the virtual sizes are calculated by two different modules:
the estimation module, that outputs the estimated size, and the
aging module, that takes in input the estimated size and applies
an aging function. In the following, we describe them.

A. The Estimation Module

The role of the estimation module is to assign a size to
a job phase such that, given two jobs, the scheduler can
discriminate the smallest one for that phase. When a new job
is submitted, the module assigns for each phase an initial size
Si, which is based on the number of its tasks. The initial size
is necessary to quickly infer job priorities. A more accurate
estimate is done immediately after the job submission, through
a training stage: in such a stage, a subset of t tasks, called the
training tasks, is executed, and their execution time is used
to update Si to a final estimated size Sf . Choosing t induces
the following trade-off: a small value reduces the time spent
in the training stage, at the expense of inaccurate estimates; a
large value increases the estimation accuracy, but results in a
longer training stage. As we will show in Section III-C, our
scheduler is designed to work with rough estimates, therefore
a small t is sufficient for obtaining good performances.

Tiny Jobs: Every job phase with less than t tasks is
considered as tiny: in this case, HFSP sets Sf = 0 to grant
them the highest priority. Tiny jobs use a negligible fraction of
cluster resources: giving them the highest priority marginally
affects other jobs. Note that the virtual size of all other jobs
is constantly updated, therefore every job will be eventually
scheduled, even if tiny jobs are constantly submitted.

Initial Size: The initial size of a job phase with n tasks is
set to Si = n · ξ · s where s is the average task size computed
so far by the system considering all the jobs that have already
completed; ξ ∈ [1,∞) is a tunable parameter that represents
the propensity of the system to schedule jobs that have not
completed the training stage yet. If ξ = 1, new jobs are
scheduled quite aggressively based on the initial estimate, with
the possible drawback of scheduling a particularly large job too
early. Setting ξ > 1 mitigates this problem, but might result in
increased response times. Finally, if the cluster does not have
a past job execution history, the scheduler sets Si = s0, where
s0 > 0 is an arbitrary constant, until the first job completes.

Final Size: When a job phase completes its training stage,
the estimation module notifies the aging module that it is ready
to update the size of that phase for that job. The final size is

Sf = s̃ · [(n− t) +

t∑
k=1

(1− pk)] ,

where (n − t) is the number of tasks of a job phase that
still need to be run, i.e., the total number of tasks minus the

training tasks. The definitions of s̃ and pk are more subtle.
As observed in prior works [11], [19], MAP task execution
times are generally stable and short, whereas the distribution
of REDUCE task execution times is skewed. Therefore, s̃ is
the average size of the t tasks that either i) completed in
the training stage (and thus have an individual execution time
sk), or ii) that made enough progress toward their completion,
which is determined by a timeout ∆ (60 s in our experiments).
The progress term pk, which is measured by Hadoop counters,
indicates the percentage of input records processed by a
training task tk. More formally, we have

s̃ =
1

t

t∑
k=1

s̃k ,

where

s̃k =

{
sk , if training task tk completes within ∆

∆
pk

, otherwise
.

This estimation can be erroneus due to stragglers [9], i.e.,
tasks that take longer to complete than others in the same
job. Such a phenomenon would lead to an over-estimation of
job size. Fortunately, as opposed to under-estimations, over-
estimations only have modest impact on the performance of
size-based schedulers [18].

In HFSP, once Sf is set for the first time, after the training
stage, it will not be updated, despite additional information on
task execution could be used to refine the first estimate. Indeed,
continuous updates to Sf may result in a problem that we
call “flapping”, which leads to poor scheduling performance:
Figure 2 shows an example of this effect. If Sf estimates are

Correct scheduling J2 J1

Inversion J1 J2

“Flapping” J1 J2 J1 J2 J1

0 1 2 3 4 5

Fig. 2: Example of continuous updates of job sizes.

not updated, there are two possible cases: the first estimate
leads to i) a correct scheduling decision, or ii) an “inversion”
between two jobs. In Figure 2, a correct scheduling decision
implies that J2 completes at time 2 and J1 completes at time
5, while an inversion implies that J1 completes at time 3 and
J2 completes at time 5. The mean response time in the first
and second case are 3.5 and 4 respectively. The bottom scheme
in Figure 2 illustrates the effects of a continuous update to Sf ,
which leads to flapping. In this case, the response times are 5
for J1 and 4 for J2 resulting in a mean response time of 4.5.

Clearly, jobs with similar sizes exacerbate the phenomenon
we illustrate above. Since estimation errors for jobs with
similar sizes is likely to occur, as we are going to show
in Section III-D, HFSP avoids “flapping” problems using a
unique estimate for Sf .



IEEE TRANSACTIONS ON CLOUD COMPUTING 4

0 1 2 3 4 5 6 7 8 9 10
time (s)

0.5
1

1.5
2

2.5
3

3.5
4

jo
b

vi
rt

ua
lt

im
e

(s
)

Job 1
Job 2
Job 3

(a)

0 1 2 3 4 5 6 7 8 9 10
time (s)

0.5
1

1.5
2

2.5
3

3.5
4

jo
b

si
ze

(s
)

Job 1
Job 2
Job 3

(b)

Fig. 3: Virtual time and job size progress in HFSP.

B. The Aging Module

The aging module takes as input the estimated sizes to
compute virtual sizes. The use of virtual sizes is a technique
applied in many practical implementations of well-known
schedulers [13], [20], [21]: it consists in keeping track of the
amount of the remaining work for each job phase in a virtual
“fair” system, and update it every time the scheduler is called.
The result is that, even if the job doesn’t receive resources and
thus its real size does not decrease, in the virtual system the
job virtual size slowly decreases with time.

Job aging avoids starvation, achieves fairness, and requires
minimal computational load, since the virtual size does not
incur in costly updates [13], [20]. Figure 3 shows an example
of how the job virtual size is decreased and how that affects
the scheduling policy. We recall that HFSP schedules jobs with
the smallest virtual size first. In Figure 3a, we show job virtual
sizes and in Figure 3b the job real sizes (sizes are normalized
with respect to the service rate). At time 0 there are two jobs
in the queue, Job 1 with size 3 and Job 2 with size 4. Note that
at the beginning, the virtual size corresponds to the real job
size. The scheduling policy chooses the job with the smallest
virtual size, that is Job 1, and grants it all the resources. At
time 3, Job 3 enters the job queue and Job 1 completes. Job
3 has a smaller real size than Job 2, but a bigger virtual size;
this is due to the fact that, while Job 1 was being served, the
virtual times of both Job 1 and Job 2 have been decreased.
When Job 1 finishes, Job 2 has virtual size 2.5 while Job 3
has virtual size equal to its current real size, that is 3.

Virtual Cluster: The part of the aging module that imple-
ments the virtual system to simulate processor sharing is called
Virtual Cluster. Jobs are scheduled at the granularity of tasks,
thus the virtual cluster simulates the same resources available
in the real cluster: it has the same number of “machines”

and the same configuration of (MAP or REDUCE) resources
per machine. When the resources change in the real cluster,
the scheduler notifies it to the aging module that updates the
virtual cluster resources. We simulate a Max-Min Fairness
criterion to take into account jobs that require less compute
resources than their fair share (i.e., 1/n-th of the resources if
there are n active jobs): a round-robin mechanism allocates
virtual cluster resources, redistributing the fair share not used
by small jobs (jobs that need less than 1/n-th of the resources)
among the other jobs.

Job priorities and elaborate configurations can be integrated
in HFSP by modifying the virtual cluster component: for
example, the PSBS discipline [22] implements job priorities
by simulating a generalized PS allowing for job weights in the
virtual time; analogously, HFSP can take a similar approach.

Estimated Size Update: When the estimated size of a job
is updated from the initial estimation Si to the final estimation
Sf , the estimation module alerts the aging module to update
the job phase size to the new value. After the update, the aging
module runs the scheduler on the virtual cluster to reassign the
virtual resources.

Failures: The aging module is robust with respect to
failures. The same technique used to support cluster size
updates is used to update the resources available when a failure
occurs; once Hadoop detects the failure, job aging will be
slower. Conversely, adding nodes will result in faster job aging
reflecting the fact that with more resources the cluster can do
more work.

Manual Priority and QoS: Our scheduler does not
currently implement the concept of different job priorities
assigned by the user who submitted the job; however, the
aging module can be easily modified to simulate a Generalized
Processor Sharing discipline, leading to a scheduling policy
analogous to Weighted Fair Queuing [23]. A simple approach
is to consider the user assigned priority as a speed modifier
to the aging of the job virtual sizes: when the aging module
decreases the virtual size of the job, it subtracts to the job
virtual size the virtual work done multiplied by the job
modifier. A job modifier bigger (resp. smaller) than 1 speeds
up (resp. slows down) the aging of a job.

C. The Scheduling Policy

In this section we describe how the estimation and the aging
modules coexist to create a Hadoop scheduler that strives to
be both efficient and fair.

Job Submission: Figure 4 shows the lifetime of a job in
HFSP, from its submission to its completion and removal from
the job queue. When a job is submitted, for each phase of the
job, the scheduler asks to the estimation module if that phase is
tiny. If the answer is affirmative, the scheduler assigns Sf = 0,
meaning that the job must be scheduled as soon as possible.
Otherwise, the scheduler starts the training stage and sets the
virtual time to the initial size Si given by the estimator module.
Periodically, the scheduler asks to the estimation module if it
has completed its training stage, and, if the answer is positive,
it notifies the aging module to update the virtual size of that
job and removes the job from the training stage.



IEEE TRANSACTIONS ON CLOUD COMPUTING 5

Job submitted

is it tiny?

Assign Initial Size Si

Add job to
Virtual Cluster with

Virtual Size = Si

Job enters Training Stage

Assign Final Size Sf

Set Job’s Virtual Size = Sf

Job removed

noyes

when training
is over

when job completes
and

job’s Virtual Time is 0

Fig. 4: Job lifetime in HFSP

Priority To The Training Stage: The training stage is
important because, as discussed in Section III-A, the initial
size Si is imprecise, compared to the final size Sf . Completing
the training stage as soon as possible is fundamental for an
efficient scheduling policy. There are two strategies that are
used by the scheduler to speed up the training stage: the first
strategy is to set a low number of training tasks t, as discussed
in Section III-A; the second strategy is to give priority to the
training tasks across jobs – up to a threshold of T ∈ [0, Tmax]
where Tmax is the total number of resources in the cluster.
Such threshold avoids starvation of “regular” jobs in case of a
bursty job arrival pattern. When a resource is free and there are
jobs in the training stage, the scheduler assigns the resource to
a training task independently from its job position in the job
queue. In other words, training tasks have the highest priority.
Conversely, after a job has received enough resources for its
training tasks, it can still obtain resources by competing with
other jobs in the queue.

Virtual Time Update: When a job phase completes its
training stage, the scheduler asks to the estimation module
the final size Sf and notifies the aging module to update
the virtual size accordingly. This operation can potentially
change the order of the job execution. The scheduler should
consider the new priority and grant resources to that job, if
such job is the smallest one in the queue. Unfortunately, in
Hadoop MapReduce the procedure to free resources that are
used by the tasks, also known as task preemption, can waste

Algorithm 1 HFSP resource scheduling for a job phase.
function ASSIGNPHASETASKS(resources)

for all resource s ∈ resources do
if ∃ (Job in training stage) and Tcurr < T then

job ← select job to train with smallest initial
virtual size

ASSIGN(s, job)
Tcurr ← Tcurr + 1

else
job ← select job with smallest virtual time
ASSIGN(s, job)

end if
end for

end function

function ASSIGN(resource, job)
task ← select task with lower ID from job
assign task to resource

end function

function RELEASERESOURCE(task)
if task is a training task then

Tcurr ← Tcurr − 1
end if

end function

work. The default strategy used by HFSP is to wait for the
resources to be released by the working tasks. Section III-E
describes the preemption strategies implemented in HFSP and
their implications.

Data locality: For performance reasons, it is important
to make sure that MAP tasks work on local data. To this aim,
we use the delay scheduling strategy [11], which postpones
scheduling tasks operating on non-local data for a fixed
amount of attempts; in those cases, tasks of jobs with lower
priority are scheduled instead.

Scheduling Algorithm: HFSP scheduling – which
is invoked every time a MapReduce slave claims work
to do to the MapReduce master – behaves as described
by Algorithm 1. The procedure AssignPhaseTasks is
responsible for assigning tasks for a certain phase. First, it
checks if there are jobs in training stage for that phase. If
there are any, and the number of current resources used for
training tasks Tcurr is smaller or equal than T , the scheduler
assigns the resource to the first training task of the smallest
job. Otherwise, the scheduler assigns the resource to the job
with the smallest virtual time. When a task finishes its work,
the procedure releaseResource is called. If the task is a
training task, then the number Tcurr of training slots in use
is decreased by one.

D. Impact of Estimation Errors

In this section we describe the impact of an erroneous
scheduling, i.e., giving resources to the wrong job, and how
HFSP handles estimation errors.



IEEE TRANSACTIONS ON CLOUD COMPUTING 6

HFSP J1 J2

HFSP wrong J2 J1

Fair Scheduler
J1 J2

0 1 2 3
(a) Scheduling of two similar jobs

J1 J2

J2 J1

J1 J2

0 1 2 3 4 5 6 7 8 9 10 11
(b) Scheduling of two different jobs

Fig. 5: Illustrative examples of the impact of estimation errors on HFSP.

The estimation module outputs an estimated size Sf , which
we refer to in the following as simply S. The error e is
the ratio between the estimated size S and the real size R,
therefore S = R · e. We now consider two kinds of possible
errors: the job size can be under-estimated (e < 1) or over-
estimated (e > 1). Both errors have impact on the scheduler;
however, the case of under-estimation is more problematic.
Indeed, a job whose size is over-estimated obtains a lower
priority: this impacts only that job, delaying the moment in
which it obtains the resources to work. Even if the job enters
the queue with a lower priority, i.e., a large virtual size, the
aging function will raise its priority as the time goes by,
and the job will obtain eventually the resources. Instead, job
under-estimation increases the priority of a job, and this can
potentially affect all the other jobs in the queue. The aging
function plays a crucial role in making HFSP tolerant to
estimations errors. Other size-based scheduling policies, like
SRPT, are more affected by estimation errors [18].

The study of the estimation error for a single job is not
enough to understand the impact of the errors on our schedul-
ing policy. Indeed, we need to consider the estimation errors of
all the jobs in the queue and how their interplay can ultimately
lead the scheduler to take wrong scheduling decisions. We
exemplify this problem for two jobs: let us denote the size of
an arbitrary phase of a job Jk as Rk, and its estimated size as
Sk = Rk·ek, where ek expresses the estimation error. Two jobs
J1 and J2 with R1 < R2 are scheduled incorrectly (i.e., J2 is
given priority over J1) if S1 > S2, i.e., e1/e2 > S2/S1. If J1

and J2 are similar in size, even a small e1/e2 ratio may invert
the priorities of these jobs; if S2/S1 is instead large (e.g.,
because the two sizes differ by orders of magnitude), then
also e1/e2 must be analogously large. This works perfectly
with a size-based scheduler because if two jobs are similar,
inverting the priorities of the two has only a small impact on
the overall performance. Instead, if two jobs are very different,
switching them can lead to poor performance because the job
with highest priority has to wait for an amount of time that
may be much larger than its size. This is, however, unlikely
to happen, because it requires that e1 and/or e2 are very far
from 1. In other words, estimation errors should be very large
for switching very different jobs.

Figure 5a and Figure 5b exemplify how a wrong scheduling
can affect HFSP. Each figure has three cases: the first case, on

top, is the correct HFSP policy; the second case, in the middle,
shows what happens when HFSP gives priority to the wrong
job and the third case, at the bottom, shows an ideal “fair”
scheduler adopting a processor-sharing scheduling policy.

Figure 5a shows what happens when the two jobs have
similar sizes, that are 1 and 2 seconds. If the estimation
module outputs estimated sizes S1 and S2 such that S1 < S2,
HFSP schedules first J1 and then J2 and the resulting mean
response time is 1+3

2 = 2. On the contrary, if the estimation is
wrong and S1 > S2, HFSP will schedule first J2 and then J1.
While this scheduling choice is incorrect, the resulting mean
response time is 2+3

2 = 2.5. While a response time of 2.5 is
not optimal, it matches the mean response time obtained with
Processor Sharing. We conclude that if two jobs are similar,
switching them by giving priority to the bigger one does not
affect heavily a metric such as the mean response time.

Figure 5b illustrates what happens when two jobs have sizes
very different, in the example 1 and 10 seconds. As in the
previous example, HFSP schedules J1 and J2 based on the
estimator output. Here, however, the difference in the mean
response time is large: the mean response time is 1+11

2 = 6
when J1 is scheduled first and 10+11

2 = 10.5 in the other case.
The wrong scheduling choice does not only lead to an almost
doubled mean response time: it also heavily penalizes J1,
which has to wait 10 times its size before having any resource
granted. The difference between the two scheduling choices
is even more clear when they are compared to the Processor
Sharing, that has a mean response time of 2+11

2 = 6.5. When
two jobs are very different, a wrong scheduling choice can lead
to very poor performance of HFSP. This situation, however, is
much less likely to happen than the former, requiring a value
of e1 > 10e2.

The t and ∆ configuration parameters introduced in Sec-
tion III-A play a role in the trade-off between the precision
of the estimation module and the amount of time needed
to obtain an estimation. In experiments not included due to
space limitations, we have found that: 1) our default values
(t = 5, ∆ = 60s) hit a good point in the trade-off; 2) the
impact of these parameters on the scheduler’s performance is
limited. Indeed, simulation-based studies show that size-based
schedulers perform well when based on estimated job sizes
as soon as the correlation between job size and its estimation
is at 0.2 or more. Our experimental findings show that such



IEEE TRANSACTIONS ON CLOUD COMPUTING 7

levels of precisions are easily attainable in our scenario; in
the case of very unstable clusters where this is not obtained,
precision can be improved by raising t and/or ∆ as needed.

In summary, scheduling errors – if caused by estimations
that are not very far from real job sizes – yield response
times similar to those of processor sharing policies, especially
under heavy cluster load. Estimation errors lead to very bad
scheduling decisions only when job sizes are very different
from their estimations. As we show in our experimental
analysis, such errors rarely occur with realistic workloads.

E. Task Preemption

HFSP is a preemptive scheduler: jobs with higher prior-
ity should be granted the resources allocated to jobs with
lower priorities. In Hadoop, the main technique to implement
preemption is by killing tasks. Clearly, this strategy is not
optimal, because it wastes work, including CPU and I/O. Other
works have focused on mitigating the impact of KILL on other
MapReduce schedulers [24]. Alternatively, it is possible to
WAIT for a running task to complete, as done by Zaharia
et al. [11]. If the runtime of the task is small, then the
waiting time is limited, which makes WAIT appealing. This
is generally the case of MAP tasks but not of REDUCE tasks,
which can potentially run for a long time. HFSP supports both
KILL and WAIT and by default it is configured to use WAIT.
In this section we describe how HFSP works when the KILL
preemption is enabled.

Task Selection: Preempting a job in MapReduce means
preempting some or all of its running tasks. It may happen
that not all the tasks of a job have to be preempted. In this
case, it is very important to pick the right tasks to preempt
to minimize the impact of KILL. HFSP chooses to preempt
the “youngest” tasks, i.e., those that have been launched last,
for three practical reasons: i) old tasks are the most likely
ones to finish first, freeing resources to other tasks; ii) killing
young tasks wastes less work; iii) young tasks are likely to
have smaller memory footprints, resulting in lower cleanup
overheads due to e.g., purging temporary data.

When Preemption Occurs: Preemption may occur for
different reasons. First, the training tasks always have priority
over non-training tasks; therefore, training tasks can preempt
other tasks even if they are part of a job with higher priority
than theirs. This makes the training phase faster to complete
and, considering that the number of training tasks is bounded,
does not significantly affect the runtime of other jobs. Tasks
that complete in the training stage lose their “status” of training
task and, consequently, can be preempted as well.
Newly submitted jobs can, of course, preempt running tasks
when the virtual size of the new job is smaller than the virtual
size of the job that is served.
Task preemption may also happen when the estimation module
updates the size of a job, from Si to Sf . This can move the
job to a new position in the job queue.
Aging can also be responsible for task preemption: as we saw
in Section III-B, since we implement max-min fairness, jobs
may have different degrees of parallelism, e.g., small jobs may
require less than they fair share; this results in a different

aging, that may change the order in the execution list.
Finally, the last reason for task preemption is when the cluster
resources shrink, e.g., after a failure. In this case, HFSP grants
“lost” resources to jobs with higher priority using preemption.

New Preemption Primitives: Neither KILL or WAIT are
optimal: as we are going to see in Section IV-D3, waiting for
tasks to complete penalizes fairness, while killing tasks wastes
work. Better preemption primitives for MapReduce have been
proposed [25], [26]: part of our future work to improve HFSP
will include testing those solutions.

IV. EXPERIMENTS

We provide an extensive evaluation of the performance
of HFSP, comparing it against the default scheduler in
current Hadoop distributions (e.g., Cloudera), namely the Fair
scheduler [11], [12]. We do not include a comparison with the
FIFO scheduler available in stock Hadoop: in our experiments,
FIFO is drastically outperformed by all other schedulers, in
accordance with results in the literature [18].

In the following, experiments are divided in macro bench-
marks, in which we evaluate the performance in terms of
fairness and response times of each scheduler, and micro
benchmarks, in which we focus on specific details of HFSP.

A. Experimental Setup

We run our experiments on a cluster composed of 20
TASKTRACKER worker machines with 4 CPUs and 8 GB of
RAM each. We configure Hadoop according to current best
practices [27], [28]: the HDFS block size is 128 MB, with
replication factor 3; each TASKTRACKER has 2 map slots with
1 GB of RAM each and 1 reduce slots with 2 GB of RAM.
The slowstart factor is configured to start the REDUCE phase
for a job when 80% of its MAP tasks are completed.

HFSP operates with the following parameters: the number
of tasks for the training stage is set to t = 5 tasks; the timeout
to estimate task size is set to ∆ = 60 seconds; we schedule
aggressively jobs that are in the training stage, setting ξ = 1
and T = 10 slots for both MAP and REDUCE phases. The Fair
scheduler has been configured with a single job pool, thus all
jobs have the same priority.

We generate workloads using PigMix [29], a benchmarking
suite used to test the performance of Apache Pig releases.
PigMix is appealing because, much like its standard coun-
terparts for traditional DB systems such as TPC [30], it both
generates realistic datasets and defines queries inspired by real-
world data analysis tasks. PigMix contains both Pig scripts and
native MapReduce implementation of the scripts. Since Pig has
generally an overhead over the native implementations of the
same job, in our experiments we use the native implementa-
tions. For illustrative purposes, we include a sample Pig Latin
query that is included in our workloads next:

REGISTER pigperf.jar;
A = LOAD ’pigmix/page_views ’ USING ...

AS (user , action , timespent ,
query_term , ip_addr , timestamp ,
estimated_revenue , page_info , page_links );

B = FOREACH A GENERATE user , estimated_revenue;
alpha = LOAD ’pigmix/power_users_samples ’ USING ...



IEEE TRANSACTIONS ON CLOUD COMPUTING 8

AS (name , phone , address , city , state , zip);
beta = FOREACH alpha GENERATE name , phone;
C = JOIN B BY user LEFT OUTER ,

beta BY name PARALLEL 20;

The above Pig job performs a “projection” on two input
datasets, and “joins” the results.

Job arrival follows a Poisson process, and jobs are generated
by choosing uniformly at random a query between the 17
defined in PigMix. The amount of work each job has to do
depends on the size of the data it operates on. For this reason,
we generate four different datasets of sizes respectively 1 GB,
10 GB, 100 GB and 1 TB. For simplicity, we refer to these
datasets as to bins – see the first two columns of Table I. The
third column of the table shows ranges of number of MAP
tasks for each bin (PigMix queries operate on different subsets
of the input datasets, which result in a variable number of
MAP/REDUCE tasks).

We randomly map each job to one of the four available
datasets: this assignment follows three different probability
distributions – see the last three columns of Table I. The overall
composition of the jobs therefore defines three workloads,
which we label according to the following scheme:

• DEV: this workload is indicative of a “development”
environment, whereby users rapidly submit several small
jobs to build their data analysis tasks, together with jobs
that operate on larger datasets. This workload is inspired
by the Facebook 2009 trace observed by Chen et al. [19];
the mean interval between job arrivals is µ = 30 s.

• TEST: this workload represents a “test” environment,
whereby users evaluate and test their data analysis tasks
on a rather uniform range of dataset sizes, with 20% of
the jobs using a large dataset. This workload is inspired
by the Microsoft 2011 traces as described by Appuswamy
et al. [31]; the mean interval between jobs is µ = 60 s.

• PROD: this workload is representative of a “production”
environment, whereby data analysis tasks operate pre-
dominantly on large datasets. The mean interval between
jobs is µ = 60 s.

The values of µ control the system load: in results not included
due to space constraints, we found that µ amplifies the
difference between schedulers without altering it qualitatively;
when µ is low the cluster is likely to have enough resources
to satisfy all demands: in that case, the scheduling policy does
not make a difference; conversely, as soon as the scheduler is
presented with a wider set of possibilities because more jobs
are pending, the scheduling policy matters [32].

In this work, each workload is composed of 100 jobs, and
both HFSP and Fair have been evaluated using the same jobs,
the same inputs and the same submission schedule. For each
workload, we run five experiments using different seeds for the
random assignments (query selection and dataset selection), to
improve the statistical confidence in our results.

Additional results – not included for lack of space –
obtained on different platforms (Amazon EC2 and the Hadoop
Mumak emulator), and with different workloads (synthetic
traces generated by SWIM [19]), confirm the ones shown here;
they are available in a technical report [32]. A larger set of
workloads, which evaluate size-based schedulers on a larger

TABLE I: Summary of the workloads used in our experiments.

Bin Dataset Averag. num. Workload
Size MAP Tasks DEV TEST PROD

1 1 GB < 5 65% 30% 0%
2 10 GB 10− 50 20% 40% 10%
3 100 GB 50− 150 10% 10% 60%
4 1 TB > 150 5% 20% 30%

variety of synthetic and real workloads, has been evaluated
through simulation [18]; the results confirm the effectiveness
of size-based disciplines in a large variety of cases.

B. Metrics

In our experiments we use two main metrics to evaluate the
scheduler performance. The first metric is the (job) response
time, i.e., the time that passes between a job’s submission
and its completion. This metric is widely used as metric of
efficiency and responsiveness in the literature on scheduling.
The second metric focuses on the notion of fairness. Even if
there are different ways to measure fairness [33], a common
approach is to consider the slowdown, i.e., the ratio between a
job’s response time and its size. In this work we focus on the
per-job slowdown, to analyze whether jobs are treated unfairly,
which translates into very high slowdown values.

Note that, to compute the per-job slowdown, it is necessary
to know the “real” size of a job: to obtain such information,
we execute each job in isolation, and measure their runtime.

The Fair scheduler is inspired by the PS scheduling policy,
which should ensure a fair treatment to all jobs, since it assigns
equally the resources to each of them. For the purposes of this
work, we will therefore consider as fair a scheduling policy
for which the highest slowdown values are in line or better
than those obtained by the Fair scheduler.

C. Macro Benchmarks

In this section we present the aggregate results of our
experiments for response times and per-job slowdown, across
all schedulers we examine.

1) Response Times: Figure 6 shows the mean response
times for all workloads we evaluate: the mean response times
are indicative of system responsiveness, and lower values are
best. Overall, HFSP is substantially more responsive than the
Fair scheduler, a claim that we confirm also by inspecting the
full distribution of response times, later in this Section. As
shown in Figure 6, the mean sojourn time for HFSP is 34%,
26%, 33% lower for the DEV, TEST, and PROD workload
respectively. It is important to note that a responsive system
does not only cater to a “development” workload, which
requires interactivity, but also to more “heavy” workloads, that
require an efficient utilization of resources. Thus, in summary,
HFSP is capable of absorbing a wide range of workloads, with
no manual (and static) configuration of resource pools, and
only a handful parameters to set. Globally, our results can also
be interpreted in another key: a system using HFSP can deliver
the same responsiveness as one running other schedulers, but
with less hardware, or it can accommodate more intensive
workloads with the same hardware provisioning. Next, we



IEEE TRANSACTIONS ON CLOUD COMPUTING 9

DEV
TEST

PROD

-34% -26%

-33%

25 28

109

38 38

163
M

ea
n

R
es

po
ns

e
Ti

m
e

(s
)

HFSP Fair

Fig. 6: Aggregate mean response times for all workloads.

10 100 1000 10000
Sojourn time (s)

0.0

0.2

0.4

0.6

0.8

1.0

EC
D

F

HFSP
Fair

Fig. 7: ECDF of the response times for the DEV workload,
excluding jobs from bin 1.

delve into a more detailed analysis of response times, across
all workloads presented in the global performance overview.

The DEV workload is mostly composed of jobs from
bin 1 that are treated in the same way by both HFSP and
Fair schedulers: this biases the interpretation of results using
only first order statistics. Therefore, in Figure 7, we show
the empirical cumulative distribution function (ECDF) of job
response times for all bins except bin 1. We notice that jobs
that have a response time less or equal to 80 seconds are 60%
in HFSP and only 20% in Fair. The reason of this boost in
performance is the fact that HFSP runs jobs in sequence while
Fair runs them in parallel. By running jobs in series, HFSP
focuses all the resources on one job that finishes as soon as
possible without penalizing other jobs, leading to increased
performance overall.

The TEST workload is the most problematic for HFSP
because the jobs are distributed almost uniformly among the
four bins. In Figure 8, we decompose our analysis per bin, and
show the ECDF of the job response times for all bins except
for those in bin 1. For jobs in bin 2, the median response
times are of 31 seconds and 45 seconds for HFSP and Fair,
respectively. For jobs in bin 3, median values are more distant:

98 seconds and 290 seconds respectively for HFSP and Fair.
Finally, for jobs in bin 4, the gap further widens: 1000 seconds
versus almost 2000 seconds for HFSP and Fair, respectively.
The submission of jobs from bin 3 and 4 slows down the Fair
scheduler, while HFSP performs drastically better because it
“focuses” cluster resources to individual jobs.

Our results for the PROD workload are substantially in
favor of HFSP, that outperforms the Fair scheduler both when
considering the mean response times (see Figure 6), and the
full distribution of response times: in this latter case, e.g.,
median response times of HFSP are one order of magnitude
lower than those in the Fair scheduler.

2) Slowdown: Figure 9 shows the ECDF of the per-job
slowdown. Recall that the slow down of a job equals its
response time divided by its size: hence, values close or equal
to 1 are best. Thus, we use Figure 9 to compare the HFSP
and Fair schedulers with respect to the notion of “fairness”
we introduced earlier: globally, our results indicate that HFSP
is always more fair to jobs than the Fair scheduler.

In particular, we notice that TEST and PROD workloads
are particularly difficult for the Fair scheduler. Indeed, a
large fraction of jobs is mistreated, in the sense they have
to wait long before being served. With the Fair scheduler,
job mistreatment worsen when workloads are “heavier”; in
contrast, HFSP treats well the vast majority of jobs, and this is
true also for demanding workloads such as TEST and PROD.
For example, we can use the median slowdown to compare
the behavior of the two schedulers: the gap between HFSP
and Fair widens from a few units, to one order of magnitude
for the PROD workload.

D. Micro Benchmarks

In this Section we study additional details of the HFSP and
Fair schedulers, and introduce new results that measure cluster
utilization and allow to assess job size estimation errors.
Finally, we focus on job and task preemtpion and discuss about
the impact on the performance of such a mechanism.

1) Cluster load: We now study the implications of job
scheduling from the perspective of cluster utilization: when
workloads (like the ones we use in our experiments) are
composed by bursts of arrivals, it is important to understand
the ability of the system to “absorb” such bursts, without
overloading the queue of the pending jobs. We thus define
the cluster load as the number of jobs currently in the system,
either running or waiting to be served.

To understand how cluster load varies with the two sched-
ulers, we focus on a individual run of the PROD workload,
because of its high toll in cluster resources. Figure 10 il-
lustrates the time-series of the cluster load for both HFSP
and Fair schedulers. There are two significant bursts: in the
first, between 0.4 and 0.6 hours, 18 new jobs arrive; in
the second, between 1.34 and 1.5 hours, 35 new jobs are
submitted. Clearly, Figure 10 shows that HFSP handles bursts
of arrivals better than the Fair scheduler: for the latter, the
cluster load increases corresponding to each burst, whereas
the HFSP scheduler induces a smoother load. Indeed, since
HFSP schedules jobs in series, it is able to serve jobs faster



IEEE TRANSACTIONS ON CLOUD COMPUTING 10

10 100 1000 10000
0.0

0.2

0.4

0.6

0.8

1.0

EC
D

F

HFSP
Fair

(a) Bin 2.

10 100 1000 10000
0.0

0.2

0.4

0.6

0.8

1.0

EC
D

F

HFSP
Fair

(b) Bin 3.

100 1000 10000 100000
0.0

0.2

0.4

0.6

0.8

1.0

EC
D

F

HFSP
Fair

(c) Bin 4.

Fig. 8: ECDF of the response times for the TEST workload, grouped per bin.

0.1 1.0 10.0 100.0
Response time / Isolation runtime

0.0

0.2

0.4

0.6

0.8

1.0

EC
D

F

HFSP
Fair

(a) DEV workload.

0.1 1.0 10.0 100.0
Response time / Isolation runtime

0.0

0.2

0.4

0.6

0.8

1.0
EC

D
F

HFSP
Fair

(b) TEST workload.

0.1 1.0 10.0 100.0
Response time / Isolation runtime

0.0

0.2

0.4

0.6

0.8

1.0

EC
D

F

HFSP
Fair

(c) PROD workload.

Fig. 9: ECDF of the per-job slowdown, for all workloads.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time (h)

0

5

10

15

20

25

30

35

40

45

nu
m

be
r

of
pe

nd
in

g
jo

bs

HFSP
Fair

Fig. 10: Time-series of the cluster load, for an individual
experiment with the PROD workload.

– and thus free up resources more quickly – than the Fair
scheduler, which instead prolongs jobs service, by granting
few resources to all of them.

2) Task time and error: We now focus solely on HFSP,
and analyze an apparently delicate component thereof, i.e., the
job size estimation module. Our experimental results indicate
that HFSP is resilient to job size estimation errors: we show
that, by focusing on a detailed analysis of task times (which
determine the size of a job), and the estimation errors induced
by the simple estimator we implemented, it only takes a few
training tasks to deduce job sizes.

Figure 11 shows an aggregate distribution of task times
for MAP and REDUCE phases for all jobs in all workloads
and for all our experiments. It is possible to see that most

1 10 102 103 104 105

time (s)

0.0

0.2

0.4

0.6

0.8

1.0

EC
D

F

map
reduce

Fig. 11: ECDF of task run times, for the MAP and REDUCE
phases of all jobs across all workloads.

MAP tasks complete within 60 seconds, and the variability
among different tasks is limited. Instead, REDUCE task times
variability is extremely high, with differences peaking at 2
orders of magnitude. Given the skew of REDUCE task times, it
is reasonable to question the accuracy of the simple estimation
mechanism we use in HFSP.

A closer look at task time distribution, however, reveals
that within a single job, task times are rather stable. Figure 12
shows the ECDF of the normalized MAP and REDUCE task
times: this is obtained by grouping task times belonging to the
same job together, computing the mean task time for each job,
and normalizing task times by the corresponding mean task
time of the job they belong to. For instance, if a job has two
tasks with task time equal to 10 and 30 seconds respectively,



IEEE TRANSACTIONS ON CLOUD COMPUTING 11

1 10 102

task time / mean task time

0.0

0.2

0.4

0.6

0.8

1.0

EC
D

F

map
reduce

Fig. 12: ECDF of the normalized task run time, for the MAP
and REDUCE phases of all jobs across all workloads.

0.25 0.5 1 2 4
error using 5 samples

0.0

0.2

0.4

0.6

0.8

1.0

EC
D

F

map
reduce

Fig. 13: ECDF of estimation errors, for the MAP and REDUCE
phases of all jobs across all workloads.

then the mean task time for that job would be 20 seconds, and
the normalized task times of these tasks would be 0.5 and 1.5
seconds respectively. As such, Figure 12 indicates that it is
sufficient to use a small subset of tasks to compute a suitable
job size estimate: this allows to distinguish large jobs from
small ones, thus avoiding “inversions” in the job schedule.

We support the above claim with Figure 13, that shows
the ECDF of the estimation error we measured for MAP
and REDUCE phase across all jobs and workloads. For the
MAP phase, some jobs (less than 5%) are under-estimated
by a factor of 0.4/0.5, while some jobs (less than 4%) are
over-estimated by a factor of 2/3.5. For the reduce phase,
the number of under-estimated jobs is very small and in
general under-estimation is negligible while over-estimation
happens only for 10% of jobs by a factor smaller then 2.
As a consequence, job size estimates are in the same order of
magnitude of real job sizes. This means that two jobs from the
same “bin” can be switched but two jobs from two different
bins are hardly or never switched (see Section III-D).

In Figures 14 and 15 we decompose estimation errors
according to the size of the job (bin for the dataset used), to
understand whether errors are more likely to occur for larger
or smaller jobs. Results for jobs in bin 1 are omitted because
those jobs have less than 5 tasks and they finish before the
estimation is done. The boxplots (indicating quartiles in the
boxes and outliers outside of whiskers) show that HFSP tends
to over-estimate rather than under-estimate job sizes. In our

bin2 bin3 bin4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fig. 14: Boxplots of estimation errors, grouped by bin, for the
MAP phase of all jobs across all workloads.

bin2 bin3 bin4
0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Fig. 15: Boxplots of estimation errors, grouped by bin, for the
REDUCE phase of all jobs across all workloads.

experiments, estimation error is bounded by the factor of 3.5
for the MAP phase and 2 for the REDUCE phase. The majority
of the estimated sizes are around 1, showing that often HFSP
estimates a size that is very close to the correct one. Since
jobs from bins 3 and 4 have more tasks than jobs from bin
2, the estimations for bins 3 and 4 are less precise than the
estimations for bin 2 (Table I). In all these cases, the quality
of job size estimations are well within the limits that where
size-based schedulers can perform efficiently [18].

Given these results, we conclude that the output of our
estimator is good enough for HFSP to schedule jobs correctly.

3) Preemption techniques: As discussed in Section III-E,
there are two possible approaches to task preemption: the
WAIT and the KILL primitives; here we analyze the impact
on system performance and fairness of both. To this aim, we
focus on the TEST workload, which is the most problematic
workload for HFSP (see Section IV-C1). Figures 16 and 17
show the ECDF of response times and slowdown.

We notice that killing tasks improves HFSP fairness: indeed,
when a waiting job is granted higher priority than a running
job, the scheduler kills immediately the running tasks of the
latter, and freeing up resources almost immediately. Without
the KILL primitive, the scheduler can only grant resources to
smaller, higher priority jobs when running tasks are complete.

The situation changes when considering response times.
Indeed, killing tasks wastes work, and this is particularly true
for tasks that are close to completion. Figure 16 shows that
the KILL primitive is especially problematic for large jobs: as



IEEE TRANSACTIONS ON CLOUD COMPUTING 12

1 10 102 103 104 105

sojourn time (s)

0.0

0.2

0.4

0.6

0.8

1.0

EC
D

F

kill
wait

Fig. 16: ECDF of job response times, for the TEST workload.
Comparison between preemption primitives.

1 10 100
slowdown (s)

0.0

0.2

0.4

0.6

0.8

1.0

EC
D

F

kill
wait

Fig. 17: ECDF of the per-job slowdown, for the TEST
workload. Comparison between preemption primitives.

they last longer, they have more chances to have their tasks
killed.

In summary, the lesson we learned is that the choice of
the primitive to use to perform job preemption depends on
the “functional” objectives of an administrator. If fairness is
considered important, then the KILL primitive is more appro-
priate. Instead, if system responsiveness is the objective, then
the WAIT primitive is a sensible choice. As a future research
direction, we plan to integrate HFSP with new preemption
primitives [25], [26] that aim at striking a good balance
between fairness and responsiveness.

V. RELATED WORK

MapReduce in general and Hadoop in particular have re-
ceived considerable attention recently, both from the industry
and from academia. Since we focus on job scheduling, we
consider here the literature pertaining to this domain.

Theoretical Approaches: Several theoretical works tackle
scheduling in multi-server systems – a recent example is the
work by Moseley and Fox [34]. These works, which are
elegant and important contributions to the domain, provide
performance bounds and optimality results based on simpli-
fying assumptions on the execution system (e.g.,, jobs with a
single phase). Some works provide interesting approximability
results applied to simplified models of MapReduce [35], [36].
In contrast, we focus on the design and implementation of a
scheduling mechanism taking into account all the details and
intricacies of a real system.

Fairness and QoS: Several works take a system-based
approach to scheduling on MapReduce. For instance, the Fair
scheduler and its enhancement with a delay scheduler [11]
is a prominent example to which we compare our results.
Several other works [37]–[40] focus on resource allocation
and strive at achieving fairness across jobs, but do not aim at
optimizing response times. Sandholm and Lai [41] study the
resource assignment problem through the lenses of a bidding
system to achieve a dynamic priority system and implement
quality of service for jobs. Kc and Anyanwu [42] address the
problem of scheduling jobs to meet user-provided deadlines,
but assume job runtime to be an input to the scheduler.

Flex [43] is a proprietary Hadoop size-based scheduler. In
Flex, “fairness” is defined as avoiding job starvation and guar-
anteed by allocating a part of the cluster according to Hadoop’s
Fair scheduler; size-based scheduling (without aging) is then
performed only on the remaining set of nodes. In contrast,
by using aging our approach can guarantee fairness while
allocating all cluster resources to the highest priority job, thus
completing it as soon as possible.

Job Size Estimation: Various recent approaches [44]–
[47] propose techniques to estimate query sizes in recurring
jobs. Agarwal et al. [46] report that recurring jobs are around
40% of all those running in Bing’s production servers. Our
estimation module, on the other hand, works on-line with any
job submitted to a Hadoop cluster, but it has been designed
so that the estimator module can be easily plugged with other
mechanisms, benefitting from advanced and tailored solutions.

Complementary approaches: Task size skew is a problem
in general for MapReduce applications, since larger tasks delay
the completion of a whole job; skew also makes job size
estimation more difficult. The approach of SkewTune [48]
greatly mitigates the issue of skew in task processing times
with a plug-in module that seamlessly integrates in Hadoop,
which can be used in conjunction with HFSP. Tian et al. [49]
propose a mechanism where IO-bound and CPU-bound jobs
run concurrently, benefitting from the absence of conflicts on
resources between them. We remark that also in this case it
is possible to benefit from size-based scheduling, as it can
be applied separately on the IO- and CPU-bound queues.
Tan et al. [50], [51] propose strategies to adaptively start
the REDUCE phase in order to avoid starving jobs; also this
technique is orthogonal to the rest of scheduling choices and
can be integrated in our approach. Hadoop offers a Capacity
Scheduler [52], which is designed to be operated in multi-
tenant clusters where different organizations submit jobs to
the same clusters in separate queues, obtaining a guaranteed
amount of resources. We remark that also this idea is comple-
mentary to our proposal, since jobs in each queue could be
scheduled according to a size-based policy such as HFSP, and
reap according benefits.

Framework Schedulers: Recent works have pushed the
idea of sharing cluster resources at the framework level, for
example to enable MapReduce and Spark [53] “applications”
to run concurrently. Monolithic schedulers such as YARN [54]
and Omega [55] use a single component to allocate resources
to each framework, while two-level schedulers [56], [57] have
a single manager that negotiates resources with independent,



IEEE TRANSACTIONS ON CLOUD COMPUTING 13

framework-specific schedulers. We believe that such frame-
work schedulers impose no conceptual barriers for size-based
scheduling, but the implementation would require very careful
engineering. In particular, size-based scheduling should only
be limited to batch applications rather than streaming or
interactive ones that require continuous progress.

VI. CONCLUSION

Resource allocation plays an increasingly important role
in current Hadoop clusters, as modern data analytics and
workloads are becoming more complex and heterogeneous.
Our work was motivated by the increasing demand for system
responsiveness, driven by both interactive data analysis tasks
and long-running batch processing jobs, as well as for a fair
and efficient allocation of system resources.

Alas, system responsiveness and fairness requirements have
been traditionally at odds: a scheduling discipline that would
satisfy one, had to sacrifice the other. For example, in our
work we argued that the default scheduling mechanism used
in typical Hadoop deployments, the Fair scheduler, achieves
fairness but trades on system response times. Only a tedious,
manual process involving an expert administrator could miti-
gate the shortfalls of a processor sharing-like discipline, albeit
for a rather static workload composition.

In this paper we presented a novel approach to the resource
allocation problem, based on the idea of size-based scheduling.
Our effort materialized in a full-fledged scheduler that we
called HFSP, the Hadoop Fair Sojourn Protocol, which im-
plements a size-based discipline that satisfies simultaneously
system responsiveness and fairness requirements.

Our work raised many challenges: evaluating job sizes on-
line without wasting resources, avoiding job starvation for both
small and large jobs, and guaranteeing short response times
despite estimation errors were the most noteworthy. HFSP
uses a simple and practical design: size estimation trades
accuracy for speed, and starvation is largely alleviated, by
introducing the mechanisms of virtual time and aging.

A large part of this article was dedicated to a thorough
experimental campaign to evaluate the benefits of HFSP when
compared to the default Fair scheduler in Hadoop. We defined
several realistic workloads that are representative of typical
uses of an Hadoop cluster, and proceeded with a comparative
analysis using our deployment, configured according to current
best practices. Our experiments, that amount to more than
1500 real jobs, indicated that HFSP systematically – and in
some cases, by orders of magnitude – outperformed the Fair
scheduler, both with respect to system response times and
fairness properties.

Furthermore, we insisted on studying the sensitivity of
HFSP to a seemingly delicate component, namely the one
responsible for estimating job sizes, which are undoubtedly
the most important ingredients of a size-based scheduler. Our
experiments reveal that rough estimates are sufficient for HFSP
to operate correctly, which validate our design choice of
favoring speed, rather than accuracy.

Overall, this work showed that size-based scheduling disci-
plines, that have been for long relegated to a rather marginal

role, are indeed very practical alternatives to current default
schedulers. In particular, for Hadoop, we showed that our
implementation of HFSP drastically improves on system re-
sponse times, guarantees fairness and, crucially, only requires a
handful of parameters to set. Furthermore, HFSP adapts easily
to workload dynamics and it is tolerant to failures.

HFSP has been designed to optimize performance without
stringent requirements in terms of parameter tuning. However,
in large clusters, more elaborate configurations are often
needed, e.g., to manage user groups and job priorites. Such
cases only require some additional engineering effort to be
supported. For example, both the Fair and the Capacity sched-
uler [52] can be used as hierarchical schedulers: they allow
instantiating user “pools” and define a per-pool scheduling
policy. Additionally, to offer job-level priority, it is possible
to alter the HFSP aging module as mentioned in Section III-B
to emulate more complex policies in the virtual time. These
ideas are within our plans for future developments.

Currently, we are extending HFSP such that it can use recent
job preemption primitives, a necessary condition to allow even
faster response times; moreover, we will consolidate our code-
base and contribute it to the Hadoop community, casting HFSP
to work for modern frameworks such as YARN and Mesos.

ACKNOWLEDGMENT

This work has been partially supported by the EU projects
BigFoot (FP7-ICT-317858) and mPlane (FP7-ICT-318627).

REFERENCES

[1] Apache, “Hadoop: Open source implementation of MapReduce,” http:
//hadoop.apache.org/.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proc. of USENIX OSDI, 2004.

[3] Apache, “Spark,” http://spark.apache.org/.
[4] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,

M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation, 2012, pp. 2–2.

[5] Microsoft, “The naiad system,” https://github.com/
MicrosoftResearchSVC/naiad.

[6] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi, “Naiad: A timely dataflow system,” in Proceedings of the
24th ACM Symposium on Operating Systems Principles, 2013, pp. 439–
455.

[7] Y. Chen, S. Alspaugh, and R. Katz, “Interactive query processing in
big data systems: A cross-industry study of MapReduce workloads,” in
Proc. of VLDB, 2012.

[8] K. Ren et al., “Hadoop’s adolescence: An analysis of Hadoop usage in
scientific workloads,” in Proc. of VLDB, 2013.

[9] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones.” in NSDI, vol. 13, 2013.

[10] Apache, “Oozie Workflow Scheduler,” http://oozie.apache.org/.
[11] M. Zaharia et al., “Delay scheduling: A simple technique for achieving

locality and fairness in cluster scheduling,” in Proc. of ACM EuroSys,
2010.

[12] Apache, “The hadoop fair scheduler,” http://hadoop.apache.org/docs/r1.
2.1/fair scheduler.html.

[13] E. Friedman and S. Henderson, “Fairness and efficiency in web server
protocols,” in Proc. of ACM SIGMETRICS, 2003.

[14] L. E. Schrage and L. W. Miller, “The queue m/g/1 with the shortest
remaining processing time discipline,” Operations Research, vol. 14,
no. 4, 1966.

[15] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan, “Flow and stretch
metrics for scheduling continuous job streams,” in Proceedings of the
ninth annual ACM-SIAM symposium on Discrete algorithms. Society
for Industrial and Applied Mathematics, 1998, pp. 270–279.



IEEE TRANSACTIONS ON CLOUD COMPUTING 14

[16] A. S. Tanenbaum and A. Tannenbaum, Modern operating systems.
Prentice hall Englewood Cliffs, 1992, vol. 2.

[17] Stallings, Operating Systems. Prentice hall, 1995.
[18] M. Dell’Amico, D. Carra, M. Pastorelli, and P. Michiardi, “Revisiting

size-based scheduling with estimated job sizes,” in IEEE MASCOTS,
2014.

[19] Y. Chen, A. Ganapathi, R.Griffith, and R. Katz, “The case for evaluating
MapReduce performance using workload suites,” in Proc. of IEEE
MASCOTS, 2011.

[20] J. Nagle, “On packet switches with infinite storage,” Communications,
IEEE Transactions on, vol. 35, no. 4, 1987.

[21] S. Gorinsky and C. Jechlitschek, “Fair efficiency, or low average delay
without starvation,” in Proc. of IEEE ICCCN, 2007.

[22] M. Dell’Amico, D. Carra, and P. Michiardi, “Psbs: Practical size-based
scheduling,” arXiv preprint arXiv:1410.6122, 2014.

[23] D. Stiliadis and A. Varma, “Latency-rate servers: a general model for
analysis of traffic scheduling algorithms,” IEEE/ACM TON, vol. 6, no. 5,
1998.

[24] L. Cheng, Q. Zhang, and R. Boutaba, “Mitigating the negative impact
of preemption on heterogeneous MapReduce workloads,” in Proc. of
CNSM, 2011.

[25] B. Cho, M. Rahman, T. Chajed, I. Gupta, C. Abad, N. Roberts, and
P. Lin, “Natjam: Design and evaluation of eviction policies for support-
ing priorities and deadlines in mapreduce clusters,” in Proceedings of
the 4th annual Symposium on Cloud Computing. ACM, 2013, p. 6.

[26] M. Pastorelli, M. Dell’Amico, and P. Michiardi, “Os-assisted task
preemption for hadoop,” in Proc. of IEEE ICDCS workshop, 2014.

[27] Apache, “Hadoop fair scheduler,” http://hadoop.apache.org/docs/stable/
fair scheduler.html.

[28] ——, “Hadoop MapReduce JIRA 1184,” https://issues.apache.org/jira/
browse/MAPREDUCE-1184.

[29] ——, “PigMix,” https://cwiki.apache.org/PIG/pigmix.html.
[30] TPC, “Tpc benchmarks,” http://www.tpc.org/information/benchmarks.

asp.
[31] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, and A. Row-

stron, “Scale-up vs scale-out for hadoop: Time to rethink?” in Proceed-
ings of the 4th annual Symposium on Cloud Computing. ACM, 2013,
p. 20.

[32] M. Pastorelli et al., “Practical size-based scheduling for MapReduce
workloads,” CoRR, vol. abs/1302.2749, 2013.

[33] A. Wierman, “Fairness and scheduling in single server queues,” Surveys
in Operations Research and Management Science, vol. 16, no. 1, 2011.

[34] K. Fox and B. Moseley, “Online scheduling on identical machines using
SRPT,” in In Proc. of ACM-SIAM SODA, 2011.

[35] H. Chang et al., “Scheduling in MapReduce-like systems for fast
completion time,” in Proc. of IEEE INFOCOM, 2011.

[36] B. Moseley et al., “On scheduling in map-reduce and flow-shops,” in In
Proc. of ACM SPAA, 2011.

[37] T. Sandholm and K. Lai, “MapReduce optimization using regulated
dynamic prioritization,” in Proc. of ACM SIGMETRICS, 2009.

[38] M. Isard et al., “Quincy: fair scheduling for distributed computing
clusters,” in Proc. of ACM SOSP, 2009.

[39] A. Ghodsi et al., “Dominant resource fairness: Fair allocation of multiple
resources types,” in Proc. of USENIX NSDI, 2011.

[40] B. Hindman et al., “Mesos: A platform for fine-grained resource sharing
in the data center,” in Proc. of USENIX NSDI, 2011.

[41] T. Sandholm and K. Lai, “Dynamic proportional share scheduling in
Hadoop,” in Proc. of JSSPP, 2010.

[42] K. Kc and K. Anyanwu, “Scheduling Hadoop jobs to meet deadlines,”
in Proc. of CloudCom, 2010.

[43] J. Wolf et al., “FLEX: A slot allocation scheduling optimizer for
MapReduce workloads,” in Proc. of ACM MIDDLEWARE, 2010.

[44] A. Verma, L. Cherkasova, and R. H. Campbell, “Aria: automatic resource
inference and allocation for MapReduce environments,” in Proc. of
ICAC, 2011.

[45] ——, “Two sides of a coin: Optimizing the schedule of MapReduce
jobs to minimize their makespan and improve cluster performance,” in
Proc. of IEEE MASCOTS, 2012.

[46] S. Agarwal et al., “Re-optimizing Data-Parallel Computing,” in Proc. of
USENIX NSDI, 2012.

[47] A. D. Popescu et al., “Same queries, different data: Can we predict
query performance?” in Proc. of SMDB, 2012.

[48] Y. Kwon et al., “Skewtune: mitigating skew in MapReduce applications,”
in Proc. of ACM SIGMOD, 2012.

[49] C. Tian et al., “A dynamic MapReduce scheduler for heterogeneous
workloads,” in Proc. of IEEE GCC, 2009.

[50] J. Tan, X. Meng, and L. Zhang, “Delay tails in MapReduce scheduling,”
in Proc. of ACM SIGMETRICS, 2012.

[51] ——, “Performance analysis of coupling scheduler for MapRe-
duce/Hadoop,” in Proc. of IEEE INFOCOM, 2012.

[52] Apache, “Hadoop capacity scheduler,” http://hadoop.apache.org/docs/
stable/capacity scheduler.html.

[53] M. Zaharia et al., “Resilient distributed datasets: a fault-tolerant ab-
straction for in-memory cluster computing,” in Proc. of USENIX NSDI,
2012.

[54] Apache, “Hadoop nextgen MapReduce (yarn),” http://hadoop.apache.
org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html.

[55] M. Schwarzkopf et al., “Omega: flexible, scalable schedulers for large
compute clusters,” in Proc. of EuroSys, 2013.

[56] B. Hindman et al., “Mesos: a platform for fine-grained resource sharing
in the data center,” in Proc. of USENIX NSDI, 2011.

[57] Apache, “Hadoop on demand,” http://hadoop.apache.org/docs/stable/
hod scheduler.html.

Mario Pastorelli received his M.S. in Computer
Science from the University of Genoa (Italy) and
his Ph.D. in in Computer Science from Telecom
ParisTech with a thesis on Job Scheduling for Data-
Intensive Scalable Computing Systems. He is cur-
rently working at Teralytics AG as Software En-
gineer and Architect in the data acquisition and
elaboration team.

Damiano Carra received his Laurea in Telecom-
munication Engineering from Politecnico di Milano,
and his Ph.D. in Computer Science from University
of Trento. He is currently an Assistant Professor in
the Computer Science Department at University of
Verona. His research interests include modeling and
performance evaluation of peer-to-peer networks and
distributed systems.

Matteo Dell’Amico is a researcher at Symantec
Research Labs; his research revolves on the topic of
distributed computing. He received his M.S. (2004)
and Ph.D. (2008) in Computer Science from the
University of Genoa (Italy); during his Ph.D. he
also worked at University College London. Between
2008 and 2014 he was a researcher at EURECOM.
His research interests include data-intensive scalable
computing, peer-to-peer systems, recommender sys-
tems, social networks, and computer security.

Pietro Michiardi received his M.S. in Computer
Science from EURECOM and his M.S. in Electrical
Engineering from Politecnico di Torino. Pietro re-
ceived his Ph.D. in Computer Science from Telecom
ParisTech (former ENST, Paris). Today, Pietro is an
Assistant Professor of Computer Science at EURE-
COM. Pietro currently leads the Distributed System
Group, which blends theory and system research
focusing on large-scale distributed systems (includ-
ing data processing and data storage), and scalable
algorithm design to mine massive amounts of data.

Additional research interests are on system, algorithmic, and performance
evaluation aspects of computer networks and distributed systems.


