
The Attack of the Clones: A Study of the Impact of

Shared Code on Vulnerability Patching

Antonio Nappa∗§, Richard Johnson†, Leyla Bilge‡, Juan Caballero∗, Tudor Dumitras,
†

∗IMDEA Software Institute †University of Maryland, College Park
‡Symantec Research Labs §Universidad Politécnica de Madrid

antonio.nappa@imdea.org, rbjohns8@cs.umd.edu,

leylya yumer@symantec.com, juan.caballero@imdea.org, tdumitra@umiacs.umd.edu

Abstract—Vulnerability exploits remain an important mecha-
nism for malware delivery, despite efforts to speed up the creation
of patches and improvements in software updating mechanisms.
Vulnerabilities in client applications (e.g., browsers, multimedia
players, document readers and editors) are often exploited in
spear phishing attacks and are difficult to characterize using
network vulnerability scanners. Analyzing their lifecycle requires
observing the deployment of patches on hosts around the world.
Using data collected over 5 years on 8.4 million hosts, available
through Symantec’s WINE platform, we present the first system-
atic study of patch deployment in client-side vulnerabilities.

We analyze the patch deployment process of 1,593 vulner-
abilities from 10 popular client applications, and we identify
several new threats presented by multiple installations of the
same program and by shared libraries distributed with several
applications. For the 80 vulnerabilities in our dataset that affect
code shared by two applications, the time between patch releases
in the different applications is up to 118 days (with a median of
11 days). Furthermore, as the patching rates differ considerably
among applications, many hosts patch the vulnerability in one
application but not in the other one. We demonstrate two novel
attacks that enable exploitation by invoking old versions of
applications that are used infrequently, but remain installed. We
also find that the median fraction of vulnerable hosts patched
when exploits are released is at most 14%. Finally, we show that
the patching rate is affected by user-specific and application-
specific factors; for example, hosts belonging to security analysts
and applications with an automated updating mechanism have
significantly lower median times to patch.

I. INTRODUCTION

In recent years, considerable efforts have been devoted
to reducing the impact of software vulnerabilities, including
efforts to speed up the creation of patches in response to
vulnerability disclosures [15]. However, vulnerability exploits
remain an important vector for malware delivery [2], [5], [19].
Prior measurements of patch deployment [13], [28], [35], [36],
[45] have focused on server-side vulnerabilities. Thus, the
lifecycle of vulnerabilities in client-side applications, such as
browsers, document editors and readers, or media players, is
not well understood. Such client-side vulnerabilities represent
an important security threat, as they are widespread (e.g.,
typical Windows users are exposed to 297 vulnerabilities in
a year [16]), and they are often exploited using spear-phishing
as part of targeted attacks [6], [20], [25].

One dangerous peculiarity of client-side applications is that
the same host may be affected by several instances of the same

vulnerability. This can happen if the host has installed multiple
instances of the same application, e.g., multiple software lines
or the default installation and an older version bundled with
a separate application. Multiple instances of the vulnerable
code can also occur owing to libraries that are shared among
multiple applications (e.g., the Adobe library for playing Flash
content, which is included with Adobe Reader and Adobe
Air installations). These situations break the linear model for
the vulnerability lifecycle [3], [5], [15], [31], [38], which
assumes that the vulnerability is disclosed publicly, then a
patch released, and then vulnerable hosts get updated. In
particular, vulnerable hosts may only patch one of the program
installations and remain vulnerable, while patched hosts may
later re-join the vulnerable population if an old version or a
new application with the old code is installed. This extends
the window of opportunity for attackers who seek to exploit
vulnerable hosts. Moreover, the owners of those hosts typically
believe they have already patched the vulnerability.

To the best of our knowledge, we present the first system-
atic study of patch deployment for client-side vulnerabilities.
The empirical insights from this study allow us to identify sev-
eral new threats presented by multiple installations and shared
code for patch deployment and to quantify their magnitude.
We analyze the patching by 8.4 million hosts of 1,593 vulner-
abilities in 10 popular Windows client applications: 4 browsers
(Chrome, Firefox, Opera, Safari), 2 multimedia players (Adobe
Flash Player, Quicktime), an email client (Thunderbird), a
document reader (Adobe Reader), a document editor (Word),
and a network analysis tool (Wireshark).

Our analysis combines telemetry collected by Symantec’s
security products, running on end-hosts around the world, and
data available in several public repositories. Specifically, we
analyze data spanning a period of 5 years available through the
Worldwide Intelligence Network Environment (WINE) [11].
This data includes information about binary executables down-
loaded by users who opt in for Symantec’s data sharing
program. Using this data we analyze the deployment of subse-
quent versions of the 10 applications on real hosts worldwide.
This dataset provides a unique opportunity for studying the
patching process in client applications, which are difficult to
characterize using the network scanning techniques employed
by prior research [13], [28], [35], [36], [45].

The analysis is challenging because each software vendor
has its own software management policies, e.g., for assigning



program versions, using program lines, and issuing security
advisories, and also by the imperfect information available
in public vulnerability databases. To address these challenges
we have developed a generic approach to map files in a host
to vulnerable and non-vulnerable program versions, using file
meta-data from WINE and VirusTotal [43], and the NVD [30]
and OSVDB [32] public vulnerability databases. Then, we
aggregate vulnerabilities in those databases into clusters that
are patched by the same program version. Finally, using a
statistical technique called survival analysis [23], we track
the global decay of the vulnerable host population for each
vulnerability cluster, as software updates are deployed.

Using this approach we can estimate for each vulnerability
cluster the delay to issue a patch, the rate of patching, and
the vulnerable population in WINE. Using exploit meta-data
in WINE and the Exploit Database [14], we estimate the
dates when exploits become available and we determine the
percentage of the host population that remains vulnerable upon
exploit releases.

We quantify the race between exploit creators and the
patch deployment, and we find that the median fraction of
hosts patched when exploits are released is at most 14%.
All but one of the exploits detected in the wild found more
than 50% of the host population still vulnerable. The start
of patching is strongly correlated with the disclosure date,
and it occurs within 7 days before or after the disclosure
for 77% of the vulnerabilities in our study—suggesting that
vendors react promptly to the vulnerability disclosures. The
rate of patching is generally high at first: the median time
to patch half of the vulnerable hosts is 45 days. We also
observe important differences in the patching rate of different
applications: none of the applications except for Chrome
(which employs automated updates for all the versions we
consider) are able to patch 90% of the vulnerable population
for more than 90% of vulnerability clusters.

Additionally, we find that 80 vulnerabilities in our dataset
affect common code shared by two applications. In these cases,
the time between patch releases in the different applications
is up to 118 days (with a median of 11 days), facilitating
the use of patch-based exploit generation techniques [7].
Furthermore, as the patching rates differ between applications,
many hosts patch the vulnerability in one application but not in
the other one. We demonstrate two novel attacks that enable
exploitation by invoking old version of applications that are
used infrequently, but that remain installed.

We also analyze the patching behavior of 3 user categories:
professionals, software developers, and security analysts. For
security analysts and software developers the median time to
patch 50% of vulnerable hosts is 18 and 24 days, respectively,
while for the general user it is 45 days—more than double.

In summary, we make the following contributions:

• We conduct a systematic analysis of the patching
process of 1,593 vulnerabilities in 10 client-side appli-
cations, spanning versions released on a 5-year period.

• We demonstrate two novel attacks that enable exploita-
tion by invoking old versions of applications that are
used infrequently, but remain installed.

• We measure the patching delay and several patch
deployment milestones for each vulnerability.

t0 tp tv 

Patching 
delay 

tm ta te1 

Median  
time-to-patch 

ng 

time-to-patch 

Patch deployment delay Patch deployment 

te2 td t90% t95% 

Fig. 1. Events in the vulnerability lifecycle. We focus on measuring the
patching delay [t0, tp] and on characterizing the patch deployment process,
between tp and ta.

• We propose a novel approach to map files on end-hosts
to vulnerable and patched program versions.

• Using these techniques, we quantify the race between
exploit creators and the patch deployment, and we
analyze the threats presented by multiple installations
and shared code for patch deployment.

• We identify several errors in the existing vulnerability
databases, and we release a cleaned dataset at http:
//clean-nvd.com/.

The rest of this paper is organized as follows. Section II
describes the security model for patching vulnerabilities. Sec-
tion III details our datasets and Section IV our approach. Our
findings are presented in Section V. Section VI reviews prior
work, Section VII discusses implications of our findings, and
Section VIII concludes.

II. SECURITY MODEL FOR PATCHING VULNERABILITIES.

Prior research [3], [5], [15], [31], [35], [36], [38], [45]
generally assumes a linear model for the vulnerability life-
cycle, illustrated in Figure 1. In this model, the introduction
of a vulnerability in a popular software (tv), is followed by
the vulnerability’s public disclosure (t0), by a patch release
(tp) and by the gradual deployment of the patch on all vul-
nerable hosts, which continues until all vulnerable application
instances have been updated (ta). Important milestones in
the patch deployment process include the median time to
patch, i.e., the time needed to patch half of the vulnerable
hosts (tm), and the times needed to patch 90% and 95%
of the vulnerable hosts (t90% and t95%). Additional events
may occur at various stages in this lifecycle; for example
exploits for the vulnerability may be released before or after
disclosure (te1, te2), and the vulnerable host population may
start decaying earlier than tp if users replace the vulnerable
version with a version that does not include the vulnerability
(td). Notwithstanding these sources of variability, the linear
model assumes that tv < t0 ≤ tp < tm < t90% < t95% < ta.

In practice, however, these events do not always occur
sequentially, as a host may be affected by several instances
of the vulnerability. Software vendors sometimes support mul-
tiple product lines; for example, Adobe Reader has several
lines (e.g., 8.x, 9.x, 10.x) that are developed and released with
some overlap in time and that can be installed in parallel
on a host. Additionally, applications are sometimes bundled
with other software products, which install a (potentially older)

2



version of the application in a custom directory. For example,
device drivers such as printers sometimes install a version
of Adobe Reader, to allow the user to read the manual.
Furthermore, some applications rely on common libraries and
install multiple copies of these libraries side-by-side. For
example, Safari and Chrome utilize the WebKit rendering
engine [44], Firefox and Thunderbird share several Mozilla
libraries, and libraries for playing Flash files are included in
Adobe Reader and Adobe Air. In consequence, releasing and
deploying the vulnerability patch on a host does not always
render the host immune to exploits, as the vulnerability may
exist in other applications or library instances and may be
re-introduced by the installation of an older version or a
different application. The security implications of this non-
linear vulnerability lifecycle are not well understood.

A. Threats of Shared Code and Multiple Installations

The response to vulnerabilities is subject to two delays: the
patching delay and the deployment delay. The patching delay
is the interval between the vulnerability disclosure t0 and the
patch release tp in Figure 1. This delay allows attackers to
create exploits based on the public details of the vulnerability
and to use them to attack all the vulnerable instances of
the application before they can be patched. After developing
and testing a patched version of the application, the vendor
must then deploy this version to all the vulnerable application
instances. This deployment delay controls the window when
vulnerabilities can be exploited after patches are available, but
before their deployment is completed. In recent years, consid-
erable efforts have been devoted to reducing the vulnerability
patching delays, through efforts to speed up the creation of
patches in response to vulnerability disclosures [15], and the
patch deployment delays, through automated software updating
mechanisms [10], [17]. While these techniques are aimed at
patching vulnerabilities in the linear lifecycle model, attackers
may leverage shared code instances and multiple application
installations to bypass these defenses. Next, we review some
of these security threats.

Overhead of maintaining multiple product lines. When
a vendor supports multiple product lines in parallel and a
vulnerability is discovered in code shared among them, the
vendor must test the patch in each program line. Prior work
on optimal patch-management strategies has highlighted the
trade-off between the patching delay and the amount of testing
needed before releasing patches [31]. The overhead of main-
taining multiple product lines may further delay the release of
patches for some of these lines.

Threat of different patch release schedules. When a vul-
nerability affects more than one application, patch releases
for all these applications seldom occur at the same time.
Coordinated patch releases are especially difficult to achieve
when applications from different vendors share vulnerabilities,
e.g., when the vulnerabilities affect code in third-party li-
braries. When the patch for the first application is released, this
gives attackers the opportunity to employ patch-based exploit
generation techniques [7] to attack the other applications,
which remain unpatched.

Threat of multiple patching mechanisms. When shared code
is patched using multiple software update mechanisms, some
instances of the vulnerability may be left unpatched. The

attacker can use existing exploits to target all the hosts where
the default application used for opening a certain type of file
(e.g., PDF documents) or Web content (e.g., Flash) remains
vulnerable. This situation may happen even after the vendor
has adopted automated software updates—for example, when
the user installs (perhaps unknowingly, as part of a software
bundle) an older version of the application, which does not
use automated updates, and makes it the default application,
or when the user disables automatic updates on one of the
versions installed and forgets about it. The use of multiple
software updating mechanisms places a significant burden on
users, as a typical Windows user must manage 14 update
mechanisms (one for the operating system and 13 for the other
software installed) to keep the host fully patched [16].

This problem can also occur with shared libraries because
they typically rely on the updating mechanisms of the pro-
grams they ship with, but one of those programs may not
have automatic updates or they may have been disabled. This
scenario is common with third-party libraries deployed with
programs from different vendors, which have different update
mechanisms and policies. Additionally, we identify 69 vulner-
abilities shared between Mozilla Firefox and Mozilla Thun-
derbird and 3 vulnerabilities shared between Adobe Reader
and Adobe Flash; the updating mechanisms used by most of
the program versions affected by these vulnerabilities were not
fully automated and required some user interaction.

Attacks against inactive program versions through multiple
content delivery vectors. Even if all the applications that are
actively used on a host are all up to date, an attacker may
deliver exploits by using a vector that will open a different
runtime or application, which remains vulnerable. Here, we
discuss an attack that allows exploiting a vulnerable version
even if the patched version is the default one. The user runs
both an up-to-date Flash plugin and an old Adobe Air (a cross-
platform runtime environment for web applications), which
includes a vulnerable Flash library (npswf32.dll). Adobe Air
is used by web applications that want to run as desktop
applications across different platforms. In this case the user
runs FLVPlayer over Adobe Air. The attacker can deliver the
exploit to the user in two ways: as a .flv file to be played locally
or as a URL to the .flv file. If the user clicks on the file or
URL, the file will be opened with FLVPlayer (associated to run
.flv files) and the embedded Flash exploit will compromise the
vulnerable Flash library used by Adobe Air. Similarly, Adobe
Reader includes a Flash library. The attacker can also target
hosts that have up-to-date Flash plugins, but old Adobe Reader
installations, by delivering a PDF file that embeds an exploit
against the old version of the Flash library.

Attacks against inactive program versions through user
environment manipulation. The previous attack relies on the
presence of applications to which the attacker can deliver
exploit content (e.g., Flash content). Here, we discuss another
attack, which allows the attacker to replace the default, up-
to-date, version of an application with a vulnerable one. The
user is running two versions of Adobe Reader, a default up-to-
date version and a vulnerable version. The attacker convinces
the user to install a Firefox add-on that looks benign. The
malicious add-on has filesystem access through the XPCOM
API [4]. It locates the vulnerable and patched versions of
the Adobe Reader library (nppdf32.dll) and overwrites the

3



patched version with the vulnerable one. When the user visits
a webpage, the malicious add-on modifies the DOM tree of
the webpage to insert a script that downloads a remote PDF
exploit. The exploit is processed by the vulnerable Adobe
Reader version and exploitation succeeds. We have success-
fully exploited a buffer overflow vulnerability (CVE-2009-
1861) on Firefox 33.1, Adobe Reader 11.0.9.29 as patched
version and Acrobat Reader 7.0.6 as vulnerable version.

These two attacks demonstrate the dangers of inactive
application versions that are forgotten, but remain installed.
Note that our goal is not to find exploits for all the programs
we analyze, but rather to provide evidence that a sufficiently
motivated attacker can find avenues to exploit multiple instal-
lations and shared code.

B. Goals and Non-Goals

Goals. Our goal in this paper is to determine how effective
are update mechanisms in practice and to quantify the threats
discussed in Section II-A. We develop techniques for character-
izing the patching delay and the patch deployment process for
vulnerabilities in client-side applications, and use these tech-
niques to assess the impact of current software updating mech-
anisms on the vulnerability levels of real hosts. The patching
delay depends on the vendor’s disclosure and patching policies
and requires measuring t0 and tp for each vulnerability. t0 is
recorded in several vulnerability databases [30], [32], which
often include incomplete (and sometimes incorrect) informa-
tion about the exact versions affected by the vulnerability.
Information about tp is scattered in many vendor advisories
and is not centralized in any database. To overcome these
challenges, we focus on analyzing the presence of vulnerable
and patched program versions on real end-hosts, in order to
estimate the start of patching and to perform sanity checks on
the data recorded in public databases.

The patch deployment process depends on the vendor
(e.g., its patching policy), the application (e.g., if it uses an
automated updating mechanism), and the user behavior (e.g.,
some users patch faster than others). The daily changes in the
population of vulnerable hosts, reflected in our end-host ob-
servations, give insight into the progress of patch deployment.
We focus on modeling this process using statistical techniques
that allow us to measure the rate at which patching occurs
and several patch deployment milestones. To characterize the
initial deployment phase following patch deployment (tp), we
estimate the median time to patch (tm). The point of patch
completion ta is difficult to define, because we are unable to
observe the entire vulnerable host population on the Internet.
To characterize the tail of the deployment process, we estimate
two additional deployment milestones, (t90% and t95%), as well
as the fraction of vulnerabilities that reach these patching mile-
stones. Our focus on application vulnerabilities (rather than
vulnerabilities in the underlying OS) allows us to compare the
effectiveness of different software updating mechanisms. These
mechanisms are used for deploying various kinds of updates
(e.g., for improving performance or for adding functionality);
we focus on updates that patch security vulnerabilities. We
also aim to investigate the impact of application-specific and
user-specific factors on the patching process.

To interpret the results of our analysis, it is helpful to
compare our goals with those of the prior studies on vul-

nerability patching and software update deployment. Several
studies [28], [35], [36], [45] conducted remote vulnerability
scans, which allowed them to measure vulnerabilities in server-
side applications, but not in client-side applications that do
not listen on the network. Another approach for measuring the
patch deployment speed is to analyze the logs of an update
management system [17], which only covers applications uti-
lizing that updating system and excludes hosts where the user
or the system administrator has disabled automated updating, a
common practice in enterprise networks. Similarly, examining
the User-Agent string of visitors to a popular website [10] only
applies to web browsers, is confounded by the challenge of
enumerating hosts behind NATs, and excludes users not visit-
ing the site. In contrast, we aim to compare multiple client-side
applications from different vendors, employing multiple patch
deployment mechanisms. Because we analyze data collected
on end hosts, we do not need to overcome the problem of
identifying unique hosts over the network and our results are
not limited to active instances. Instead, we can analyze the
patch deployment for applications that are seldom used and
that may remain vulnerable under the radar (e.g., when a user
installs multiple browsers or media players).

Applications selected. We select 10 desktop applications
running on Windows operating systems: 4 browsers (Chrome,
Firefox, Opera, Safari), 2 multimedia players (Adobe Flash
Player, Quicktime), an email client (Thunderbird), a document
reader (Adobe Reader), a document editor (Word), and a
networking tool (Wireshark). We choose these applications
because: (1) they are popular, (2) they are among the top
desktop applications with most vulnerabilities in NVD [30],
and (3) they cover both proprietary and open source applica-
tions. Across all these applications, we analyze the patching
process of 1,593 vulnerabilities, disclosed between 2008–2012.
All programs except Word can be updated free of charge. All
programs replace the old version with the new one after an
upgrade except Adobe Reader, for which new product lines
are installed in a new directory and the old line is kept in its
current directory.

Non-goals. We do not aim to analyze the entire vulnerability
lifecycle. For example, determining the precise dates when
vulnerability exploits are published is outside the scope of this
paper. Similarly, we do not aim to determine when a patch
takes effect, e.g., after the user has restarted the application.
Instead, we focus on patch deployment, i.e., patch download
and installation. Finally, we do not aim to determine precisely
when the patch deployment is completed, as old versions of
applications are often installed along with driver packages or
preserved in virtual machine images, and can remain unpatched
for very long periods.

III. DATASETS

We analyze six datasets: WINE’s binary reputation [11]
to identify files installed by real users, the NVD [30] and
OSVDB [32] vulnerability databases to determine vulnerable
program versions and disclosure dates, the EDB [14] and
WINE-AV for exploit release dates, and VirusTotal [43] for
additional file meta-data (e.g., AV detections, file certificates).
These datasets are summarized in Table I and detailed next.

WINE–binary reputation. The Worldwide Intelligence Net-
work Environment (WINE) [12] provides access to data col-

4



TABLE I. SUMMARY OF DATASETS USED.

Dataset Analysis Period Hosts Vul. Exp. Files

WINE-BR 01/2008–12/2012 8.4 M – – 7.1 M

VirusTotal 10/2013-04/2014 – – – 5.1 M

NVD 10/1988-12/2013 – 59 K – –

OSVDB 01/1972-01/2012 – 77 K – –

EDB 01/2014 – – 25 K –

WINE-AV 12/2009–09/2011 – – 244 –

lected by Symantec’s anti-virus and intrusion-detection prod-
ucts on millions of end-hosts around the world. Symantec’s
users have a choice of opting-in to report telemetry about
security events (e.g., executable file downloads, virus detec-
tions) on their hosts. WINE does not include user-identifiable
information. These hosts are real computers, in active use
around the world.

!"#

$%&#

!'#

()&#

*+#

,&#

-.#

/&#

01#

2&#

.!#

2&#

'3#

2&#

43#

2&#

-5#

2&#

63#

(&#

75#

(&#

58#

(&#

79#

(&#
:;<=>?#

(/&#

Fig. 2. Geographical distribution of reporting hosts in WINE-BR.

We use the binary reputation dataset in WINE (WINE-
BR), which is collected from 8.4 million Windows hosts that
have installed Symantec’s consumer AV products. WINE-BR
records meta-data on all—benign or malicious—executable
files (e.g., EXE, DLL, MSI). As shown in Figure 2, the WINE
hosts are concentrated in North America and Europe with the
top-20 countries accounting for 89.83% of all hosts. Since
these are real hosts, their number varies over time as users
install and uninstall Symantec’s products. Figure 3 shows the
number of simultaneous reporting hosts over time. It reaches
a plateau at 2.5 M hosts during 2011.

The hosts periodically report new executables found. Each
report includes a timestamp and for each executable, the hash
(MD5 and SHA2), the file path and name, the file version,
and, if the file is signed, the certificate’s subject and issuer.
The binaries themselves are not included in the dataset. Since
we analyze the vulnerability lifecycle of popular programs our
analysis focuses on the subset of 7.1 million files in WINE-BR
reported by more than 50 users between 2008 and 2012.

NVD. The National Vulnerability Database [30] focuses on
vulnerabilities in commercial software and large open-source
projects. Vulnerability disclosures regarding less-well-known
software, e.g., small open source projects, are typically redi-
rected to other vulnerability databases (e.g., OSVDB). NVD
uses CVE identifiers to uniquely name each vulnerability and
publishes XML dumps of the full vulnerability data. We use

Fig. 3. Reporting hosts in WINE-BR over time.

the NVD dumps until the end of 2013, which comprise 59,875
vulnerabilities since October 19881.

OSVDB. The Open Sourced Vulnerability Database2 [32] has
the goal of providing technical information on every public
vulnerability, so it contains vulnerabilities in more programs
than NVD. OSVDB uses its own vulnerability identifier but
also references the CVE identifier for vulnerabilities with one.
Up to early 2012, OSVDB made publicly available full dumps
of their database. However, OSVDB has since moved away of
their original open source model and public dumps are no
longer available. Our OSVDB data comes from one of the
latest public dumps on January 12, 2012. It contains 77,101
vulnerabilities since January 2004.

EDB. The Exploit Database [14] is an online repository of
vulnerability exploits. We crawl their web-pages to obtain
meta-data on 25,331 verified exploits, e.g., publication date
and vulnerability identifier (CVE/OSVDB).

WINE–AV. The AV telemetry in WINE contains detections
of known cyber threats on end hosts. We can link some of
these threats to 244 exploits of known vulnerabilities, covering
1.5 years of our observation period. We use this dataset to
determine when the exploits start being detected in the wild.

VirusTotal. VirusTotal [43] is an online service that analyzes
files and URLs submitted by users with multiple security /
anti-virus products. VirusTotal offers a web API to query meta-
data on the collected files including the AV detection rate
and information extracted statically from the files. We use
VirusTotal to obtain additional meta-data on the WINE files,
e.g., detailed certificate information and the values of fields in
the PE header. This information is not available otherwise as
we do not have access to the WINE files, but we can query
VirusTotal using the file hash. Overall, VirusTotal contains an
impressive 5.1 million (72%) of the popular files in WINE’s
binary reputation dataset.

Release histories. In addition to the 6 datasets in Table I,
we also collect from vendor websites the release history for
the programs analyzed, e.g., Chrome [18], Safari [37]. We
use release histories to differentiate beta and release program
versions and to check the completeness of the list of release
versions observed in WINE.

1CVE identifiers start at CVE-1999-0001, but CVE-1999-* identifiers may
correspond to vulnerabilities discovered in earlier years.

2Previously called Open Source Vulnerability Database.

5



� � � � � � � � � � � � 	 
 � 
� � 
 � � � � 
 � �� � 
 � � � � � 
 � � � � � � � �� 
 � � � � � �
� � � � �� �  � �� � � ! " 
 �� # � � ! � 
 $ " � �% � & & � � ' ( � � ) 
 * + , � + ' � � - � ) � 
 � + � 
. / 0 1 2 3 4 5 2 6 0 7 3 8 3 7 8 3 9 0 2. : 1 4 ; < 7 = 9 3 5 0 2

> ?  @ A B C D E D F G H I F G J K E KL A M N O P M NQ R C Q S C F T M U C K E Q I KV � � � � � � � 
 � �� � � � W ! " � � � 
 $ " � X � � � � � � �W ! " � � � 
 $ " � Y � 
 � � � � Z � � � � � � ! � � �! " � � � 
 $$ " � X � � � � � � �� � � � ) � � [ � � � * 	 \ ) & + � * ] ) � ) � � * � + �. / < 9 5 0 1 ^ _ 9 0 ` 5 4 = a < 9 5 0 1 ^ _ 9 08 3 9 0 2 6 0 1 a < 9 5 0 1 ^ _ 3 9 3 = b. c 9 < 2 = 0 1 2 4 8 a < 9 5 0 1 ^ _ 3 9 3 = 3 0 2� 
 � � � � Z � � � � � � � �� � * � & � ) d & � + e ) 
 
 � � '. f 0 8 ^ < 9 = 8 3 9 0 5 ^ g 0. h 3 1 2 = 2 0 0 5� � � " � X � � � � � �
�� # � � ! � 
 $ " � �i F j j E I�K K E I S F UF T M U Ck � " � � � � Z� � � � � 
 l � @ � �I U C F m E Qn o 6 9 4 3 = p 5 8 4

Fig. 4. Approach overview.

IV. VULNERABILITY ANALYSIS

Our study of the vulnerability lifecycle comprises two
main steps. First, we develop an approach to map files on
end-hosts to vulnerable and patched program versions (Sec-
tions IV-A through IV-E). Then, we perform survival analysis
to study how users deploy patches for each vulnerability
(Section IV-D). Our approach to map files to vulnerable and
patched program versions is novel, generic, and reusable.
While it comprises some program-specific data collection, we
have successfully adapted and applied our approach to 10
programs from 7 software vendors. Ensuring the generality of
the approach was challenging as each vendor has their own
policies. Another challenge was dealing with the scattered,
often incomplete, and sometimes incorrect data available in
public repositories. We are publicly releasing the results of our
data cleaning for the benefit of the community (Appendix A).
We designed our approach to minimize manual work so that it
can be applied to hundreds of vulnerabilities for each program
and that adding new programs is also easy. The approach is not
specific to WINE; it can be used by any end host application
that periodically scans the host’s hard-drive producing tuples
of the form <machine, timestamp, file, filepath> for the
executable files it finds. Most antivirus software and many
other security tools fit this description.

Figure 4 summarizes our approach. First, we pre-process
our data (Section IV-A). Then, we identify version-specific
files that indicate a host has installed a specific program version
(Section IV-B). Next, our vulnerability report generation mod-
ule automatically identifies which files indicate vulnerable and
non-vulnerable versions for each vulnerability (Section IV-C).
We detail our cleaning of NVD data in Appendix A. Finally,
we perform a survival analysis for each vulnerability (Sec-
tion IV-D).

A. Data Pre-Processing

The first step in our approach is to pre-process the 7.1
million files in our dataset to have the information needed for
the subsequent steps. Note that while we focus on 10 selected
applications, we do not know a priori which files belong to
those. We first assign to each file (identified by MD5 hash)
a default filename, first seen timestamp, and file version. The
default filename is selected by majority voting across all WINE
hosts reporting files. Since most users do not modify default
filenames and the files are reported by at least 50 hosts, the
filename used by the largest number of hosts is highly likely
the vendor’s default. The first seen timestamp is the earliest

time that the file was reported by any host. For the file version,
each Windows executable contains version information in its
PE header, which WINE normalizes as four decimal numbers
separated by dots, e.g., 9.0.280.0.

In addition, we query VirusTotal for the files’ metadata
including the number of AV products flagging the file as
malicious and the file certificate. We consider malware the
1.3% of the 7.1 M files flagged by 3 or more AV products
as malicious, removing them from further analysis. If the file
has a valid certificate, we extract the publisher and product
information from its metadata.

B. Mapping Files to Program Versions

To determine if a WINE host installed a specific program
version we check if the host has installed some files specific to
that program version. Such version-specific files should not be
part of other program versions (or other programs) and should
not correspond to installer files (e.g., firefox setup 3.0.7.exe)
but rather to the final executables or libraries (e.g., firefox.exe)
that are only present on the host’s file system if the user not
only downloaded the program version, but also installed it.
The goal is to generate a list of triples < h, p, vp > capturing
that the presence of a file with hash h in a host indicates the
installation of program p and version vp.

An intuitive method to identify version-specific files would
be to install a program version, monitoring the files it installs.
Files installed by one program version but not by any other
version would be version-specific. However, such approach
is difficult to generalize because for some programs it is
not easy to obtain all the program versions released between
2008–2012, and because automating the installation process
of arbitrary programs is challenging given the diversity in
installation setups and required user interaction.

We have developed an alternative analyst-guided approach
to identify version-specific files. Our approach leverages the
fact that large software vendors, e.g., those of our selected
programs, sign their executables to provide confidence in their
authenticity, and that, to keep software development manage-
able, they keep filenames constant across program versions
(e.g., Firefox’s main executable is named firefox.exe in all
program versions) and update the file version of files modified
in a new program version.

For each program analyzed, we first query our database
for how many different file versions each default filename
associated with the program has (e.g., files with vendor

6



TABLE II. SUMMARY OF THE SELECTED PROGRAMS.

Configuration WINE NVD vulnerabilities Auto Updates Introd.

Program Vendor Leading Filename Lines Files Ver. Rel. Total Selected Clust. Ver. Date

Chrome Google chrome.dll 1 544 531 531 886 545 (61%) 87 1.0 2008-12-12

Firefox Mozilla firefox.exe 10 457 440 140 1,013 226 (22%) 88 15 2012-08-26

Flash Adobe npswf32%.dll 12 187 121 121 316 123 (38%) 22 11.2 2012-03-27

Opera Opera opera.exe 1 95 90 90 25 10 (40%) 8 10 2009-08-30

Quicktime Apple quicktimeplayer.exe 1 68 43 41 206 67 (33%) 15 - 2008-01-01

Reader Adobe acrord32.dll 9 102 73 66 330 159 (48%) 30 10.1 2011-06-14

Safari Apple safari.exe 1 35 29 26 460 227 (49%) 39 - 2008-01-01

Thunderbird Mozilla thunderbird.exe 17 91 91 83 594 31 (15%) 60 17 2012-11-20

Wireshark Wireshark wireshark.exe 1 56 38 38 261 110 (42%) 66 1.10.0 2013-06-05

Word Microsoft winword.exe 7 247 104 7 92 36 (39%) 12 2003 2005-06-01

TOTAL 2,006 1,610 1,242 4,347 1,593 (39%) 408

“Adobe%” and product “%Reader%”3). We select the non-
installer filename with most file versions as the leading file-
name. In 7 of our 10 programs the leading filename corre-
sponds to the main executable (e.g., firefox.exe, wireshark.exe)
and in other 2 to the main library (chrome.dll for Chrome,
acrord32.dll for Reader). For Flash Player, Adobe includes
the version in the default filename since March 2012, e.g.,
npswf32 11 2 202 18.dll, so we use a wildcard to define the
leading filename, i.e., npswf32%.dll.

Mapping file version to program version. The file version of
files with the leading filename may correspond directly to the
program version (e.g., chrome.dll 5.0.375.70 indicates Chrome
5.0.375.70), to a longer version of the program version (e.g.,
acrord32.dll 9.1.0.163 indicates Reader 9.1), or the relationship
may not be evident, (e.g., firefox.exe 1.9.0.3334 indicates
Firefox 3.0.7). For each program we build a version mapping,
i.e., a list of triples < vf , vp, type > indicating that file version
vf corresponds to program version vp. We use the type to
indicate the maturity level of the program version, e.g., alpha,
beta, release candidate, release. We limit the patch deployment
analysis to release versions of a program. The mapping of file
to program versions is evident for 7 programs, the exception
being Safari and old versions of Firefox and Thunderbird4.
For Safari we use its public release history [37] and for
Firefox/Thunderbird we leverage the fact that the developers
store the program version in the product name field in the
executable’s header, available in the VirusTotal metadata. For
the program version type, we leverage the program release
history from the vendor’s site.

Checking for missing versions. In most cases, the file with the
leading filename is updated in every single program version.
However, for Adobe Reader we found a few program versions
that do not modify the file with the leading filename but
only other files (e.g., Adobe Reader 9.4.4 did not modify
acrord32.dll or acrord32.exe). To identify if we are missing
some program version we compare the version mapping with
the vendor’s release history. For any missing version, we query
our database for all files with the missed file version and signed
by the program’s vendor (regardless of the filename). This
enables identifying other files updated in the missing version,
e.g., nppdf32.dll in Reader 9.4.4. We add one of these file
hashes to our list of version-specific files. Of course, if the
vendor did not update the version of any executable file in a
new program version, we cannot identify that program version.

3We use % as a wildcard as in SQL queries
4Firefox and Thunderbird use file versions similar to program versions since

Firefox 5 and Thunderbird 5.

Product lines. Some programs have product lines that are
developed and released with some overlap in time. For our
analysis it is important to consider product lines because a
vulnerability may affect multiple lines and each of them needs
to be patched separately. For example, vulnerability CVE-
2009-3953 is patched in versions 8.2 and 9.3 of Adobe Reader,
which belong to lines 8 and 9 respectively. To map product
versions to product lines we use regular expressions. Next
section describes our handling of product lines.

As the output of this process the analyst produces a
program configuration file that captures the list of version-
specific files, the version mapping, and the product line regular
expressions. This configuration is produced once per program,
independently of the number of program vulnerabilities that
will be analyzed.

The left-side section of Table II summarizes the configu-
ration information for the 10 selected programs: the program
name, the vendor, the leading filename, and the number of
product lines. The right-side section shows on what date, and
in which version, the application started using an automated
updating mechanism. The WINE section captures the number
of version-specific files (Files), the number of file versions for
those files (Ver.), and the number of program versions they
correspond to (Rel.) The 3 numbers monotonically decrease
since two files may occasionally have the same file version,
e.g., 32-bit and 64-bit releases or different language packs for
the same version. Two file versions may map to the same
program version, e.g., beta and release versions.

Note that we start with 7.1 M files and end up with only
2,006 version-specific files for the 10 programs being analyzed.
This process would be largely simplified if program vendors
made publicly available the list of file hashes corresponding
to each program version.

C. Generating Vulnerability Reports

Next, our vulnerability report generation module takes as
input the configuration file for a program and automatically
determines for each vulnerability for the program in NVD,
which versions are vulnerable and not vulnerable.

For this, it first queries our database for the list of NVD
vulnerabilities affecting the program. If a vulnerability af-
fects multiple programs (e.g., Firefox and Thunderbird), the
vulnerability will be processed for each program. For each
vulnerability, it queries for the list of vulnerable program
versions in NVD and splits them by product line using the
regular expressions in the configuration. For each vulnerable
product line (i.e., with at least one vulnerable version), it

7



determines the range of vulnerable program versions [xl, yl]
in the line. Note that we have not seen lines with multiple
disjoint vulnerable ranges. Finally, it annotates each version-
specific file as not vulnerable (NV), vulnerable (V), or patched
(P). For a file specific to program version vp, it compares vp
with the range of vulnerable versions for its line. If the line
is not vulnerable, the file is marked as not vulnerable. If the
line is vulnerable but vp < xl, it is marked as not vulnerable;
if xl ≤ vp ≤ yl as vulnerable; and if vp > yl as patched.

We discard vulnerabilities with no vulnerable versions, no
patched versions, or with errors in the NVD vulnerable version
list. We may not find any vulnerable versions for vulnerabilities
in old program versions (that no WINE host installs between
2008–2012). Similarly, we may find no patched versions for
vulnerabilities disclosed late in 2012 that are patched in 2013.
We detail how we identify NVD errors in Appendix A.

Multiple vulnerabilities may affect exactly the same pro-
gram versions. Such vulnerabilities have the same vulnerable
population and identical patching processes. We therefore
group them together into vulnerability clusters to simplify
the analysis. All vulnerabilities in a cluster start patching on
the same date, but each vulnerability may have a different
disclosure date.

The “NVD vulnerabilities” section of Table II shows the
total number of vulnerabilities analyzed for each program
(Total), the selected vulnerabilities after discarding those with
no vulnerable or patched versions, or with errors (Selected),
and the number of vulnerability clusters (Clust.). Overall, we
could analyze 39% of all vulnerabilities in the 10 programs.

Patching delay. For each cluster, we compute the disclosure
date t0 as the minimum of the disclosure dates in NVD and
OSVDB. The start of patching tp is the first date when we
observe a patched version in the field data from WINE. The
start of patching date often differs from the disclosure date and
is not recorded in NVD or OSVDB. The patching delay for a
cluster is simply pd = tp − t0.

D. Survival Analysis

To analyze the patch deployment speed we employ survival
analysis techniques, which are widely used in medicine and bi-
ology to understand the mortality rates associated with diseases
and epidemics [23]. In our case, survival analysis measures the
probability that a vulnerable host will “survive” (i.e., remain
vulnerable) beyond a specified time. Intuitively, the population
of vulnerable hosts decreases (i.e., the vulnerability “dies” on a
host) when one of two death events happen: (1) a user installs a
patched program version or (2) a user installs a non-vulnerable
program version. While both events decrease the vulnerable
population, only the first one is directly related to patch
deployment. When we analyze patch deployment we consider
only the first death event; when analyzing vulnerability decay
we consider both.

Survival function. To understand how long a vulnerability
remains exploitable in the wild, we consider that the vulner-
ability lifetime is a random variable T . The survival function
S(t) captures the likelihood that the vulnerability has remained
unpatched until time t:

S(t) = Pr[T > t] = 1− F (t)

where F (t) is the cumulative distribution function.

q r s t u v w x y z
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●{ | { {{ | } ~{ | ~ {{ | � ~� | { {

{ � { { } { { � { { � { {� � � � � � � � � � � � � � � � � � �
� �� �������� � ������ ��� � �   ¡ ¢ £ ¤ ¥ ¦ § ¨ £ © � ª � « ¬ ­ } { � } ­ ~ � � } ® � « ¬ ­ } { � } ­ ~ � � ¯ °� �   ¡ ¢ £ ¤ ¥ ¦ § ¨ £ © } ª � « ¬ ­ } { � { ­ � ± } } ® � « ¬ ­ } { � { ­ � � } ² ® � « ¬ ­ } { � { ­ � � � { °

Fig. 5. Examples of vulnerability survival, illustrating the deployment of two
updates for Google Chrome.

We estimate S(t) for each vulnerability cluster. Figure 5
illustrates the output of this analysis through an example. Using
our S(t) estimations, we can compare the deployment of two
software updates in Chrome. Both updates reached 50% of the
vulnerable hosts in a few days, but update #1 reached 90% of
vulnerable hosts in 52 days, while update #2 needed 4× as
much time to reach the same milestone.

The survival function describes how the probability of
finding vulnerable hosts on the Internet decreases over time.
S(t) is 1 in the beginning, when no vulnerable hosts have yet
been patched, and 0 when there are no vulnerable hosts left.
By definition, S(t) is monotonically decreasing; it decreases
when one of the two death events mentioned earlier occurs
on a vulnerable host. In our analysis of the patch deployment
process, the installation of a patched version closes the vul-
nerability on the host. In this case, the point in time when
S(t) starts decreasing corresponds to the start of patching
tp, which we use to estimate the patching delay as described
in Section IV-C. In our analysis of the vulnerability decay
process, the installation of either a patched version or a non-
vulnerable version closes the vulnerability window. The point
where S(t) starts decreasing corresponds to the start of the
vulnerability decay (td in Figure 1). In both cases, the host’s
death event for a given vulnerability corresponds to the first
installation of a patched or non-vulnerable version after the
installation of a vulnerable version on the host.

The time needed to patch a fraction α of vulnerable
hosts corresponds to the inverse of the survival function:
tα = S−1(1−α). The survival function allows us to quantify
the milestones of patch deployment such as the median time
to patch tm = S−1(0.5) and the time to patch most vulnerable
hosts: t90% = S−1(0.1) and t95% = S−1(0.05).

Right censoring and left truncation. When estimating S(t)
we must account for the fact that, for some vulnerable hosts,
we are unable to observe the patching event before the end
of our observation period. For example, some hosts may leave
our study before patching, e.g., by uninstalling the Symantec
product, by opting out of data collection, or by upgrading the
OS. In statistical terms, these hosts are independently right-

8



censored. We determine that a host becomes right censored
by observing the last download report (not necessarily for our
selected applications) in WINE. For these hosts, we do not
know the exact time (or whether) they will be patched; we can
only ascertain that they had not been patched after a certain
time. In other words, when a host becomes censored at time t,
this does not change the value of S(t); however, the host will
no longer be included in the vulnerable host population after
time t. In addition, we cannot determine whether vulnerable
versions have been installed on a host before the start of
our observation period, so some vulnerable hosts may not
be included in the vulnerable population. In statistical terms,
our host sample is left-truncated. Right-censoring and left-
truncation are well studied in statistics, and in this paper we
compute the values of S(t) using the Kaplan-Meier estimator,
which accounts for truncated and censored data. We compute
this estimator using the survival package for R [42]. We
consider that we have reached the end of the observation period
for a vulnerability when the vulnerable population falls below
3 hosts or when we observe that 95% or more of the vulnerable
hosts become censored within 5% of the total elapsed time.
This prevents artificial spikes in the hazard function at the end
of our observation period, produced by a large decrease in the
vulnerable host population due to right-censoring.

E. Threats to Validity

Selection bias. The WINE user population is skewed towards
certain geographical locations; for example, 56% of the hosts
where the data is collected are located in the United States
(Figure 2). Additionally, WINE’s binary reputation only covers
users who install anti-virus software. While we cannot exclude
the possibility of selection bias, the prevalence of anti-virus
products across different classes of users and the large popula-
tion analyzed in our study (1,593 vulnerabilities on 8.4 million
hosts) suggests that our results have a broad applicability.
Similarly, our study considers only Windows applications, but
the popular client applications we analyze are cross-platform,
and often use the same patching mechanism on different plat-
forms. Moreover, cyber attacks have predominantly targeted
the Windows platform.

Sampling bias. The WINE designers have taken steps to
ensure WINE data is a representative sample of data collected
by Symantec [33]. For our study, this means that the vulnera-
bility survival percentages we compute are likely accurate for
Symantec’s user base, but the absolute sizes of the vulnerable
host population are underestimated by at least one order of
magnitude.

Data bias. The WINE binary reputation does not allow us
to identify program uninstalls. We can only identify when a
user installs new software and whether the newly installed
version overwrote the previous one (i.e., installed on the same
path). The presence of uninstalls would cause us to under-
estimate the rate of vulnerability decay, as the hosts that
have completely removed the vulnerable application would be
counted as being still vulnerable at the end of our observation
period. We do not believe this is a significant factor, as we
observe several vulnerabilities that appear to have been patched
completely during our observation (for example, update #1
from Figure 5).

TABLE III. MILESTONES FOR PATCH DEPLOYMENT FOR EACH

PROGRAM (MEDIANS REPORTED).

Program %Vers.
Auto

Vul.
Pop.

Patch
Delay

Days to patch (%clust.)
tm t90%

Chrome 100.0% 521 K -1 15 (100%) 246 (93%)
Firefox 2.7% 199 K -5.5 36 (91%) 179 (39%)
Flash 14.9% 1.0 M 0 247 (59%) 689 (5%)
Opera 33.3% 2 K 0.5 228 (100%) N/A (0%)
Quicktime 0.0% 315 K 1 268 (93%) 997 (7%)
Reader 12.3% 1.1 M 0 188 (90%) 219 (13%)
Safari 0.0% 146 K 1 123 (100%) 651 (23%)
Thunderbird 3.2% 11 K 2 27 (94%) 129 (35%)
Wireshark 0.0% 1 K 4 N/A (0%) N/A (0%)
Word 37.4% 1.0 M 0 79 (100%) 799 (50%)

V. EVALUATION

We analyze the patching of 1,593 vulnerabilities in 10
applications, which are installed and are actively used on
8.4 M hosts worldwide. We group these vulnerabilities into
408 clusters of vulnerabilities patched together, for an average
of 3.9 vulnerabilities per cluster. We conduct survival analysis
for all these clusters, over observation periods up to 5 years.

In this section, we first summarize our findings about the
update deployment process in each application (Section V-A).
Then, we analyze the impact of maintaining parallel product
lines on the patching delay (Section V-B), the race between
exploit creators and patch deployment (Section V-C), the
opportunities for patch-based exploit generation (Section V-D),
and the impact of parallel installations of an application
on patch deployment (Section V-E). Next, we analyze the
time needed to reach several patch deployment milestones
(Section V-F) and, finally, the impact of user profiles and
of automated update mechanisms on the deployment process
(Section V-G).

A. Patching in Different Applications

The prior theoretical work on optimal patch-management
strategies makes a number of assumptions, e.g., that there is an
important trade-off between the patching delay and the amount
of testing needed before releasing patches, or that patch
deployment is instantaneous [31]. In this section, we put such
assumptions to the test. We focus on the patching delay and
on two patch deployment milestones: reaching 50% and 90%
of the vulnerable hosts. For this analysis, we consider only
the deployment of a patched version as a vulnerability death
event, and we aggregate the results of the survival analysis for
each of the 10 selected applications. Because it is difficult to
compare t90% for two applications with different vulnerable
populations, we report both the time to reach this milestone
and the percentage of updates that reach it. Applications with
effective updating mechanisms will be able to reach 90%
deployment for a large percentage of updates. The time needed
to reach this milestone illustrates how challenging it is to patch
the last remaining hosts within a large vulnerable population.

Table III summarizes the patch deployment milestones for
each application. The second column shows the percentage
of versions that were updated automatically. Chrome had an
automated updating mechanism since its first version; Word
used Microsoft Update throughout the study; Wireshark had
completely manual updates throughout our study; Safari and

9



Quicktime use the Apple Software Updater that periodically
checks and prompts the user with new versions to install; the
remaining programs introduced silent updates during our study.

The next column shows the vulnerable host population
(we report the median across all vulnerability clusters for
the program). For 7 out of the 10 applications the median
vulnerable population exceeds 100,000 hosts and for 3 (Flash,
Reader, Word) it exceeds one million hosts. In comparison,
the 2014 Heartbleed vulnerability in OpenSSL affected 1.4
million servers [21], and the Internet worms from 2001–2004
infected 12K–359K hosts [27], [28], [39]. As explained in
Section IV-E the host population in our study only reflects the
hosts in WINE, after sampling. The vulnerable host population
in the unsampled Symantec data is likely to be at least
one order of magnitude higher [33], and the real vulnerable
population when including hosts without Symantec software
much larger. These numbers highlight that vulnerabilities in
client-side applications can have significant larger vulnerable
populations than server-side vulnerabilities.

The fourth column reports the median patch delay (in
days) for the vulnerability clusters. Chrome and Firefox have
negative values indicating that patching starts before disclosure
for most of their clusters. Flash, Reader, and Word have zero
values indicating that Adobe and Microsoft are coordinating
the release of patches and advisories, e.g., at Patch Tuesday
for Microsoft. The remaining programs have positive patch
delay; the larger the patch delay the longer users are exposed
to published vulnerabilities with no patch available.

The last two columns capture the times needed to reach
50% and 90% patch deployment (we report medians across
clusters), as well as the percentage of clusters that reached
these milestones before the end of our observation period.
Chrome has the shortest tm, followed by Thunderbird and
Firefox. At the other extreme, Wireshark exhibits the slowest
patching: no cluster reaches 50% patch deployment by the
end of 2012—not even for vulnerabilities released in 2008.
Excluding Wireshark and Flash, all applications reach 50%
patching for over 90% of vulnerability clusters, with Chrome,
Opera, Safari, and Word reaching this milestone for 100%
of clusters. At t90 only Chrome patches more than 90% of
the vulnerability clusters. We also observe that Firefox and
Thunderbird appear to reach this milestone faster than Chrome,
but this comparison is biased by the fact that for these two
applications only 35–40% of clusters reach this milestone, in
contrast with Chrome’s 93%.

Chrome’s automated update mechanism results in the
fastest patching among the 10 applications. However, it still
takes Chrome 246 days (approximately 8.2 months) to achieve
90% patching. This finding contradicts prior research that
concluded that 97% of active Chrome instances are updated
to the new version within 21 days after the version’s release
of a new version [10]. The main difference in our approach
is that, because we analyze end-host data, our measurements
include inactive applications, which are installed on a host
but rarely used. Moreover, our measurements do not suffer
from confounding factors such as applications on hosts behind
NATs, which complicate the interpretation of version numbers
extracted from network traces.

³ ´ µ ¶ · ´ ¸ · ¶ ¹ º » ¸ µ ¼ ´ ·½ ¾ ¿ À Á Â Ã Ä Å Æ Ç Â À Ä È ½ À Â Ã ÀÉ ÊËÌ ÍÎÏÐÑ ÊÒ ÓÍÎÔÌÕÒÕÖÕ Í×
ØÙØØÚØØÛØØ
Ø ÛÜØØ Ý Þ ß à á âÝ ã ä ß à á â

å ä ä æ ä
ç å æ ç ç è é ã

ç ê é Þ Þ
(a) Correlation with disclosure.

½ À Â Ã À ¾ ¿ ë Â À ì í î ï ð ñ ¿ ¿ È Ä À ò ó Â ô È õÉ ÊËÌ ÍÎÏÐÑ ÊÒ ÓÍÎÔÌÕÒÕÖÕ Í×
ö ç ä ä ä ö æ ä ä ä æ ä ä ç ä ä äØÙØØÚØØ

ÛØØØ
(b) Histogram.

Fig. 6. Distribution of the patching delay. For each vulnerability, we compare
the start of patching with the disclosure date. The left plot shows how many
vulnerabilities start patching within a week (±7 days) or a month (±30 days)
of disclosure and how many start patching outside these intervals. The right
plot shows a histogram of the patch delay (each bar corresponds to a 30-day
interval).

B. Patching Delay

In this section we ask the questions: How quickly are
patches released, following vulnerability disclosures? and
What is the impact of maintaining multiple product lines on
these releases? The patch can be released on the disclosure
date (e.g., coordinated disclosure, where the vendor is notified
and given some time to create a patch before publicizing
the vulnerability), after the disclosure date, (e.g., discovery
of a zero-day attack in the wild or full disclosure, where
the vulnerability is publicized despite the lack of a patch
in order to incentivize the vendor to create the patch), or
before disclosure (e.g., the vulnerability does not affect the
latest program version). Thus, the patching delay may be
positive, zero, or negative. Figure 6 illustrates the distribution
of the patching delay for all the 1,593 vulnerabilities in our
study. We find that the start of patching is strongly correlated
with the disclosure date (correlation coefficient r = 0.994).
Moreover, Figure 6 shows that 77% of the vulnerabilities
in our study start patching within 7 days before or after
the disclosure dates. If we extend this window to 30 days,
92% of vulnerabilities start patching around disclosure. This
suggests that software vendors generally respond promptly to
vulnerability disclosures and release patches that users can
deploy to avoid falling victim to cyber attacks.

It is interesting to observe that maintaining multiple parallel
lines does not seem to increase the patching delay. Firefox,
Flash, Reader, Thunderbird and Word all have multiple product
lines; in fact, each vulnerability cluster in these products
affects all the available product lines. When a vulnerability
affects multiple product lines, patches must be tested in
each program line, which may delay the release of patches.
However, Table III suggests that the median patching delay
is not significantly higher for these applications than for the
applications with a single product line, like Google Chrome.
We note that this doesn’t suggest that multiple product lines
do not impact software security, as there may be additional
software engineering issues associated with product lines;
however, we do not find empirical evidence for these effects.

When we take into consideration both types of vulnerability
death events in the survival analysis, (i.e., the installation
of non-vulnerable versions contributes to the vulnerability

10



÷ ø ù ú û ü ý ù þ ø û û ÷ þ ú ÿ ÷ ü ú û ú� ø÷ ú ú ýþ ÿ ù ù ø ý ÷û þ ú ú þ ø ø ÷ ü ÿ � ÷ ú ü �þ÷ ù ÷ û ÷ þ ú ÿú øú ú �ù � ÷ û ø ø ù ù ø ü þ �ü �øÿ �ú ü ú ù ù ÷ ø ü þ ûú ù ÷ û÷�

� � � � � � � � � 	 � 
 	� � � � � � � � � 	 � 
 �� � � � � � � � � � � 
 �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � 
� � � � � � � � � � � � �� � � � � � � � � � � � 	� � � � � � � � � 	 � 	 �� � � � � � � � � 	 � 
 
� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � 	� � � � � � � � � � � 
 �� � � � � � � � � � � � �� � � � � � � � � � � � 
� � � � � � � � � � � 
 �� � � � � � � � � 	 � � 
� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � 
 �� � � � � � � � � � � 
 
� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � 	 � 
 �� � � � � � � � � 	 � 
 	� � � � � � � � � 	 � 
 
� � � � � � � � � � � 
 �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � 	 �� � � � � � � � � � � 
 �� � � � � � � � � � � � �� � � � � � � � � � � 	 �� � � � � � � � � � � � �� � � � � � � � � � � � 
� � � � � � � � � 	 � 	 �� � � � � � � � � � � 
 �� � � � � � � � � 	 � � 
� � � � � � � � � 	 � 
 �� � � � � � � � � � 	 � 
� � � � � � � � � 	 � 	 	� � � � � � � � � 
 	 � �� � � � � � � � � 
 	 � �� � � � � � � � � 
 
 	 �� � � � � � � � � � 
 � �� � � � � � � � � 	 	 � �

� � � � � � � �� � � � � �� � � � � � �� � � � � � � � � � �� � � � � � ! � � " # � � �� � � � � �# � ! $ � � � % � � �� � � � � � � � "& ' & & & ' ( ) & ' ) & & ' * ) + ' & &, - . / 0 1 2 3 4 . 4 5 6 7 - 1 8 4 8 2 .
9 :; <=>?@A;A B C

D E F G H I D ü üÿ ú �
û û ú ÿ ýú ù ù ø ÿ

Fig. 7. Vulnerability survival (1 = all hosts vulnerable) at exploitation time.
Data points are annotated with estimations of the exploitation lag: the number
of days after disclosure when the the exploits were publicized (for EDB) and
when the first detections occurred (for WINE-AV).

decay), we observe that the vulnerable host population starts
decaying almost as soon as a vulnerable version is released,
as some users revert to older versions. In this case, 94% of
the clusters start decaying earlier than 30 days before the
disclosure date. While this is a mechanism that could prevent
zero-day exploits in the absence of a patch, users are not
aware of the vulnerability before its public disclosure, and the
vulnerability decay due to non-vulnerable versions is small.

C. Patches and Exploits

We now ask the question: When attackers create exploits
for these vulnerabilities, what percentage of the host popula-
tion can they expect to find still vulnerable? This has important
security implications because exploit creators are in a race
with the patch deployment: once the vulnerability is disclosed
publicly, users and administrators will start taking steps to
protect their systems.

We use the WINE-AV dataset to identify attacks for
specific vulnerabilities. This dataset only covers 1.5 years
of our observation period (see Table I). After discarding
vulnerabilities disclosed before the start of the WINE-AV
dataset and intersecting the 244 exploits in WINE-AV with
our vulnerability list, we are left with 13 exploits, each for
a different vulnerability. We also add 50 vulnerabilities that
have an exploit release date in EDB. For each of the 54
vulnerabilities in the union of these two sets, we extract the
earliest record of the exploit in each of the two databases,
and we determine the value of the survival function S(t) on
that date. In this analysis, we consider both types of death
events, because installing non-vulnerable program versions
also removes hosts from the population susceptible to these
exploits.

Figure 7 illustrates the survival levels for these vulnerabil-
ities; on the right of the X-axis 100% (1.00) of hosts remain
vulnerable, and on the left there are no remaining vulnerable
hosts. Each vulnerability is annotated with the number of days
after disclosure when we observe the first record of the exploit.
This exploitation lag is overestimated because publicizing an
exploit against an unknown vulnerability amounts to a disclo-
sure (for EDB) and because AV signatures that can detect the
exploit are often deployed after disclosure (for WINE-AV). For
example, while CVE-2011-0611, CVE-2011-0609, CVE-2010-
3654, CVE-2010-2862, CVE-2010-1241, and CVE-2011-0618
are known to have been exploited in zero-day attacks [5],
[40], [41], the exploitation lag is ≥ 0. In consequence, the
vulnerability survival levels in Figure 7 must be interpreted as
lower bounds, as the exploits were likely released prior to the
first exploit records in WINE-AV and EDB.

Additionally, these results illustrate the opportunity for
exploitation, rather than a measurement of the successful
attacks. Even if vulnerabilities remain unpatched, end-hosts
may employ other defenses against exploitation, such as anti-
virus and intrusion-detection products or mechanisms such
as data execution prevention (DEP), address space layout
randomization (ASLR), or sandboxing. Our goal is therefore
to assess the effectiveness of vulnerability patching, by itself,
in defending hosts from exploits.

All but one of the real-world exploits in WINE found more
than 50% of hosts still vulnerable. Considering both databases,
at the time of the earliest exploit record between 11% and
100% of the vulnerable population remained exploitable, and
the median survival rate was 86%. As this survival rate
represents a lower bound, the median fraction of hosts patched
when exploits are released is at most 14%.

D. Opportunities for Patch-Based Exploit Generation

Attackers have an additional trump card in the race with
the patch deployment: once a patch is released, it may be used
to derive working exploits automatically, by identifying the
sanitization checks added in the patched version and generating
inputs that fail the check [7]. While prior work has emphasized
the window of opportunity for patch-based exploit generation
provided by slow patch deployment, it is interesting to observe
that in some cases a vulnerability may affect more than one
application. For example, Adobe Flash vulnerability CVE-
2011-0611 affected both the Flash Player and Acrobat Reader
(which includes a library allowing it to play Flash objects
embedded in PDF documents). For Reader, the patching started
6 days later than for Flash, giving attackers nearly one week
to create an exploit based on the Flash patch.

In our dataset, 80 vulnerabilities affect common code
shared by two applications. The time between patch releases
ranges from 0 (when both patches are released on the same
date, which occurs for 7 vulnerabilities) to 118 days, with a
median of 11 days. 3 Flash vulnerabilities also affect Adobe
Reader (as in the case of CVE-2011-0611 described above),
and the patches for Flash were released before or on the same
day as the Reader patches. 7 vulnerabilities affect the Chrome
and Safari browsers, which are based on the WebKit rendering
engine; in one case, the Safari patch was released first, and
in the other cases the Chrome patch was released first. 1

11



J K J JJ K J LJ K J MJ K J NJ K J O
J M P P J Q P L J J L M PR S T UV WXY ZY[\[ ] ^_ àb[ ] ^c dae][ Xa f g h i j k i l m n k g jf g h i o i j p i i q m r j s t u i n i r v i v

Fig. 8. Distributions of the time between patch releases for vulnerabilities
affecting multiple applications and the time needed to exploit vulnerabilities.

vulnerability affects Chrome and Firefox, which use the Angle5

library for hardware-accelerated graphics, and in this case the
Chrome patch was released first. Finally, 69 vulnerabilities
affect Firefox and Thunderbird, which share multiple Mozilla
libraries, and in all these cases the Firefox patches were
released before or on the same day as the Thunderbird patches.

These delays in patching all the applications affected by
shared vulnerabilities may facilitate the creation of exploits
using patch-based exploit generation techniques [7]. In prac-
tice, however, the attacker may experience additional delays in
acquiring the patch, testing the exploit and delivering it to the
intended target. We therefore compare the time between patch
releases with our empirical observations of the exploitation lag,
illustrated in Figure 7. While the median exploitation lag is
slightly longer (19 days) the two distributions largely overlap,
as shown in Figure 8. In consequence, the time between patch
releases for applications sharing code is comparable to the
typical time that attackers need to create exploits in practice.
This is a serious threat because an exploit derived from the
first patch to be released is essentially a zero-day exploit for
the other applications, as long as patches for these applications
remain unavailable.

E. Impact of Multiple Installations on Patch Deployment

While in Section V-C we investigated the threat presented
by the time elapsed between patch releases for applications
with common vulnerabilities, we now ask the question how
do multiple versions of an application, installed in parallel,
impact the patch deployment process? Failing to patch all
the installed versions leaves the host exposed to the attack
described in Section II-A. This is a common situation: for
example, our analysis suggests that 50% of WINE users who
have installed the Flash plugin have Adobe Air installed as
well.

Figure 9 compares the patching of CVE-2011-0611 in
Flash and Adobe Reader. This vulnerability is a known zero-
day attack, discovered on 12 April 2011. For Flash, the

5https://code.google.com/p/angleproject/

w x y z { | } ~ � �
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

J K J JJ K M PJ K P JJ K Q PL K J J

J L J J M J J N J J O J JR S T U S � � � � � � U � � � U � � �
� d\ àWZY[\[ ] b̂dW�[ �Z\ � n r v t � m � r j i � � � � � M J L L � J � L L �� i r � i u � m � r j i � � � � � M J L L � J � L L �

Fig. 9. Patching of one vulnerability from the Flash library, in the stand-alone
installation and in Adobe Reader.

patching started 3 days after disclosure. The patching rate
was high, initially, followed by a drop and then by a second
wave of patching activity (suggested by the inflection in the
curve at t = 43 days). The second wave started on 25 May
2011, when the vulnerability survival was at 86%. According
to analyst reports, a surge of attacks exploiting the vulnerability
started on 15 May 2011 [26]. The second wave of patching
eventually subsided, and this vulnerability did not reach 50%
completion before the end of our observation period. Perhaps
because of this reason, CVE-2011-0611 was used in 30% of
spear phishing attacks in 2011 [1]. In contrast, for Reader the
patching started later, 9 days after disclosure, after CVE-2011-
0611 was bundled with another vulnerability in a patch). Nev-
ertheless, the patch deployment occurred faster and reached
50% completion after 152 days. This highlights the fact that,
in general, Adobe Reader patched faster than Flash Player, as
Table III indicates.

This highlights the magnitude of the security threat pre-
sented by keeping multiple versions installed on a host, without
patching all of them. Even if some of these installations are
used infrequently, the attacker may still be able to invoke them,
as demonstrated in Section II-A. Moreover, a user patching
the frequently used installation in response to news of an
exploit active in the wild may unknowingly remain vulnerable
to attacks against the other versions that remain installed.

F. Patching Milestones

In this section we ask the question: How quickly can
we deploy patches on all the vulnerable hosts? Figure 10
illustrates the distribution for the median time-to-patch (tm),
and the time needed to patch 90% and 95% of the vulnerable
hosts (t90% and t95%, respectively), across all vulnerability
clusters for the 10 applications. We find that the rate of
updating is high in the beginning: 5% of clusters reach tm
within 7 days, 29% of clusters reach it within 30 days and
54% of clusters reach it within 100 days. Figure 10a suggests
that the median time-to-patch distribution is decreasing, with
a long tail, as most vulnerability clusters reach this milestone
within a few weeks, but a few clusters need as much as three
years to reach it.

12



� � � � � � � � � �   ¡ ¢ £ � �   � ¡ � ¤ � � ¥ ¦ § ¨ ©ª «¬­ ®̄°±²³ «́µ ®́̄
¶ · ¶ ¶ ¸ ¶ ¶ ¹ ¶ ¶ º ¶ ¶ » ¶ ¶ ¶ » · ¶ ¶¼½¼

¾¼¼¾½¼ ¿ À Á Â Ã Ä Å Ä Æ Ç È É Å Ê ÈË Ì Í Î Ï Ì Ð Ñ Ò Ó Ô Õ Ö ×Ø Ö × Ù Ú Í Û Ì Ü Ý Ð Í Ù Ì Ø
(a) Time to patch 50% of hosts.

Þ ß à á â â ã ä å â æ ç è é å ß æ å ç â ê ß å ë ì í î ïð ñòó ôõö÷øù ñúû ôõú
ü ý ü ü þ ü ü ü þ ý ü üÿ� �ÿ���ÿ � � � � � � � 	 
 � � 
 � �� � � � � � � � � � � � � � �� � � � � � � � � � �  � ! �

(b) Time to patch 90% of hosts.

� � � � � � � � � �   ¡ ¢ £ � �   � ¡ � ¤ � � ¥ ¦ § ¨ ©ª «¬­ ®̄°±²³ «́µ ®́̄
¶ " ¶ ¶ » ¶ ¶ ¶ » " ¶ ¶¼½

¾¼¾½ # $ % & ' ( ) ( * + , - ) . ,/ 0 1 2 3 0 4 5 6 7 8 9 : ;< : ; = > 1 ? 0 @ A 4 1 = 0
(c) Time to patch 95% of hosts.

Fig. 10. Distribution of the time needed to reach three patch deployment milestones. Each bar corresponds to a 50-day window.

TABLE IV. NUMBER OF DAYS NEEDED TO PATCH 50% OF

VULNERABLE HOSTS, FOR DIFFERENT USER PROFILES AND UPDATE

MECHANISMS.

Categories
Median time-to-patch (% reached)

All Reader Flash Firefox

Professionals 30 (79%) 103 (90%) 201 (73%) 25 (92%)

Software Developers 24 (80%) 68 (90%) 114 (86%) 23 (90%)

Security Analyst 18 (93%) 27 (87%) 51 (91%) 13 (89%)

All users 45 (78%) 188 (90%) 247 (60%) 36 (91%)

Silent Updates 27 (78%) 62 (90%) 107 (86%) 20 (89%)

Manual Updates 41 (78%) 97 (90%) 158 (81%) 26 (88%)

In contrast, the distribution of the time needed to reach
high levels of update completion seems to have two modes,
which are not visible in the distribution of tm. The bimodal
pattern starts taking shape for t90% (Figure 10b) and is clear
for t95% (Figure 10c). We observe that the first mode stretches
150 days after the start of patching, suggesting that, even for
the vulnerabilities that exhibit the highest updating rate, the
median time to patch may be up to several months.

G. Human Factors Affecting the Update Deployment

Finally, we analyze whether specific user profiles and auto-
mated patching mechanisms have a positive effect on how fast
the vulnerable applications are patched. To this end, we first
define three user categories that are presumably more security-
aware than common users: professionals, software developers,
and security analysts. We classify WINE hosts into these 3 cat-
egories by first assigning a set of applications to each category
and then checking which hosts have installed some of these
applications. A host can belong to multiple categories. For
professionals we check for the existence of applications signed,
among others, by SAP, EMC, Sage Software, and Citrix. For
software developers we check for software development appli-
cations (Visual Studio, Eclipse, NetBeans, JDK, Python) and
version control systems (SVN, Mercurial, Git). For security
analysts, we check for reverse engineering (IdaPro), network
analysis (Wireshark), and forensics tools (Encase, Volatility,
NetworkMiner). Using these simple heuristics, we identify
112,641 professionals, 32,978 software developers, and 369
security analysts from our dataset.

We perform survival analysis for each user category sepa-
rately to obtain the median time-to-patch. Table IV presents the
results for Adobe Reader, Flash, Firefox, and the mean for the
10 applications. We focus on these three applications because
they are popular and because the update mechanisms used in
most of the versions in our study were manual and, therefore,
required user interaction. In addition, we are interested in
checking if automated update mechanisms improve the success
of the patching process, and these three applications started
using automated updates in 2012. As shown in Table IV, all 3
user categories reach 50% patching faster than the common
category encompassing all users. This indicates that these
categories react to patch releases more responsibly than the
average user. Among our three categories, the security analysts
patch fastest, with a patching rate almost three times higher
than the general-user category.

The bottom of Table IV we compare manual and automated
updating shows the survival analysis results when splitting
the program versions into those with manual and automated
patching, based on when silent updates were introduced by
the program. As expected, automated update mechanisms
significantly increase patching deployment, improving security.

VI. RELATED WORK

Several researchers [3], [15], [38] have proposed vulnera-
bility lifecycle models, without exploring the patch deployment
phase in as much detail as we do. Prior work on manual patch
deployment has showed that user-initiated patches [28], [35],
[36], [45] occur in bursts, leaving many hosts vulnerable after
the fixing activity subsides. After the outbreak of the Code
Red worm, Moore et. at [28] probed random daily samples
of the host population originally infected and found a slow
patching rate for the IIS vulnerability that allowed the worm to
propagate, with a wave of intense patching activity two weeks
later when Code Red began to spread again. Rescorla [36]
studied a 2002 OpenSSL vulnerability and observed two waves
of patching: one in response to the vulnerability disclosure and
one after the release of the Slapper worm that exploited the
vulnerability. Each fixing wave was relatively fast, with most
patching activity occurring within two weeks and almost none
after one month.

13



Rescorla [36] modeled vulnerability patching as an ex-
ponential decay process with decay rate 0.11, which corre-
sponds to a half-life of 6.3 days. Ramos [35] analyzed data
collected by Qualys through 30 million IP scans and also
reported a general pattern of exponential fixing for remotely-
exploitable vulnerabilities, with a half-life of 20-30 days. How-
ever, patches released on an irregular schedule had a slower
patching rate, and some do not show a decline at all. While
tm for the applications employing silent update mechanisms
and for two other applications (Firefox and Thunderbird) is
approximately in the same range with these results, for the
rest of the applications in our study tm exceeds 3 months.

Yilek et al. [45] collected daily scans of over 50,000
SSL/TLS Web servers, in order to analyze the reaction to a
2008 key generation vulnerability in the Debian Linux version
of OpenSSL. The fixing pattern for this vulnerability had a
long and flat curve, driven by the baseline rate of certificate
expiration, with an accelerated patch rate in the first 30 days
and with significant levels of fixing (linked to activity by
certification authorities, IPSes and large Web sites) as far
out as six months. 30% of hosts remained vulnerable six
months after the disclosure of the vulnerability. Durumeric et
al. [13] compared these results with measurement of the recent
Heartbleed vulnerability in OpenSSL and showed that in this
case the patching occurred faster, but that, nevertheless, more
than 50% of the affected servers remained vulnerable after
three months.

While the references discussed above considered manual
patching mechanisms, the rate of updating is considerably
higher for systems that employ automated updates. Gkantsidis
et al. [17] analyzed the queries received from 300 million
users of Windows Update and concluded that 90% of users
are fully updated with all the previous patches (in contrast
to fewer than 5%, before automated updates were turned on
by default), and that, after a patch is released, 80% of users
receive it within 24 hours. Dübendorfer et al. [10] analyzed
the User-Agent strings recorded in HTTP requests made to
Google’s distributed Web servers, and reported that, within
21 days after the release of a new version of the Chrome
Web browser, 97% of active browser instances are updated
to the new version (in contrast to 85% for Firefox, 53% for
Safari and 24% for Opera). This can be explained by the
fact that Chrome employs a silent update mechanism, which
patches vulnerabilities automatically, without user interaction,
and which cannot be disabled by the user. These results cover
only instances of the application that were active at the time
of the analysis. In contrast, we study multiple applications,
including 500 different versions of Chrome, and we analyze
data collected over a period of 5 years from 8.4 million hosts,
covering applications that are installed but seldom used. Our
findings are significantly different; for example, 447 days are
needed to patch 95% of Chrome’s vulnerable host population.

Despite these improvements in software updating, many
vulnerabilities remain unpatched for long periods of time.
Frei et al. [16] showed that 50% of Windows users were
exposed to 297 vulnerabilities in a year and that a typical
Windows user must manage 14 update mechanisms (one for
the operating system and 13 for the other software installed)
to keep the host fully patched. Bilge et al. [5] analyzed
the data in WINE to identify zero-day attacks that exploited
vulnerabilities disclosed between 2008–2011, and observed

that 58% of the anti-virus signatures detecting these exploits
were still active in 2012.

VII. DISCUSSION

Recent empirical measurements suggest that only 15% of
the known vulnerabilities are exploited in real-world attacks
and that this ratio is decreasing [29]. Our findings in this paper
provide insight into the continued effectiveness of vulnerability
exploits reported in prior work [19]. For example, the median
fraction of vulnerable hosts patched when exploits are released
is at most 14%, which suggests that vulnerability exploits
work quite well when they are released—even if they are not
zero-day exploits. Additionally, because vulnerabilities have a
non-linear lifecycle, where the vulnerable code may exist in
multiple instances on a host or may be re-introduced by the
installation of a different application, releasing and deploying
the vulnerability patch does not always provide immunity
to exploits. In the remainder of this section, we suggest
several improvements to software updating mechanisms, to
risk assessment frameworks, and to vulnerability databases,
in order to address these problems.

A. Improving Software Updating Mechanisms

Handling inactive applications. Inactive applications repre-
sent a significant threat if an attacker is able to invoke (or
convince the user to invoke) installed, but forgotten, programs
that remain vulnerable. In Section II-A we present two attacks
against such inactive versions, and we find that it is common
for users to have multiple installations of an application (for
example, 50% of the hosts in our study have Adobe Flash
installed both as a browser plugin and as part of the Adobe Air
runtime). We therefore recommend the developers of software
updating systems to check the hard drive for all the installed
versions and to implement the updater as a background service,
which runs independently of the application and which auto-
matically downloads and updates all the vulnerable software
detected.

Consolidating patch mechanisms. We find that, when ven-
dors use multiple patch dissemination mechanisms for com-
mon vulnerabilities (e.g., for Acrobat Reader and Flash
Player), some applications may remain vulnerable after the
user believes she has installed the patch. This highlights a
bigger problem with code shared among multiple applications.
Many applications include third-party software components—
both commercial and open source—and they disseminate se-
curity patches for these components independently of each
other. In this model, even if the developer notifies the ap-
plication vendor of the vulnerability and provides the patch,
the vendors must integrate these patches in their development
and testing cycle, often resulting in delays. For example,
vulnerabilities in the Android kernel and device drivers have a
median time-to-patch of 30–40 weeks, as the mobile device
manufacturers are responsible for delivering the patches to
the end-users [24]. Unpatched code clones are also common
in OS code deployed in the field [22]. Our measurements
suggest that, when a vulnerability affects several applications,
the patches are usually released at different times—even when
the two applications are developed by the same organization—
and that the time between patch releases gives enough window
for attackers to take advantage of patch-based exploit gener-
ation techniques. In consequence, we recommend that patch

14



dissemination mechanisms be consolidated, with all software
vendors using one or a few shared channels. However, in
ecosystems without a centralized software delivery mechanism,
e.g., workstations and embedded devices, consolidation may
be more difficult to achieve. Moreover, coordinating patch
releases among multiple vendors raises an interesting ethical
question: when one vendor is not ready to release the patch
because of insufficient test coverage, is it better to delay the
release (in order to prevent patch-based exploit generation)
or to release the patch independently (in order to stop other
exploits)?

Updates for libraries. A more radical approach would be
to make library maintainers responsible for disseminating
security patches for their own code, independently of the
applications that import these libraries. This would prevent
patching delays, but it would introduce the risk of breaking
the application’s dependencies if the library is not adequately
tested with all the libraries that use it. This risk could be
minimized by recording the behavior of the patch in different
user environments and making deployment decisions accord-
ingly [8]. These challenges emphasize the need for further
research on software updating mechanisms.

Program versioning. We observe that identifying all vulner-
abilities affecting a host is challenging due to the various
vendor approaches for maintaining program and file versions.
We conclude that software vendors should have at least one
filename in a product whose file version is updated for each
program version. Otherwise, it becomes very complicated for
a user or analyst to identify the installed program version.
This situation happens with popular programs such as Internet
Explorer and in some versions of other programs like Adobe
Reader. This situation also creates issues for the vendor, e.g.,
when clicking the “About” menu entry in Reader 9.4.4 it would
still claim it was an earlier version. So, even if it is possible
to patch a vulnerability by modifying only a secondary file,
we believe vendors should still update the main executable or
library to reflect a program version upgrade. This would also
establish a total ordering of how incremental patches should
be applied, simplifying the tracking of dependencies.

B. Improving Security Risk Assessment

This work contributes new vulnerability metrics that
can complement the Common Vulnerability Scoring System
(CVSS), currently the main risk assessment metric for software
vulnerabilities [34]. The CVSS score captures exploitability
and impact of a vulnerability, but it does not address the
vulnerable population size, the patching delay for the vulner-
ability, the patching rate, and the updating mechanisms of the
vulnerable program. Enhancing CVSS with the above informa-
tion would provide stronger risk assessment, enabling system
administrators to implement policies such as subjecting hosts
patched infrequently to higher scrutiny, prioritizing patching
of vulnerabilities with larger vulnerable populations, or scan-
ning more frequently for vulnerabilities as the updating rate
decreases. These metrics have several potential applications:

• Customizing security: Security vendors could cus-
tomize the configuration of their security tools accord-
ing to the risk profile of a user. For example, they
could enable more expensive, but also more accurate,
components of their product for users at higher risk.

• Improving software whitelists: One issue when using
software whitelists for malware protection [9] is that
newly developed benign software would be considered
malicious since it is not yet known to the static
whitelist. Our software developer profiles can reduce
false positives by not flagging as malicious new exe-
cutables from developers that have not been externally
obtained (e.g., from the Internet, USB, or optical disk).

• Educating the users: Many users may be interested
in receiving feedback about their current security risk
profile and suggestions to improve it.

• Cyber-insurance: The new vulnerability metrics and
risk profiles could significantly improve the risk as-
sessment methods adopted by insurance companies
that currently rely on questionnaires to understand
how specific security measures are taken by a given
organization or individual to establish their policy cost.

VIII. CONCLUSION

We investigate the patch deployment process for 1,593
vulnerabilities from 10 client-side applications. We analyze
field data collected on 8.4 million hosts over an observation
period of 5 years, made available through the WINE platform
from Symantec. We show two attacks made possible by the fact
that multiple versions of the same program may be installed
on the system or that the same library may be distributed
with different software. We find that the median fraction of
vulnerable hosts patched when exploits are released is at most
14%. For most vulnerabilities, patching starts around the dis-
closure date, but the patch mechanism has an important impact
on the rate of patch deployment. For example, applications
updated automatically have a median time-to-patch 1.5 times
lower than applications that require the user to apply patches
manually. However, only 28% of the patches in our study reach
95% of the vulnerable hosts during our observation period.
This suggests that there are additional factors that influence
the patch deployment process. In particular, users have an
important impact on the patch deployment process, as security
analysts and software developers deploy patches faster than the
general user population. Most of the vulnerable hosts remain
exposed when exploits are released in the wild. Our findings
will enable system administrators and security analysts to
assess the the risks associated with vulnerabilities by taking
into account the milestones in the vulnerability lifetime, such
as the patching delay and the median time-to-patch.

IX. ACKNOWLEDGEMENTS

We thank Symantec for access to WINE. We also thank
VirusTotal and the people behind NVD, EDB, and OSVDB for
making their information publicly available. This work utilized
dataset WINE-2015-001, archived in the WINE infrastructure.

This research was partially supported by the Regional
Government of Madrid through the N-GREENS Software-
CM project S2013/ICE-2731, and by the Spanish Government
through Grant TIN2012-39391-C04-01, a Juan de la Cierva
Fellowship for Juan Caballero. Partial support was also pro-
vided by the Maryland Procurement Office, under contract
H98230-14-C-0127 for Tudor Dumitras, . All opinions, findings
and conclusions, or recommendations expressed herein are
those of the authors and do not necessarily reflect the views
of the sponsors.

15



REFERENCES

[1] Private communication from leading security vendor.

[2] L. Allodi and F. Massacci. A preliminary analysis of vulnerability
scores for attacks in wild. In CCS BADGERS Workshop, Raleigh, NC,
Oct 2012.

[3] W. A. Arbaugh, W. L. Fithen, and J. McHugh. Windows of vulnerabil-
ity: A case study analysis. IEEE Computer, 33(12), December 2000.

[4] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett. Vex:
Vetting browser extensions for security vulnerabilities. In USENIX

Security Symposium. USENIX Association, 2010.

[5] L. Bilge and T. Dumitraş. Before we knew it: an empirical study of
zero-day attacks in the real world. In ACM Conference on Computer

and Communications Security, pages 833–844. ACM, 2012.

[6] S. L. Blond, A. Uritesc, C. Gilbert, Z. L. Chua, P. Saxena, and E. Kirda.
A Look at Targeted Attacks through the Lense of an NGO. In USENIX

Security Symposium, August 2014.

[7] D. Brumley, P. Poosankam, D. X. Song, and J. Zheng. Automatic patch-
based exploit generation is possible: Techniques and implications. In
IEEE Symposium on Security and Privacy, pages 143–157, Oakland,
CA, May 2008.

[8] O. Crameri, N. Knezevic, D. Kostic, R. Bianchini, and W. Zwaenepoel.
Staged deployment in Mirage, an integrated software upgrade testing
and distribution system. In ACM Symposium on Operating Systems

Principles, Stevenson, Washington, USA, pages 221–236. ACM, 2007.

[9] S. Dery. Using whitelisting to combat malware attacks at fannie mae.
IEEE Security & Privacy, 11(4), August 2013.

[10] T. Dübendorfer and S. Frei. Web browser security update effectiveness.
In CRITIS Workshop, September 2009.

[11] T. Dumitraş and D. Shou. Toward a standard benchmark for computer
security research: The Worldwide Intelligence Network Environment
(WINE). In EuroSys BADGERS Workshop, Salzburg, Austria, Apr 2011.

[12] T. Dumitras and P. Efstathopoulos. The provenance of wine. In EDCC

2012, May 2012.

[13] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li,
N. Weaver, J. Amann, J. Beekman, M. Payer, and V. Paxson. The
matter of Heartbleed. In Internet Measurement Conference, Vancouver,
Canada, Nov 2014.

[14] Exploit database. http://exploit-db.com/.

[15] S. Frei. Security Econometrics: The Dynamics of (In)Security. PhD
thesis, ETH Zürich, 2009.

[16] S. Frei and T. Kristensen. The security exposure of software portfolios.
In RSA Conference, March 2010.

[17] C. Gkantsidis, T. Karagiannis, P. Rodriguez, and M. Vojnovic. Planet
scale software updates. In SIGCOMM, pages 423–434. ACM, 2006.

[18] Google. Chrome releases. http://googlechromereleases.blogspot.com.
es/.

[19] C. Grier et al. Manufacturing compromise: the emergence of exploit-
as-a-service. In ACM Conference on Computer and Communications

Security, Raleigh, NC, Oct 2012.

[20] S. Hardy, M. Crete-Nishihata, K. Kleemola, A. Senft, B. Sonne,
G. Wiseman, P. Gill, and R. J. Deibert. Targeted threat index:
Characterizing and quantifying politically-motivated targeted malware.
In USENIX Security Symposium, 2014.

[21] Heartbleed bug healt report. http://zmap.io/heartbleed/.

[22] J. Jang, A. Agrawal, and D. Brumley. Redebug: Finding unpatched
code clones in entire OS distributions. In IEEE Symposium on Security

and Privacy,May 2012, San Francisco, California, USA, pages 48–62.
IEEE Computer Society, 2012.

[23] D. G. Kleinbaum and M. Klein. Survival Analysis: A Self-Learning

Text. Springer, third edition, 2011.

[24] A. Lineberry, T. Strazzere, and T. Wyatt. Don’t hate the player, hate the
game: Inside the Android security patch lifecycle. In Blackhat, 2011.

[25] W. R. Marczak, J. Scott-Railton, M. Marquis-Boire, and V. Paxson.
When governments hack opponents: A look at actors and technology.
In USENIX Security Symposium, 2014.

[26] Microsoft. Zeroing in on malware propagation methods. Microsoft
Security Intelligence Report, 2013.

[27] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford-Chen, and
N. Weaver. Inside the slammer worm. IEEE Security & Privacy,
1(4):33–39, 2003.

[28] D. Moore, C. Shannon, and K. C. Claffy. Code-red: a case study on
the spread and victims of an internet worm. In Internet Measurement

Workshop, pages 273–284. ACM, 2002.

[29] K. Nayak, D. Marino, P. Efstathopoulos, and T. Dumitraş. Some
vulnerabilities are different than others: Studying vulnerabilities and
attack surfaces in the wild. In International Symposium on Research in

Attacks, Intrusions and Defenses, Gothenburg, Sweeden, Sep 2014.

[30] U.s. national vulnerability database. http://nvd.nist.gov/.

[31] H. Okhravi and D. Nicol. Evaluation of patch management strategies.
International Journal of Computational Intelligence: Theory and Prac-

tice, 3(2):109–117, 2008.

[32] Osvdb: Open sourced vulnerability database. http://osvdb.org/.

[33] E. E. Papalexakis, T. Dumitraş, D. H. P. Chau, B. A. Prakash, and
C. Faloutsos. Spatio-temporal mining of software adoption & penetra-
tion. In IEEE/ACM International Conference on Advances in Social

Networks Analysis and Mining, Niagara Falls, CA, Aug 2103.

[34] S. Quinn, K. Scarfone, M. Barrett, and C. Johnson. Guide to adopting
and using the security content automation protocol (SCAP) version 1.0.
NIST Special Publication 800-117, Jul 2010.

[35] T. Ramos. The laws of vulnerabilities. In RSA Conference, 2006.

[36] E. Rescorla. Security holes... who cares. In Proceedings of the 12th

USENIX Security Symposium, pages 75–90, 2003.

[37] Safari version history. http://en.wikipedia.org/wiki/Safari version
history.

[38] M. Shahzad, M. Z. Shafiq, and A. X. Liu. A large scale exploratory
analysis of software vulnerability life cycles. In International Confer-

ence on Software Engineering, 2012.

[39] C. Shannon and D. Moore. The spread of the witty worm. IEEE

Security & Privacy, 2(4):46–50, 2004.

[40] Symantec Corporation. Symantec Internet security threat report, volume
16, April 2011.

[41] Symantec Corporation. Symantec Internet security threat report, volume
17. http://www.symantec.com/threatreport/, April 2012.

[42] T. M. Therneau. A Package for Survival Analysis in S, 2014. R package
version 2.37-7.

[43] Virustotal. http://www.virustotal.com/.

[44] The webkit open source project. http://webkit.org.

[45] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. When
private keys are public: results from the 2008 debian openssl vulnera-
bility. In Internet Measurement Conference, pages 15–27. ACM, 2009.

APPENDIX A
CLEAN NVD

An important challenge to the automatic generation of
vulnerability reports are NVD inaccuracies. We have spent
significant effort on a Clean NVD subproject, whose goal is
identifying and reporting discrepancies in NVD vulnerability
entries. This section briefly introduces our efforts. We have
contacted the NVD managers about these issues and have set
up a website to detail our findings and help track fixes to NVD
at http://clean-nvd.com/.

The 3 main NVD inaccuracies we found are programs
with vulnerable product lines rather than program versions,
and missing and extraneous vulnerable versions. Surprisingly,
we found that vulnerabilities in popular programs such as
Microsoft Word and Internet Explorer only contain vulnerable
program lines. For example, NVD states that CVE-2009-3135
affects Word 2002 and 2003, but those are product lines rather
than program versions. Note that these programs do not have
program versions proper, i.e., there is no such thing as Word
2003.1 and Word 2003.2. Instead, Microsoft issues patches
to those programs that only update file versions. Currently, an

16



analyst/user cannot use the NVD data to determine if the Word
version installed on a host is vulnerable. We believe that NVD
should add the specific file versions (for a version-specific
filename such as msword.exe) that patched the vulnerability.
To validate that this is possible, we crawled the Word security
advisories in MSDN for 2008-2012, which contain the CVEs
fixed and link to pages describing the specific msword.exe
file versions released with the advisory. We have used that
information to build the Word version mapping and cluster
files needed for the analysis.

A vulnerability in NVD may miss some vulnerable pro-
gram versions. These are likely due to errors when manually
entering the data into the database as the missing versions
typically appear in the textual vulnerability descriptions and
the vendor’s advisories. A vulnerability may also contain
extraneous vulnerable versions. We find two reasons for these:
errors when inserting the data and vendors conservatively
deciding which program versions are vulnerable. Specifically,
vendors seem to often determine the last vulnerable version in
a product line and then simply consider all prior versions in
the line vulnerable, without actually testing if they are indeed
vulnerable. This cuts vulnerability testing expenses and helps
pushing users to the latest version.

Finding errors. To automatically identify missing and extra-
neous vulnerable versions in NVD we use two approaches.
For Firefox and Thunderbird, we have built scripts that collect
Mozilla security advisories, parse them to extract the patched
versions in each line, and compare them with the last vul-
nerable versions in NVD. In addition, we have developed a
generic differential testing approach to compare the vulner-
able ranges in the textual vulnerability description with the
vulnerable versions in the NVD XML dumps. To automate this
process we use natural language processing (NLP) techniques
to extract the vulnerable ranges from the textual description.
We have applied the differential testing approach to the 10
programs finding 608 vulnerabilities with discrepancies, which
we exclude from the analysis. While these approaches are
automated and identify a large number of NVD errors, they
may not find all errors. Thus, we also manually check one
vulnerability in each remaining cluster comparing the version
list against the vendor’s advisories and the disclosure dates
against the release dates of the patched versions.

17


