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Abstract—Data summarization queries that compute ag-
gregates by grouping datasets across several dimensions are
essential to help users make sense of very large datasets. In
this work, we focus on ROLLUP, an important operator that
has been recently added to the Hadoop MapReduce ecosystem.
However, its current implementation suffers from very large
communication costs, leading to inefficient executions. We thus
proceed with the design of a new ROLLUP operator for high-
level languages. Our operator is self-optimizing, which means
that it automatically performs load-balancing and determines
a suitable operating point to achieve the highest performance.
We have implemented our ROLLUP operator for Apache
Pig, a popular high-level language in the Hadoop ecosystem.
Our experimental results, obtained on both synthetic and
real datasets, indicate that our new operator outperforms the
current ROLLUP implementation in Pig by at least 50%.

I. INTRODUCTION

Users that interact with “big data” constantly face the
problem of extracting insight and obtain value from their
data assets. Of course, humans can not be expected to parse
through terabytes of data. In fact, typical user interaction
with big data happens through data summaries. A summary
is obtained by grouping data along various dimensions
(e.g., by location and/or time), and then showing aggregate
functions of those data (e.g., count, sum, mean, etc.). Even
graphical and interactive visualizations of data very often
show aggregated results.

On-Line Analytical Processing (OLAP) tools and tech-
niques exist to facilitate exploration of data, allowing to
perform “slicing and dicing” [1] by grouping data along mul-
tiple dimensions. In relational databases, this is facilitated
by extending the traditional SQL GROUP BY clause with
constructs such as ROLLUP, CUBE, and GROUPING SETS.
These operations have seen extensive efforts to optimize
their implementation in relational databases [2]–[4], which
only apply to single servers or small clusters.

Despite the importance of data summarization, the field of
data-intensive scalable computing (DISC) systems – where
data can reach petabytes and be distributed on clusters of
thousands of machines – has not seen much effort toward
efficient implementations of the above concepts. In the
Hadoop MapReduce ecosystem [5], [6], high-level query
languages such as Pig Latin [7] and HiveQL [8] offer simple
implementations of the above constructs, which do not
perform aggressive optimizations. In enterprise workloads,
jobs coming from queries written in high-level languages
are the majority [9]; an optimized implementation of these
operators is therefore truly desirable.

∗The author is currently working in Symantec Research Labs

In this work, we focus on the design and implementation
of a new ROLLUP operator for high-level languages. The
motivations for focusing on ROLLUP are two: (i) it is very
useful in frequent cases where data dimensions are naturally
hierarchical (e.g., day-month-year or city-region-country);
(ii) it is used as a fundamental building block to compute
CUBE and GROUPING SETS [10].

Existing implementations are not satisfying: as we discuss
in Section II, current ROLLUP algorithms are naively biased
toward extreme levels of parallelism. As a consequence,
these approaches trade a theoretical possibility of scaling
several orders of magnitude beyond the scale attainable by
real-world clusters with a very significant overhead in terms
of communications.

There are alternative ROLLUP algorithms that allow
tuning the level of parallelism and the communication
overhead of their implementation: with a proper setting,
these algorithms perform better than naive implementations.
Such approaches are appealing in the abstract, but they
are practically very difficult for users to apply, since to
determine the proper setting, they would require users to
know: (i) the internals of the algorithm’s implementation;
(ii) statistical information about data distribution; (iii) size
and performances of the cluster on which the algorithm is
implemented. These requirements are difficult to meet at
once, and they are essentially prohibitive in the context of
high-level DISC languages, whose very reason of existence
is to hide this kind of complexities and allowing users to
concentrate on extracting meaning from data.

As a result, in this paper we design (in Section III)
and implement a new ROLLUP operator that is completely
transparent to users. Our operator automatically collects
statistics about data and cluster performance. Subsequently
it uses this information to: (i) balance load across different
nodes in the cluster; (ii) determine an appropriate operation
point of ROLLUP algorithms using a lightweight cost-based
optimizer.

We perform an extensive experimental campaign (Sec-
tion IV) to assess the validity of our design choices, using
both real and synthetic datasets, and comparing the perfor-
mance of a variety of different ROLLUP algorithms. Results
indicate that our ROLLUP operator, that relies on auto-
matically tuned algorithms, delivers superior performance
when compared to current ROLLUP implementations for the
Apache Pig system. Our operator is released as open source
software1, and is currently in the process of being integrated
in the upstream Apache Pig Latin language implementation.

1https://bitbucket.org/bigfootproject/rollupmr
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We conclude our work in Section V with a summary of
our future research directions.

II. PRELIMINARIES & RELATED WORK

Efficient computation of data summaries is an important
topic that has received wide attention by the database
community. Recently, such interest has led to several works
to bring the benefits of data summarization to MapReduce
systems as well.

In this Section, we review several ROLLUP algorithms,
for both traditional databases and MapReduce systems, and
motivate the need for a substantially different approach.
ROLLUP is a data operator first introduced by Gray et
al. [1] as a special case of CUBE. The ROLLUP operator
aggregates data along a dimension by “climbing up” the
dimension hierarchy. For example, to aggregate the volume
of cars sold in the last several years, it is possible to use the
ROLLUP operator to obtain sales along the time dimension,
including multiple levels: total, year, month, and day.
These levels form a hierarchy, of which total is the top
level that includes aggregates from all records.

A. ROLLUP in Parallel Databases

Traditionally, the ROLLUP operator was studied through
the lenses of its generalized operator, CUBE, that groups
data along all combinations (called views) of different levels
in hierarchies. In ROLLUP, a view is equivalent to a level
of the rollup hierarchy. In our car sales example, we have 4
different views.

Harinaryan et al. [2] introduced a model to evaluate the
cost of executing CUBE and a greedy algorithm to select a
near-optimal execution plan. Agarwal et al. [3] proposed top-
down algorithms (PipeSort, PipeHash) to optimize CUBE
computation: using finer group-bys to compute coarser ones
(i.e. using month to compute year). Beyer and Ramakr-
ishnan [4] suggested a bottom-up computation (BUC) to
construct results from coarser to finer group-bys by reusing
as much as possible the previously computed sort orders.
All of these works are sequential algorithms which focus on
single servers.

Scalable algorithms to handle the ROLLUP and CUBE
operators in parallel databases also received considerable
attention. They are divided into two main groups: work
partitioning [11], [12] and data partitioning [13], [14]. In
work partitioning, each processor (or node) of the cluster
computes aggregates for a set of one or many views in-
dependently. To do that, all processors access concurrently
the entire dataset. Typically such an access is offered by a
shared-disk array that is both expensive and difficult to scale
in term of performance and size. Instead, data partitioning
algorithms divide the input data set into various subsets. A
node computes all views associated to the subsets of data
it hosts. To obtain global aggregates, a subsequent merge
phase is required. The main advantage of such a Two Phase
algorithm is that nodes need not to have access to the whole
data set but work on a small portion that can be easily stored
on local memory/disks.

B. ROLLUP in MapReduce

In what follows, we assume the reader to be familiar with
the MapReduce paradigm and its well-known open-source
implementation Hadoop [5], [15].

Currently, MapReduce high-level languages such as
Apache Pig and Hive borrow from parallel databases the
Two Phase algorithm described previously. Its MapReduce
variant is straightforward: each mapper computes aggregates
of the whole ROLLUP hierarchy from its local data, then
sends the partial results to reducers which merge and return
the final aggregates. The MapReduce Two Phase (MRTP)
algorithm, which can use combiners as an optimization,
produces a large quantity of intermediate data that impose
strain on network resources. In addition, a large number of
intermediate data increases noticeably mapper overheads to
sort and eventually spill them to disk. Similarly, since reduc-
ers compute aggregates in each view separately, the MRTP
algorithm presents significant overheads due to redundant
computation.

These overheads are the main reason for the MRTP
inefficiency, and they can be avoided by employing the in-
reducer grouping (IRG) design pattern [16]. IRG computes
aggregates in a top-down manner by exploiting custom
partitioning and sorting in MapReduce to move the grouping
logic from the shuffle phase to reducers. However, IRG
severely lacks parallelism: all processing is performed by
a single reducer.

More recent works explore the design space of one-
round MapReduce ROLLUP algorithms by studying the
trade-off between communication cost (amount of data sent
over network) and parallelism [17]. Through a parameter
called pivot position, the Hybrid IRG+IRG algorithm (HII)
provides users with the flexibility of choosing a sweet spot to
balance parallelism and communication cost. For one-round
MapReduce algorithms, the HII algorithm is shown (analyt-
ically and experimentally) to achieve the best performance,
if and only if the pivot position is set to the optimal value.
Otherwise, the HII algorithm represent a valid theoretical
contribution, albeit impractical to be used as a baseline for
a high-level language operator.

For multi-round MapReduce ROLLUP algorithms, the
work in [17] also proposes the ChainedIRG algorithm, which
splits a ROLLUP operator into two chained MapReduce jobs
based on a parameter (again, a pivot position). The pivot
position divides the ROLLUP hierarchy between two jobs.
The first job computes a subset of the hierarchy and the
second job takes the first job’s results to compute the rest.

Finally, MRCube, proposed by Nandi et al. [18], im-
plements CUBE and ROLLUP operators in three rounds.
The first round performs record random sampling on input
data and estimates the cardinality of reducer keys. It serves
identifying large groups of keys whose cardinality exceeds
the capacity of a reducer, and set a partition factor N . In
the second round, MRCube splits these large groups into
N sub-groups using value partitioning: two keys belong
to the same sub-groups if and only if their values of the
aggregated attribute are congruent modulo N . Each sub-
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group is computed as a partial aggregate by some reducer
using the BUC algorithm [2]. The third round merges
partial aggregates to produce final results. As a consequence,
reducers do not handle excessive amounts of data, but the
execution plan requires multi-rounds of MapReduce jobs.
The authors also note that the value partitioning may be
problematic when data is skewed on the aggregated attribute,
as it can create sub-groups that exceed the reducer capacity
and slow down the job. Also, as the number of large-
groups may be high, the first step of MRCube can create
a significant overhead and make MRCube slower than the
MapReduce Two Phase algorithm [18].

C. Other Related Works

It is well known that MapReduce algorithms may suffer
from poor performance if data is skewed. SkewReduce [19]
is a framework that manages data and computation skew
by using user domain knowledge to break the map and
reduce tasks into smaller tasks; then it finds the optimal
partition plan to achieve load balancing. SkewTune [20]
is a dynamic skew mitigation system: by modifying the
MapReduce architecture, it detects stragglers in reducers
and pro-actively repartitions the unprocessed data to other
idle reducers. Another approach is to design skew-resistant
operators: data skew is handled at the algorithmic level.
This approach does not require additional components, user
interventions or modifications to the Hadoop framework. For
instance, [21] proposes an algorithmic approach to handle
set-similarity join. Apache Pig also supports a skew-resistant
equi-join operator. For the MapReduce data summarization,
to the best of our knowledge, our work is the first to tackle
a skew-resistant ROLLUP operator.

Finally, we consider related works that use a cost model
to find optimal execution plans. SkewReduce [19] uses a
cost model that requires two user-supplied cost functions.
MRShare [22] proposes work-sharing optimizations based
on a cost model to predict merged job’s runtime. This model
requires users to provide a set of constant, static parameters,
that represent the underlying cluster performance. Both prac-
tices are not transparent to users. The latter is problematic in
practice because cluster performance changes overtime, and
in many cases, clusters are dynamically allocated (e.g. Ama-
zon EC2, Google App Engine) which means unpredictable
performance.

Instead, as we show in the next Section, our approach
automatically measures cluster performance. These mea-
surements are fed to a regression model that predicts the
ROLLUP runtime. This is completely transparent to users,
and adaptable to any cluster configuration.

III. A NEW ROLLUP OPERATOR

In this Section, we describe our design of an efficient
and skew-resistant ROLLUP operator. Our approach can
be integrated directly in current MapReduce high-level lan-
guages such as Apache Pig and Hive, and it is completely
transparent to users. Our design avoids any modifications
to the Hadoop framework or the MapReduce programming

model, thus making our work directly applicable to any
MapReduce-like systems. Our approach can also handle a
stateless design (i.e. no historical execution statistics), which
is the current standard practice for systems that provide high-
level languages on top of MapReduce.

A. ROLLUP Operator Design
Our ROLLUP operator has two main components: the

tuning job and the ROLLUP query. The ROLLUP query
can implement one of several ROLLUP algorithms, such
as MRTP, HII, ChainedIRG, MRCube as described in Sec-
tion II-B. We discuss the choice of an appropriate algorithm
in Section III-B.

The heart of our work is the tuning job, a primary
component with two main goals. The first is to determine
how to achieve load-balancing taking into account skewed
data when executing the ROLLUP query, which is clearly
beneficial to any ROLLUP algorithm. The second goal is to
determine the most suitable operating point of the ROLLUP
query, provided that the underlying ROLLUP algorithm
requires tuning. For example, ROLLUP algorithms like HII
and ChainedIRG both rely on an essential parameter that,
if not properly tuned, can lead to inefficient executions and
bad performance. In this case, the tuning job automatically
sets the parameter of such algorithms to the proper value,
such that performance is maximized.

In addition, to obtain an efficient ROLLUP operator, our
goal is to minimize the overhead caused by the tuning job.
Consequently, we propose a single, light-weight tuning job
that simultaneously carries out all the following tasks to
produce efficient ROLLUP queries:

1) It produces representative samples of the input data;
2) It balances reducer loads using information on key

distribution estimated from sample data;
3) If required, it determines appropriate parameters of a

ROLLUP algorithms using a cost-based optimizer.

Figure 1. Overview of the ROLLUP operator design.

Figure 1 shows a sketch of our ROLLUP operator. The
tuning job runs before the execution of the ROLLUP query.
It produces a balanced partitioning table, and tunes param-
eters appropriately, when needed. The ROLLUP query uses
these outcomes to optimize its performance.

In the rest of this Section, we describe in detail how our
tuning job can fulfill its goals using a top-down presentation.
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First, we discuss our choice for the ROLLUP algorithm that
implements the ROLLUP query in Section III-B. Then, we
present the internals of our tuning job in Section III-C. We
examine load balancing on reducers in Section III-C1, which
uses statistics collected through sampling (Section III-C2).
Finally, we present our cost model (Section III-C3) that
steers the ROLLUP query toward an optimized operating
point.

B. The ROLLUP Query: Algorithmic Choice

The design of our ROLLUP operator is generic enough
to employ any ROLLUP algorithm. However, in this work,
we focus on the two algorithms that proved to offer, con-
sistently, superior performance when compared to alterna-
tive approaches, namely the Hybrid IRG+IRG (HII) and
ChainedIRG [17]. Indeed, unlike MRTP, MRCube and IRG,
such algorithms have the flexibility to adjust the level of
parallelism to exploit, which translates into a much lower
communication cost compared to MRTP and MRCube.
Previous results in the literature [17] corroborate our choice,
which we confirm in our extensive performance evaluation
in Section IV.

Now, both ChainedIRG and HII require a fundamental
parameter P called pivot position. Let us consider the
ROLLUP dimension with n levels: {d1, d2, . . . , dn} in
which d1 is the top-level of the hierarchy. P divides the
ROLLUP dimensions in two subsets: S1 = {d1, . . . , dP−1}
and S2 = {dP , . . . , dn}. Each subset now represents a sub-
ROLLUP query. The difference between ChainedIRG and
HII is that, while HII computes each sub-ROLLUP query
independently and has only one job, ChainedIRG exploits
the aggregates on S2 to compute aggregates on S1 (hence,
it requires two jobs). Nonetheless, both algorithms use the
IRG design pattern to compute each sub-ROLLUP query.

Although the experimental results in [17] indicate that
ChainedIRG has the best runtime in an isolated system,
in this section we cast our ROLLUP operator on the HII
algorithm because it is less prone to delays due to scheduling
when the cluster is loaded. Instead, the runtime of multi-
phase algorithms (such as ChainedIRG) could be inflated
since the job scheduler can dedicate resources to other
jobs in between the phases. Nonetheless, we note that our
tuning job can easily accommodate alternative algorithms,
and we show this in our experimental evaluation, where
we present results of our ROLLUP operator with instances
of the ROLLUP query implementing all the algorithms we
discussed in Section II.

Continuing our example in Section II, if P = 3 the two
subsets are {total,year} and {month,day}. For each
input record, the map phase of HII generates 2 〈key, value〉
pairs of the bottom level of each subset (i.e. year and day).

Then for each subset, the mappers partition their
〈key, value〉 pairs by the top level of this subset (i.e. total
and month). Taking advantage of this partitioning scheme
and the sorting done by the MapReduce framework, day-
to-month and year-to-total aggregates can be processed
independently in the reduce phase. In fact, HII applies a

top-down approach: we compute aggregates for each day in
a month; then combine results to obtain month aggregates.
Similarly, we compute results for each year and construct
the total aggregate.

Choosing an appropriate pivot position P is crucial in HII
and ChainedIRG, because it determines the parallelism as
well as the communication cost of such algorithms. Values
of P that are too high can impose an excessive load on the
reducer that is responsible for the total aggregates, and
lessen the benefit of combiners (i.e. higher communication
cost). Instead, low values of P could result in insufficient
parallelism causing poor load balancing. Finding the proper
value for P is a non-trivial problem.

C. The Tuning Job

We now discuss our main contribution, the tuning job, that
balances the reducer load and finds the optimal value of P .
We propose a novel mechanism that enables a single-round
MapReduce job to collect statistical information about the
input data and the underlying cluster performance, determine
and impose a load balancing scheme and optimize the
selection of the pivot position for the HII algorithm. The
tuning job operates as follows:

• For each possible pivot position P , we estimate a key
distribution: a mapping between each partitioning key
and the number of records that correspond to that key
(i.e. its cardinality).

• For each pivot position, we devise a greedy key parti-
tioning scheme that balances as much as possible the
load between reducers;

• For each pivot position, using performance measure-
ments gathered throughout the tuning job execution, we
use a cost model to predict the runtime associated to
each pivot position. We then select the pivot position
that yields the shortest job runtime.

Because the search space for an optimal pivot position
is small and capped by n – the number of grouping sets
– our mechanism can afford to evaluate all values of P .
We minimize the overhead of the tuning job by executing
it as a single MapReduce job, where the input data is read
only once and all candidate values for P are evaluated in
parallel. The rest of this section presents how each step of
our tuning job is accomplished. Key partitioning described
in Section III-C1, uses the estimation of key distribution
using sampling (Section III-C2). From partitioning outputs,
we extract the reducer loads to feed into our cost model, as
shown in Section III-C3. The cost model uses a regression-
based approach that predicts the runtime of both mappers
and reducers for each value of P ; this model uses perfor-
mance measurements that we collect in the tuning job as a
training set.

1) Balancing Reducer Load: Skewed data motivates the
need for reducer load-balancing. In this step, we balance
reducer load using cardinalities of partitioning keys ob-
tained from the key distribution estimation discussed in
Section III-C2. The input of this step is a set of keys K and
an estimation of their respective cardinalities C = {Ck|k ∈
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K}. We then perform load balancing by partitioning the
keys in K on r reducers to minimize the input keys on
the most loaded reducer. This problem can be reduced to
the multi-way number partitioning problem, which is NP-
complete [23]. We thus opt for a greedy solution: sort all
reduce input keys by descending cardinalities, and assign at
each step a key to the least loaded reducer. Our algorithm
uses smaller cardinalities to counter the imbalance created
by large cardinalities that are allocated first. Its runtime is
linear with respect to the number of keys. Thanks to the
role of combiners, the number of input records sent to each
reducer is quite small; for this reason, as we shall see in
Section IV-B, our load balancing strategy is very effective
in practice.

The output of this greedy algorithm is a reducer partition-
ing table, which we broadcast to all mappers to determine the
key-reducer mapping. When the ROLLUP query is running,
such a partitioning is kept in a hash table and used to “route”
keys to reducers. If, due to sampling, a key does not appear
in the hash table, it is “routed” to a pseudo-random reducer
using hashing. We note that the impact of such missing
keys is minimal on load balancing, as they correspond to
infrequent input data.

2) Sampling and Computing Key Distribution: The load
balancing step we just discussed requires the number of
reducer input records per grouping key, i.e. its cardinality.
Without modifying the MapReduce architecture, we cannot
count these cardinalities on the fly when processing data.
Instead, we resort to sampling: we only read data from a
small subset of the input data, and we gather key distribu-
tions and cardinalities that are the input of the load balancing
step. These steps are counted as an overhead in our total job
runtime.

In MapReduce, uniform record random sampling from
the whole input would be inefficient, as it requires the
whole data to be read and parsed. Instead, we employ chunk
random sampling. Chunk sampling allows low overhead, as
it reads a very small portion of input data. The dataset is split
in chunks of data that have different sizes: this is also useful
for the linear regression model we describe in Section III-C5.
Each chunk is chosen with probability σ, a parameter we
explore in our experimental evaluation.

However, chunk sampling introduces sampling bias. To
reduce this bias, for each chunk, we output each record
only once, regardless of its multiple appearances in that
chunk. Such a technique can be easily achieved by using
combiners. In the reducers, we collect records from different
chunks and treat them like records gathered from uniform
random sampling. This method, albeit in a different context,
is described in the literature as the COLLAPSE approach
in [24]. For large input data, the COLLAPSE approach is
proved to be approximately as good as uniform random
sampling.

For each value of P , we gather statistics from the sam-
ple data. The statistics are collected from both mappers
and reducers in the tuning job, which are used for two
goals: (i) to construct the key distribution by examining

the histogram of partitioning key; (ii) to gather input of
performance measurements in each phase for our cost model.
In this way, the work done in this step is also used to
benchmark system performance and provide input for cost
model. This is an improvement to other standard sampling
methods.

3) Cost-Based Pivot Selection: In Section III-B we have
discussed qualitatively the impact of the pivot position over
the runtime of map and reduce phases. We now describe
our pivot selection technique in detail. Here, we present
a cost model to predict the runtime of a ROLLUP query
implementing the HII algorithm, and use it as a reference to
optimize the value of P .

4) The Model: The ROLLUP query runtime TJ is defined
as a function of P :

TJ(P ) = TM (P ) ∗ α+ TRmax
(P ), (1)

where TM represents the average runtime of a map task, α
is the number of map waves and TRmax

is the runtime of the
slowest reduce task.

Waves are due to the fact that the number of map slots
can be smaller than the number of input splits to read. The
number of waves is computed as

α =

⌈
input size

input split size · number of map slots

⌉
. (2)

We assume here that the number of reduce tasks will not
be larger than the number of available reduce slots (indeed,
such a setting is generally not recommended in MapReduce),
therefore for simplicity, we consider the reduce phase to have
one wave only.

We decompose the map and reduce phases into several
steps. The mappers read the input, replicate the data, write
map output records to memory, sort output records, combine
and spill output to local disk. For some steps such as read,
parse and replicate, their runtime does not depend on the
pivot position. Since we are interested in finding the value
of P that minimizes the running time rather than predicting
the running time itself, we focus on minimizing the variable
parts of TM :

T ′M (P ) = cwrite,P (2β) + csort,P (2β)

+ ccombine,P (2β) + cspill,P (β
′
P ). (3)

Here, β is the number of input tuples of a mapper; β′
is the number of output tuples of its combiner; cλ,P (x) is
a cost function that returns the runtime of step λ (write,
sort, combine, spill) and depends on a particular value of
P . Since HII generates 2 outputs for each input tuple, we
have 2β as the input of cλ,P (x).

Similarly to the map phase, the reducers shuffle and merge
their input records, process the ROLLUP operator and write
outputs to a distributed file system (DFS). We therefore
estimate the reduce phase as:

TR(P ) = cshuffle,P (γP ) + cprocess,P (γP ) + cDFS,P (γ
′
P ), (4)

where γP is the number of reducer input records and γ′P is
the number of reducer output records.
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5) Regression-Based Runtime Prediction: We propose a
novel approach to predict the runtime of each step. This
approach is not only completely transparent to users but also
flexible enough to deal with any cluster configuration. We
achieve such flexibility and transparency by using the tuning
job we introduced in Section III-C2 to obtain performance
measurements. We apply regression on these measurements
using the least squares method to predict the runtime of the
ROLLUP query.

Performance Measurements: The tuning job can be
thought of as a preliminary ROLLUP job, i.e. it is composed
by the same steps of the ROLLUP query. For each step, we
measure the number of its input records and its runtime as a
data point (x, Tx). To gain more accurate runtime prediction,
we generate several data points. In the map phase, the tuning
job runs multiple mappers on small, different chunk sizes;
each chunk size is a data point2. It also measures the runtime
of the process phase and DFS I/O at several different points
in time during the reduce phase.

Linear Regression: Let us consider a step λ: we
model its cost as a linear function cλ,P (x) = a + bx.
The sort step is an exception because of its O(n log n)
complexity: csort,P (x) = a + bx + cx log x. In the tun-
ing phase, we obtain for each step a list of data points
[(x1, Tx1

), (x2, Tx2
), . . . , (xμ, Txμ

)]; we use least square fit-
ting to find the coefficients a and b such that our function
c(x) minimizes the error S =

∑μ
i=1(Txi

− c(xi))
2. This

approach necessitates the chunk sizes xi we use for sampling
to be of variable size. Once a and b are known, we calculate
the runtime Tλ on the original dataset.

Runtime Prediction and Pivot Selection: Now that all
cλ,P functions are known, we need to evaluate β, β′, γ and
γ′ in order to obtain runtime predictions from Equations 3
and 4. Again, using regression we can estimate β, β′, γ and
γ′. We have now all the required values; we can therefore
evaluate Equations 3 and 4 for all possible values of P . The
value P ∗ that minimizes T ′M (P ∗) + TR(P

∗) is our chosen
value as pivot position.

IV. EXPERIMENTAL EVALUATION

We now proceed with an experimental evaluation of
our ROLLUP operator, implemented for Apache Pig. Our
experimental evaluation is done on a Hadoop cluster of
20 machines with 2 map and 1 reduce slot each. The
HDFS block size is set to 128MB. We execute ROLLUP
aggregates over date-time dimensions using synthetic and
real-life datasets; our reference performance metric is job
runtime, with jobs being executed in an isolated cluster. We
note that all results in the following are the average value
of at least 10 runs: the standard error of results is smaller
than 3%, so for the sake of readability, we omit error bars
from our figures.

A. Datasets and ROLLUP Queries
In our experiments, we use 4 illustrative datasets. Each

dataset has tuples with schema year, month, day, hour,

2In our experiments, the chunk sizes are 256KB, 512KB, 1MB, 2MB.

Figure 2. ROLLUP operator with our tuning job

minute, second and a value v. The ROLLUP operator com-
putes the total value V =

∑
v per each date-time dimension

and as a whole (i.e., the total level). Specifically, we used
the following datasets:

• Synthetic Telco Logs (STL): 1 billion records ranged
in 30- years with uniform distribution.

• Skewed Synthetic Telco Logs (SSTL): 1 billion
records. The tuples are in a 3-year time-frame, ac-
cording to a power-law distribution with coefficient
α = 2.5.

• Simplified Integrated Surface Database(ISD):3
nearly 2.5 billion records in 114 years. This dataset
is heavily skewed towards recent years, as the last 10
years contain 45% of the total records.

• Reverse DNS (RDNS): a sub-set of the Internet Cen-
sus2012 4. It has 3.5 billion records spanning 5 months.

B. Experimental Results

We now present our experimental evaluation that uses a
prototype implementation of our ROLLUP operator for the
Apache Pig system. Figure 2 illustrates the different flavors
of our operator that we used in our experimental campaign.

First, we provide a comparative analysis of our operator
using 4 ROLLUP algorithms: the standard MRTP, and our
implementation of MRCube, HII and ChainedIRG. This se-
ries of experiments are an illustration of the versatility of our
approach, that yields a ROLLUP operator that can achieve
substantial performance gains over current standards.

Next, we focus on the tuning job, customized for the HII
ROLLUP algorithm: we show that our cost-based optimizer
can indeed find the most suitable operating point to achieve
minimum job runtime. In addition, we measure the overhead
imposed by the tuning job, and relate it to its optimization
accuracy.

Finally, to validate the efficiency of our design, we com-
pare the overhead of the tuning job customized for MRCube
against the original 3-phase MRCube design, and show that
even such an algorithm could benefit from our approach.

1) Comparative Performance Analysis: In this series of
experiments, we execute a simple ROLLUP query, as shown
below, on the four datasets described above, and measure the
runtime required to complete the job using different flavors
of the ROLLUP operator.

A = LOAD path/file AS (y, M, d, h, m, s, v);
B = CUBE A BY ROLLUP(y, M, d, h, m, s) RATE

samplingRateValue;
C = FOREACH B GENERATE group, SUM(cube.v);

3http:// www.ncdc.noaa.gov/oa/climate/isd/
4http://internetcensus2012.bitbucket.org/
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Figure 3. Job runtime of four approaches, 4 datasets
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Figure 4. Job runtime with Pivot runs from 1 to 6, SSTL dataset

Figure 3 compares the runtime of different ROLLUP
operators using MRTP, MRCube, HII and ChainedIRG al-
gorithms for all datasets. On top of the bars of MRCube,
HII, and ChainedIRG, we indicate the the gain of each
algorithm with respect to MRTP: for example, -26.83%
on top of MRCube means that the corresponding jobs
terminate 26.83% quicker than with the current Apache Pig
implementation.

For all datasets, our operator for the HII algorithm outper-
forms the MRTP implementation by at least 50%. Indeed,
the map phase of MRTP generates 7 output tuples for each
input one, while HII only generates at most 2 tuples. When
customized for the ChainedIRG algorithm, our operator runs
faster than HII, as its map phase generates only 1 tuple.
For RDNS dataset, both HII and ChainedIRG degenerate
to P = 1 which is the IRG algorithm, which explains the
identical runtime.

When compared to MRCube, both the HII and
ChainedIRG variants perform better. The first reason is that
the mappers in MRCube generate more tuples than HII and
ChainedIRG: 3 for ISD and STL, 4 for SSTL and even 5 for
RDNS datasets. The second reason is that the reduce phase
of MRCube incurs redundant computation. The third reason
is that our tuning job runs faster than the first job of MRCube
(that would correspond only to a fraction of our tuning job’s
mission: data sampling and cardinality estimation).

2) Cost-based Parameter Selection Validation: In this
series of experiments, we override the automatic selection of
the pivot position, but allow the load balancing at reducers,
to proceed with a “brute- force”, experimental approach to
validate the cost-based optimizer of our tuning job.

For all datasets, we run with the full-fledged tuning job
and compare the pivot position output by the cost-based
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Figure 6. Overhead and accuracy trade-off, ISD dataset

optimizer to that yielding the smallest job runtime, for all
possible (manually set) positions. Due to the lack of space,
we only present results for the SSTL and ISD datasets, but
we obtain similar results for all other datasets. Also our
ChainedIRG operator exhibits the same pattern we present
here for the HII algorithm. In the following Figures, we
report (on top of each histogram ) the increment (in seconds)
in query runtime for sub-optimal pivot positions.

Query runtime as a function of P for the SSTL and ISD
dataset are reported in Figures 4 and Figure 5, respectively.
First, we note that P = 1 is essentially IRG. It has the
fastest map phase, but the worst performance. This is due
to the lack of parallelism which results in longer shuffle
and reduce runtime. At the other extreme, P = 6 also
results in performance loss for several reasons, including
low combiner efficiency (and hence longer shuffle runtime)
and longer reducer runtime. The SSTL dataset presents a
peculiar case: since the data covers only 3 years, the query
runtime corresponding to P = 2 can only utilize 3 of the 20
available reducers in our cluster. As a result, both shuffle and
reduce phases take a long time to process, due to the lack
of parallelism. Instead, in the ISD dataset, the data covers
114 years. It means that P = 2 can fully utilize parallelism.
Finally, we verified that the pivot chosen in our tuning job
correctly specified P = 4 and P = 2 as the optimal pivot
positions for the SSTL and ISD datasets respectively.

3) Overhead and Accuracy trade off of the Tuning Job:
We define the overhead as the runtime of the tuning job
divided by the total runtime of the ROLLUP operator.
We examine this overhead as a function of sampling rate.
We also study the trade-off between the overhead and the
accuracy of the pivot position determined by our cost model.
We plot the overhead of the tuning job, along with the pivot
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position that the cost model selects with sampling rate from
0.0001 to 0.002. Again due to lack of space, we only show
the plot for the ISD dataset as a representative result.

In Figure 6, due to data skew, a low sampling rate
does not produce sufficiently accurate cardinalities, and as a
consequence, the cost model and the load-balancing phase
under-perform: they cannot determine the optimal pivot
position. Nevertheless, the pivot position chosen by our
tuning job quickly stabilizes to the optimal value (P = 2).
As a consequence, the sampling phase only imposes less
than 3% overhead of the whole operator runtime.

4) Efficiency of Tuning Job: Finally, to conclude our ex-
perimental evaluation, we verify our tuning job efficiency in
comparison to that of MRCube. We integrate load balancing
into MRCube and call it MRCube-LB. In MRCube-LB,
we replace the first round of the MRCube algorithm by
our tuning job: the cost-based optimizer is disabled, while
data sampling, cardinality estimation and load balancing
are active. Next, we present a notable improvement of the
MRCube-LB with respect to the originial MRCube. Figure 7
shows, for all datasets, the overhead of our operator in
three versions: MRCube, MRCube-LB and HII algorithms.
Both the overhead of the HII and MRCube-LB versions
are always smaller than that of the original MRCube by
at least 60%. Comparing the HII and MRCube-LB versions,
the marginally higher overhead of the former is due to the
execution of the cost-based optimizer.

In conclusion, this series of experiments indicate that our
tuning job is versatile, lightweight, and accurate.

V. CONCLUSION

Summarization queries such as the ones using ROLLUP
are crucial to let users explore very large datasets; however,
existing high-level languages in the Hadoop ecosystem pro-
vide simple and quite inefficient implementations.

The main contribution of this work was the design of an
efficient, skew- resilient ROLLUP operator for MapReduce
high-level languages. Its principal component, the tuning
job, is a lightweight mechanism that materializes in a small
job executed prior to the ROLLUP query. The tuning job
performs data and performance sampling to achieve, at the
same time, cost-based optimization and load balancing of a
range of ROLLUP algorithms.

Our extensive experimental validation illustrated the flexi-
bility of our approach, and showed that – when appropriately

tuned – some ROLLUP algorithms dramatically outperform
the one used in current implementations of the ROLLUP
operator for the Apache Pig system. In addition, we showed
that the tuning job is lightweight yet accurate: cost-based op-
timization determines the best parameter settings with small
overheads, which are mainly dictated by the data sampling
scheme. Our work is available as an open-source project,
and it is currently under consideration as a contribution to
Apache Pig.

We conclude by noting that the ROLLUP operator con-
stitutes a suitable building block for implementing more
generic and expensive aggregations using directives such
as GROUPING SETS or CUBE; our future work aims at
designing efficient CUBE and GROUPING SETS operators
for MapReduce systems.
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