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A wide range of malicious activities rely on the domain name service (DNS) to manage their large, dis-
tributed networks of infected machines. As a consequence, the monitoring and analysis of DNS queries has
recently been proposed as one of the most promising technique to detect and blacklist domains involved in
malicious activities (e.g., phishing, SPAM, botnets command and control, etc.). EXPOSURE is a system we
designed to detect such domains in realtime, by applying 15 unique features grouped in 4 categories.

We conducted a controlled experiment with a large, real-world data set consisting of billions of DNS
requests. The extremely positive results obtained in the tests convinced us to implement our techniques
and deploy it as a free, online service. In this paper, we present the EXPOSURE system and describe the
results and the lessons learned from 17 months of operation of it. Over this amount of time, the service
detected over 100K malicious domains. The statistics about the time of usage, number of queries, and target
IP addresses of each domain are also published on a daily basis on the service webpage.

Categories and Subject Descriptors: C.2.0.2 [COMPUTER COMMUNICATION NETWORKS]: Security
and protection

General Terms: Security, Measurement, Experimentation

Additional Key Words and Phrases: Domain Name System, malicious domains, machine learning

1. INTRODUCTION

The days when Internet was just an academic network with no malicious activity are
long gone. Today, the Internet has become a critical infrastructure that plays a crucial
role in communication, finance, commerce, and information retrieval. Unfortunately,
as a technology becomes popular, it also attracts people with malicious intentions. In
fact, digital crime is a growing challenge for law enforcement agencies. As Internet-
based attacks are easy to launch and difficult to trace back, such crimes are not easy to
prosecute and bring to justice. As a result, there is a high incentive for cyber-criminals
to engage in malicious, profit-oriented illegal activity on the Internet. Regrettably, the
number and sophistication of Internet-based attacks have been steadily increasing in
the last ten years [Symantec 2011].

In the last decade, malicious code (malware) that was employed for realizing such
Internet-based attacks has evolved in many aspects. For example, while in the past
malware was a standalone program which was preprogrammed to perform certain ac-
tions, later, malware acquired the ability to interact with its creator to build organized
networks (e.g., botnets). However, with the emergence of botnets, the attackers who
control these malicious systems have to tackle the problem of managing a large-scale
distributed network of infected machines. In addition, the attackers require a reliable,
robust service infrastructure that can be easily migrated between different locations
in case its existence is revealed. One of the more common ways to provide such infras-
tructures is to use domain names.

By using domain names, the attackers can quickly switch their malicious system
between different IP addresses. However, attackers are still faced with the problem
that the domain name itself can be taken down by authorities. In order to deal with this
risk, a popular technique is to encode a domain generation algorithm into malicious
binaries so that the malware contacts a domain name that is generated automatically.
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For example, a command and control domain might be generated based on the current
date (e.g., as in the Conficker bot). Using generated domains and registering them
shortly before they become active give extra flexibility to the attacker, and allow her to
manage the risk that a specific domain will be taken down.

Since the functionality provided by domain name system (DNS) is heavily abused by
attackers today, there have been a considerable amount of work that seek to develop
DNS-based malware detection mechanisms [T.Holz et al. 2008; Perdisci et al. 2009;
Antonakakis et al. 2010; Antonakakis et al. 2012; Antonakakis et al. 2011] including
our previous work, in which we presented the EXPOSURE system [Bilge et al. 2011].

EXPOSURE was designed to perform passive DNS analysis to detect domains that
are involved in malicious activities, such as hosting phishing web pages, botnet com-
mand and control servers, dropzones etc. EXPOSURE leverages machine learning tech-
niques to build detection rules that are effectively able to distinguish the DNS behav-
ior of malicious services from the benign ones. In particular, it employs four sets of
features that are extracted from anonymized DNS records: time-based features, dns
answer-based features, TTL-based features and domain name-based features. In com-
parison to previous works, EXPOSURE is not dependent on large amounts of histori-
cal maliciousness data (e.g., IP addresses of previously infected servers), requires less
training time, and, is also able to detect malicious domains that are mapped to a new
address space each time and never used for other malicious purposes again.

After the presentation of our original paper, we implemented a public version of EX-
POSURE, and we deployed it as a free, online service. The system analyzes a live feed
of DNS requests provided by the Security Information Exchange [ISC 2010] project,
and publishes a daily list of new malicious domains on the EXPOSURE’s webpage. In
this paper, we present an extended study of the EXPOSURE algorithm, and a num-
ber of insights and findings regarding more than 100K malicious domains detected by
EXPOSURE over a year of operation. We also demonstrate how the service, in addi-
tion to providing a blacklist to block potentially dangerous domain names, can also be
used to investigate interesting connections between different domains and malicious
activities.

In this paper we make the following contributions:

— We present the online service of EXPOSURE which publishes a daily list of new mali-
cious domains.

— We conducted an elaborated study on the original features employed by EXPOSURE
to increase the accuracy of the detection module.

— We perform an analysis on the malicious domains detected by EXPOSURE over a
period of one and a half years.

— We demonstrate that the outcome of this service in the long run can also be used for
building connections between different malicious activities.

The rest of this paper is structured as follows. In Section 2, we introduce an overview
of our approach to detect malicious domains. Section 3 describes the original set of fea-
tures that are adopted by EXPOSURE, and Section 4 shows how they can be combined
to effectively and efficiently detect suspicious domains. We then present the applica-
tion of a genetic algorithm in Section 5, and describe how we used it to reduce the
feature sets and improve the false positive rate. Section 6 summarizes the evaluation
of the EXPOSURE algorithm. Section 7 presents the overview of the deployment of the
EXPOSURE service, and of the data collected in 18 months of operation. Finally, Section
9 concludes the paper.
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Fig. 1: Overview of EXPOSURE

2. OVERVIEW OF THE APPROACH

The goal of EXPOSURE is to detect malicious domains that are used as part of malicious
operations on the Internet. To this end, we perform a passive analysis of the DNS traf-
fic that we have at our disposal. Since the traffic we monitor is generated by real users,
we assume that some of these users are infected with malicious content, and that some
malware components will be running on their systems. These components are likely to
contact the domains that are found to be malicious by various sources such as public
malware domain lists and spam blacklists. Hence, by studying the DNS behavior of
known malicious and benign domains, our goal was to identify distinguishable generic
features that are able to define the maliciousness of a given domain.

2.1. Extracting DNS Features for Detection

Clearly, to be able to identify DNS features that allow us to distinguish between be-
nign and malicious domains, and that allow a classifier to work well in practice, large
amounts of training data are required. As the offline dataset, we recorded the recur-
sive DNS (i.e., RDNS) traffic from Security Information Exchange (SIE) [ISC 2010]).
The data that is acquired from SIE consists of DNS traffic collected from a number
of recursive DNS servers that are actively used by real users. We performed offline
analysis on this data and used it to determine DNS features that can be used to distin-
guish malicious DNS features from benign ones. The part of the RDNS traffic we used
as initial input to our system consisted of the DNS answers returned from the authori-
tative DNS servers to the RDNS servers. An RDNS answer consists of the name of the
domain queried, the time the query is issued, the duration the answer is required to
be cached (i.e., TTL) and the list of IP addresses that are associated with the queried
domain. Note that the RDNS servers do not share the information of the DNS query
source (i.e. the IP address of the user that issues the query) due to privacy concerns.

By studying large amounts of DNS data, we defined 15 different features that we use
in the detection of malicious domains. 6 of these features have been used in previous
research( e.g., [Passerini et al. 2008; Perdisci et al. 2009; T.Holz et al. 2008]), in par-
ticular in detecting malicious Fast-Flux services or in classifying malicious URLs [Ma
et al. 2009]. The features that we use in the detection and our rationale for selecting
these features are explained in detail in Section 3.

2.2. Architecture of EXPOSURE

Figure 1 gives an overview of the system architecture of the EXPOSURE. The system
consists of five main components:

The first component, the Data Collector, records the DNS traffic produced by the
network that is being monitored.
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The second component is the Feature Attribution component. This component is
responsible for attributing the domains that are recorded to the database with the
features that we are looking for in the DNS traffic.

The third component, the Malicious and Benign Domains Collector, works indepen-
dent of, and in parallel to the Data Collector Module. It collects domains that are
known to be benign or malicious from various sources. Our benign domains sets are
composed of information acquired from Alexa [ale 2009] and a number of servers that
provide detailed WHOIS [who 1995] data. In contrast, the malicious domain set is
constructed from domains that have been reported to have been involved in malicious
activities such as phishing, spamming, and botnet infections by external sources such
as malwaredomains.com, Phishtank ([Phishtank 2009]), and malware analyzers such
as Anubis [Bayer et al. 2006]). Note that these lists are constantly updated, and be-
come even more comprehensive over time. The output of the Malicious and Benign
Domains Collector is used to label the output of the Feature Attribution component.

Once the data is labeled, the labeled set is fed into the fourth component: The Learn-
ing Module. This module trains the labeled set to build malicious domain detection
models. Consequently, these models, and the unlabeled domains, become an input to
the fifth component: The Classifier.

The Classifier component takes decisions according to the detection models pro-
duced by the Learning component so that the unlabeled domains are grouped into
two classes: domains that are malicious, and those that are benign.

2.3. Real-Time Deployment

The deployment phase of EXPOSURE consists of two steps. In the first step, the fea-
tures that we are interested in are monitored and the classifier is trained based on a
set of domains that are known to be benign or malicious. In a second step, after the
classifier has been trained, the detection starts and domains that are determined to be
suspicious are reported. Note that after an initial period of seven days of training?, the
classifier is retrained every day. Hence, EXPOSURE can constantly keep up with the
behavior of new malware.

3. FEATURE SELECTION

To determine the DNS features that are indicative of malicious behavior, we tracked
and studied the DNS usage of several thousand well-known benign and malicious do-
mains for a period of several months (we obtained these domains from the sources
described in Section 4). After this analysis period, we identified 15 features that are
able to characterize malicious DNS usage. Note that some of these 15 features are
not atomic, but they are composed of a number of atomic features. Table I gives an
overview of the components of the DNS requests that we analyzed (i.e., feature sets)
and the features that we identified. In the following sections, we describe these fea-
tures and explain why we believe that they may be indicative of malicious behavior.

3.1. Time-Based Features

The first component of a DNS record that we analyze is the time at which the request
is made. Clearly, the time of an individual request is not very useful by itself. However,
when we analyze many requests to a particular domain over time, patterns indicative
of malicious behavior may emerge. In particular, we examine the changes of the vol-
ume (i.e., number) of requests for a domain. The time-based features that we extract

1We have experimentally determined the optimal training period to be seven days (see Section 4.2.)
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\ Feature Set | # | Feature Name | # of Atomic Features |
1 Short life 2
Time-Based 2 | Daily similarity 1
Features 3 Repeating patterns 2
4 Access ratio 2
5 Number of distinct IP addresses 1
DNS Answer-Based || 6 Number of distinct countries 1
Features 7 | Reverse DNS query results 5
8 Number of domains share the IP with 1
9 | Average TTL 1
TTL 10 | Standard Deviation of TTL 1
Value-Based 11 | Number of distinct TTL values 1
Features 12 | Number of TTL change 1
13 | Percentage usage of specific TTL ranges | 5
Domain Name- 14 | % of numerical characters 1
Based Features 15 | % of the length of the LMS 1

Table I: Features.(LMS = Longest Meaningful Substring)

from the DNS data to be used in our analysis are novel and have not been studied
before in previous approaches.

One of our insights is that malicious domains will often show a sudden increase
followed by a sudden decrease in the number of requests. This is because malicious
services often use a technique called domain flux [Stone-Gross et al. 2009] to make
their infrastructures more robust and flexible against take downs. Each bot may use a
domain generation algorithm (DGA) to compute a list of domains to be used as the com-
mand and control server or the dropzone. Obviously, all domains that are generated by
a DGA have a short life span since they are used only for a limited duration. Examples
of malware that make use of such DGAs are Kraken/Bobax [Amini 2008], the Srizbi
bots [Wolf 2008] and the Conficker worm [Porras et al. 2009]. Similarly, malicious do-
mains that have recently been registered and been involved in scam campaigns will
show an abrupt increase in the number of requests as more and more victims access
the site in a short period of time.

To analyze the changes in the number of requests for a domain during a given period
of time, we divide this period into fixed length intervals. Then, for each interval, we
can count the number of DNS queries that are issued for the domain. In other words,
the collection of DNS queries that target the domain under analysis can be converted
into time series (i.e., chronologically ordered sequences of data values). We perform our
time series analysis on two different scopes: First, we analyze the time series globally.
That is, the start and end times of the time series are chosen to be the same as the
start and the end times of the entire monitoring period. Second, we apply local scope
time series analysis where the start times and end times are the first and last time the
domain is queried during the analysis interval. While the global scope analysis is used
for detecting domains that either have a short life or have changed their behavior for
a short duration, the local scope analysis focuses on how domains behave during their
life time.

A domain is defined to be a short-lived domain (i.e., Feature 1) if it is queried only
between time ¢, and ¢;, and if this duration is comparably short (e.g., less than several
days). A domain that suddenly appears in the global scope time series and disappears
after a short period of activity has a fairly abnormal behavior for being classified as a
benign domain. Normally, if a domain is benign, even if it is not very popular, our thesis
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is that the number of queries it receives should exceed the threshold at least several
times during the monitoring period ( i.e., two and a half months in our experiments).
Therefore, its time series analysis will not result in an abrupt increase followed by
a decrease as the time series produced by a short-lived domain does. The short-life
feature is one of the composite features. Its first atomic feature (Feature 1a) holds a
boolean value to specify whether the domain has a short life or not. The second atomic
feature (Feature 1b) is the life ratio of the domain in the analysis time frame.

The main idea behind performing local scope analysis is to zoom into the life time of
a domain and study its behavioral characteristics. We mainly focus on three features
(i.e., Features 2, 3, 4) that may distinguish malicious and benign behavior either by
themselves or when used in conjunction with other features. All the features involve
finding similar patterns in the time series of a domain. Feature 2 checks if there are
domains that show daily similarities in their request count change over time (i.e., an
increase or decrease of the request count at the same intervals everyday). Feature 3
aims to detect regularly repeating patterns and consists of two atomic features that
are extracted from the output of the change point detection algorithm that is going
to explained in more detail in the next section: number of changes detected by the
algorithm (Feature 3a) and the standard deviation of the duration of the behaviors
observed before changes are detected (Feature 3b). Finally, Feature 4 checks whether
the domain is generally in an “idle” state (i.e., the domain is not queried) (Feature 4a)
or is accessed continuously (i.e., a popular domain) (Feature 4b).

The problem of detecting both short-lived domains and domains that have regularly
repeating patterns can be treated as a change point detection (CPD) problem. CPD
algorithms operate on time series and their goal is to find those points in time at which
the data values change abruptly. The CPD algorithm that we implemented [Basseville
and Nikiforov 1993] outputs the points in time the change is detected and the average
behavior for each duration. In the following section, we explain how we interpret the
output of the CPD to detect the short-lived domains and the domains with regularly
repeating patterns.

3.1.1. Detecting abrupt changes. As CPD algorithms require the input to be in a time
series format, for each domain, we prepare a time series representation of their request
count change over time. Our interval length for each sampling point is 3600 seconds
(i.e., one hour). We chose 3600 seconds as the interval length after experimenting with
different values (e.g., 150, 300 etc.).

Before feeding the input directly into the CPD algorithm, we normalize the data
with respect to the local maximum. Then, we make use of the well-known CUSUM
(cumulative sum) robust CPD algorithm that is known to deliver good results for many
application areas [Basseville and Nikiforov 1993]. CUSUM is an online algorithm that
detects changes as soon as they occur. However, since we record the data to a database
before analyzing it, our offline version of the CUSUM algorithm yields even more pre-
cise results (i.e., the algorithm knows in advance how the “future” traffic will look like
as we have already recorded it).

Our algorithm to identify change points works as follows: First, we iterate over every
time interval ¢ = 3600 seconds, from the beginning to the end of the time series. For
each interval ¢, we calculate the average request count P, for the previous ¢ = 8 time
intervals and the traffic profile P," for the subsequent e intervals. We chose ¢ to be
8 hours based on the insight that a typical day consists of three important periods:
working time, evening and night. Second, we compute the distance d(¢) between P,
and P;". More precisely:
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The ordered sequence of values d(t) forms the input to the CUSUM algorithm. Intu-
itively, a change point is a time interval ¢ for which d(¢) is sufficiently large and is a
local maximum.

The CUSUM algorithm requires two parameters. The first parameter is an upper
bound (local_mazx) for the normal, expected deviation of the present (and future) traf-
fic from the past. For each time interval ¢, CUSUM adds d(t) — local_max to a cu-
mulative sum S. The second parameter determines the upper bound (cusum_mazx)
that S may reach before a change point is reported. To determine a suitable value
for local_max, we require that each individual traffic feature may deviate by at
most allowed_avg_dev = 0.1. Based on this, we can calculate the corresponding value

local max = +/dim x allowed_avg_dev®. Since in our application, there is only one di-
mension, the local_max = allowed_avg_dev. For cusum_mazx, we use a value of 0.4. Note
that we determined the values for allowed_avg_dev and cusum_mazx based on empirical
experiments and measurements.

The CPD algorithm outputs the average request count for each period a change is
detected and the time that the change occurs. Since we employ the CPD algorithm for
two purposes (namely to detect short-lived domains and domains that have repeating
patterns), we run it twice. We first use the global scope time series and then the lo-
cal scope time series as input. When the CPD is run with global time series, it can
detect short-lived domains. Short-lived domains tend to have two sudden behavioral
changes, whereas domains that are continuously queried have multiple change points.
On the other hand, to detect the domains with repeating patterns on their local scope
time series, we associate the number of the changes and the standard deviation of the
durations of the detected changes.

3.1.2. Detecting similar daily behavior. A typical technique to measure the level of similar-
ity of two time series is to calculate the distance between them [Keogh et al. 2001]. To
determine whether a domain produces similar time series every day, we calculate the
Euclidean Distance between every pair of time series of a domain. Euclidean Distance
is a popular distance measuring algorithm that is often used in data mining [Berkhin
2002; Turaga et al. 2009; Zitouni et al. 2008].

We first need to break the local time series produced for each domain into daily time
series pieces. Each day starts at 00:00 am and finishes at 23:59 pm. Assuming that a
domain has been queried n days during our analysis period, and d; ; is the Euclidean
Distance between i;;, day and j;;, day, the final distance D is calculated as the average
of (n — 1) * (n — 2)/2 different distance pairs, as shown in the following formula:

D=0 Y diy)/((n—1)x(n—-2)/2) (2)

i=1 j=i+1

Using the Euclidean Distance, the results are sensitive to small variations in the
measurements (e.g., 1000 requests between 9 and 10 am compared to 1002 requests
between the same time period may fail to produce a correct similarity result although
the difference is not significant). A common technique to increase the correctness of
the results is to apply preprocessing algorithms to the time series before calculating
the Euclidean Distance [Chu et al. 2002]. In our preprocessing step, we transform the
time series T' = ty, to, ..., t,, Where n is number of intervals, into two phases. In the first
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phase, we perform offset translation by subtracting the mean of the series from each
value (i.e., T = T — mean(T)). In the second phase, we scale the amplitude by dividing
each value by the variance (i.e., T' = (T' — mean(T"))/std(T")) [Chu et al. 2002].

3.2. DNS Answer-Based Features

The DNS answer that is returned by the server for a domain generally consists of
several DNS A records (i.e., mappings from the host to IP addresses). Of course, a
domain name can map to multiple IP addresses. In such cases, the DNS server cycles
through the different IP addresses in a round robin fashion [rfc 1995] and returns a
different IP mapping each time. This technique is useful in practice for load balancing.

Malicious domains typically resolve to compromised computers that reside in dif-
ferent Autonomous Systems (ASNs), countries, and regions. The attackers are oppor-
tunistic, and do not usually target specific countries or IP ranges. Whenever a com-
puter is compromised, it is added as an asset to the collection. Also, attackers typically
use domains that map to multiple IP addresses, and IPs might be shared across differ-
ent domains.

With this insight, we extracted four features from the DNS answer (i.e., feature set
F2). The first feature is the number of different IP addresses that are resolved for a
given domain during the experiment window (Feature 5). The second feature is the
number of different countries that these IP addresses are located in (Feature 6). The
third feature is the reverse DNS query results of the returned IP addresses (Feature 7).
The feature extracted from the output of the reverse DNS query results of the returned
IP addresses as well is a composite feature and it consists of 5 atomic features: the ratio
of IP addresses that cannot be matched with a domain name (NX domains) (Feature
7a), that are used for DSL lines (Feature 7b), that belong to hosting services (Feature
7c), that belong to known ISPs (Feature 7d) and finally that can be matched with
a valid domain name (Feature 7e). The fourth feature (Feature 8) is the number of
distinct domains that share the IP addresses that resolve to the given domain. Note
that Features 5, 6, and 7 have been used in previous work (e.g., [Antonakakis et al.
2010; Perdisci et al. 2009; T.Holz et al. 2008] ).

Although uncommon, benign domains may also share the same IP address with
many other domains. For example, during our experiments, we saw that one of the IP
addresses that belongs to networksolutions.com is shared by 10,837 distinct domains.
This behavior is sometimes exhibited by web hosting providers and shared hosting
services.

To determine if an IP is used by a shared hosting service, we query Google with the
reverse DNS answer of the given IP address. Legitimate web hosting providers and
shared hosting services are typically ranked in the top 3 query answers that Google
provides. This helps us reduce false positives.

3.3. TTL Value-Based Features

Every DNS record has a Time To Live (TTL) that specifies how long the corresponding
response for a domain should be cached. It is recommended that the TTL is set to
between 1 and 5 days so that both the DNS clients and the name servers can benefit
from the effects of DNS caching [rfc 1996].

Systems that aim for high availability often set the TTL values of host names to
lower values and use Round-Robin DNS. That is, even if one of the IP addresses is
not reachable at a given point in time, since the TTL value expires quickly, another
IP address can be provided. A representative example for such systems is Content
Delivery Networks (CDNs).

Unfortunately, setting lower TTL values and using Round-Robin DNS are useful for
the attackers as well. Using this approach, malicious systems achieve higher avail-
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ability and become more resistant against DNS blacklisting (DNSBL) [dns 2010] and
take downs. For example, Fast-Flux Service Networks (FFSN) [T.Holz et al. 2008] are
malicious systems that abuse Round-Robin DNS.

Most techniques to detect FFSNs are based on analyzing abnormal usage patterns of
Round-Robin DNS. More precisely, to label a domain as being a member of an FFSN,
previous research [Perdisci et al. 2009; T.Holz et al. 2008] expects to observe a low
TTL usage combined with a constantly growing DNS answers list (i.e., distinct IP
addresses).

We extracted five features from the TTL value included in the DNS answers (see
Table I). The average TTL usage feature (Feature 9) was introduced in previous re-
search [Perdisci et al. 2009]. The rest of the features (i.e., Features 10, 11, 12, 13) have
not been used before in previous work.

During our experiments with large volumes of DNS traffic, we observed that fre-
quent TTL changes are exhibited by malicious networks that have a sophisticated
infrastructure. In such networks, some of the bots are selected to be proxies behind
which other services (e.g., command and control servers) can be hidden. The managers
of such malicious networks assign different levels of priorities to the proxy bots by
setting lower TTL values to the hosts that are less reliable. For example, there is a
good chance that a proxy running on an ADSL line would be less reliable than a proxy
running on a server running in a university environment.

To determine the validity of our assumption about this type of TTL behavior, we
tracked the Conficker domains for one week. We observed that different TTL values
were returned for the IPs associated with the Conficker domains. While the static IP
addresses have higher TTL values, the dynamic IP addresses, that are most probably
assigned to home computers by Internet service providers, have lower TTL values (e.g.,
adsl2123-goland.net would have a lower TTL value than a compromised host with the
domain name workstation.someuniversity.edu).

We observed that the number of TTL changes and the total number of different TTL
values tend to be significantly higher in malicious domains than in benign domains.
Also, malicious domains exhibit more scattered usage of TTL values. We saw that the
percentage of the usage of some specific ranges of TTL values is often indicative of ma-
licious behavior. Based on our empirical measurements and experimentations, the TTL
ranges that we investigate are [0, 1), [1, 100), [100, 300), [300, 900), [900, inf). From these
five ranges we extract 5 atomic features: Feature 13a, Feature 13b, Feature 13c, Fea-
ture 13d, Feature 13e. Malicious domains tend to set their TTL values to lower values
compared to benign domains. In particular, the range of [0,100) exhibits a significant
peak for malicious domains.

3.4. Domain Name-Based Features

Benign services usually try to choose domain names that can be easily remembered
by users. For example, a bank called “The Iceland Bank” might have a domain name
such as “www.icelandbank.com”. In contrast, attackers are not concerned that their
domain names are easy to remember. This is particularly true for domain names that
are generated by a DGA.

The main purpose of DNS is to provide human-readable names to users as they of-
ten cannot memorize IP addresses of servers. Therefore, benign Internet services tend
to choose easy-to-remember domain names. In contrast, having an easy-to-remember
domain name is not a concern for people who perform malicious activity. This is partic-
ularly true in cases where the domain names are generated by a DGA. To detect such
domains, we extracted two features from the domain name itself: First, the ratio of the
numerical characters to the length of the domain name (Feature 14), and second, the
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ratio of the length of the longest meaningful substring (i.e., a word in a dictionary) to
the length of the domain name (Feature 15).

Note that there exist popular domains such as yahoo.com and google.com that do not
necessarily include “meaningful” words. In order to gain a higher confidence about a
domain, we query Google and check to see if it returns a hit-count for a domain that is
above a pre-defined threshold.

When analyzing a domain, we only focus on the second level domains (i.e., SLD). For
example, for x.y.server.com, we would take server.com. To detect domain names that
have been possibly automatically generated, we calculate the percentage of numerical
characters (Feature 14) and the ratio of the length of the longest meaningful substring
to the total length of the SLD (Feature 15). To extract all possible meaningful sub-
strings from an SLD, we check the English dictionary.

As some benign domains in China and Russia consist of combinations of alphabeti-
cal and numerical characters, Feature 15 produces a high positive rate. However, when
Features 14 and 15 are combined, the false positives decrease. Also, for domains that
are determined to be suspicious, we check how many times they are listed by Google.
The reasoning here is that sites that are popular and benign will have higher hit
counts.

4. BUILDING DETECTION MODELS
4.1. Constructing the Training Set

The quality of the results produced by a machine learning algorithm strongly depends
on the quality of the training set [Theodoridis and Koutroumbas 2009]. Our goal is to
develop a classifier that is able to label domains as being benign, or malicious. Thus, we
require a training set that contains a representative sample of benign and malicious
domains. To this end, we studied several thousand malicious and benign domains, and
used them for constructing our training set.

We collected malicious domains from multiple sources. Specifically, we obtained ma-
licious domains from malwaredomains.com [Domains 2009], the Zeus Block List [List
2009b], Malware Domains List [List 2009a], Anubis [Bayer et al. 2006] reports, a
list of domains that are extracted from suspected to be malicious URLs analyzed
by Wepawet [Cova ], and Phishtank [Phishtank 2009]. We also used the list of do-
mains that are generated by the DGAs of the Conficker [Porras et al. 2009] and Me-
broot [Stone-Gross et al. 2009] (i.e., Torpig) botnets. These malicious domain lists
represent a wide variety of malicious activity, including botnet command and control
servers, drive-by download sites, phishing pages, and scam sites that can be found in
spam mails.

Note that we are conservative when constructing the malicious domain list. That is,
we apply an automated preliminary check before labeling a domain as being malicious
and using it in our training set. Malicious domain sources such as Wepawet and Phish-
tank operate on URLs that have been submitted by users. Hence, while most URLs in
these repositories are malicious, not all of them are. Also, while some third level do-
mains (3LD) of a domain extracted from a URL may behave maliciously, the rest may
not (e.g., a.x.com might be malicious, while x.com might be benign).

Assuming that a domain that is suspected to be malicious either by Wepawet or
Phishtank has t;.:,; possible 3LDs (number of distinct 3LD recorded by EXPOSURE
during the analysis period) and ¢,,,; 3LDs are thought to be malicious, we choose the
domain to be representative for a malicious behavior only if ¢,,4; /L0t is greater than
0.75 (i.e., only if 75% of the 3LDs have been reported to be involved in malicious activ-
ities). The initial malicious domain list that we generated consists of 3500 domains.
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As discussed in detail in Section 6.1, we assume that all of the Alexa top 1000 do-
mains and domains that we have observed on our sensors that are older than one
year are benign. Therefore, we construct our initial benign domain list using these do-
mains. However, to ensure that our benign domain list does not include any domain
that might have been involved in malicious activity, we perform a two-step verification
process.

First, we compare all the domains in the benign domain list with the malicious do-
main list and with the tools that test domains for their maliciousness, specifically with
McAffee Site Advisor, Norton Safe Web and Google Safe Browsing. Second, we also
cross-check the benign domains with the list provided by the Open Directory Project
(ODP - a large, human-edited directory of the web constructed and maintained by vol-
unteer editors). Our initial benign domain list consists of 3000 domains. Note that as
malicious domains list is the benign domains list is dynamically generated each time
EXPOSURE is trained to build the detection rules. Therefore, if a previously known
to be benign domain is afterwards detected to be involved in any kind of malicious
activities is removed from the list at the time of the training.

4.2. The Initial Period of Training

By experimenting with different values, we determined that the optimal period of ini-
tial training for our system was seven days. This period is mainly required for us to
be able to use the time-based features that we described in Section 3. During this
time, we can observe the time-based behavior of the domains that we monitor and can
accurately take decisions on their maliciousness.

After the initial one week of training, we are able to retrain the system every day,
hence, increasing detection accuracy.

4.3. The Classifier

Our classifier is built as a J48 decision tree algorithm (J48). J48 [Witten and Frank
2005] is an implementation of the C4.5 algorithm [Quinlan 1995] that is designed for
generating either pruned or unpruned C4.5 decision trees. It constructs a decision tree
from a set of labeled training set by using the concept of information entropy (i.e., the
attribute values of the training set).

The J48 algorithm leverages the fact that the tree can be split into smaller subtrees
with the information obtained from the attribute values. Whenever the algorithm en-
counters a set of items that can clearly be separated from the other class by a specific
attribute, it branches out a new leaf according to the value of the attribute. Each time
a decision needs to be taken, the attribute with the highest normalized gain is chosen.
Among all possible values of the attributes, if there is any value for which there is no
ambiguity, the branch is terminated and the appropriate label is assigned to it. The
splitting procedure stops when all instances in all subsets belong to the same class.

We use a decision tree classifier because these algorithms have shown to be efficient
while producing accurate results [Quinlan 1995]. As the decision tree classifier builds
a tree during the training phase, the features that are best in separating the malicious
and the benign domains can be clearly seen.

Recall that we divided the 15 features that we use into four different classes accord-
ing to the type of information used: Features that are extracted from the time series
analysis (F1, Time-Based Features), the DNS answer analysis (F2, DNS Answer-Based
Features), the TTL value analysis (F3, TTL Value-Based Features), and the analysis
of the domain name (F4, Domain Name-Based Features).

To find the combination of features that produce the minimum error rate, we trained
classifiers using different combinations of feature sets and compared the results. Fig-
ure 2 shows the percentage of the number of misclassified items with three different
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Fig. 2: Percentage of miss-classified instances

training schemes: 10-fold cross validation, 66% percentage split, and training on the
whole training set. Note that the smallest error rates were produced by F1. Therefore,
while experimenting with different combinations of feature sets, we excluded the com-
binations that do not include F1 (i.e., F23, F24, F34 and F234). The highest error rates
are produced by F3 and F4. However, when all features are combined (i.e., Fall), the
minimum error rate is produced. Hence, we use the combination of all the features in
our system.

5. FEATURE SELECTION USING A GENETIC ALGORITHM

The choice of the features to use for machine learning is very important. On the one
hand, they must provide sufficient information to allow the system to achieve an ac-
curate detection. On the other hand, the use of irrelevant features could degrade the
performance of the learning algorithm.

Originally, EXPOSURE was designed to use fifteen composite features (based on 26
atomic features), summarized in Table I. In the previous section, we evaluated the
contribution of each class of features, and we concluded that all of them are needed to
achieve a better detection. However, we did not investigate if a particular combination
of the 26 atomic features would provide better results. In addition, computing some of
the features (such as time-based ones) requires a considerable amount of time, espe-
cially when monitoring a large amount of DNS queries. Therefore, finding superfluous
features would also help in improving the system performances.

For this reason, we applied a reduction process to refine the lists of features, with the
goal of building a robust and efficient learning model. The approach we used is based
on genetic algorithm (GA), a search heuristic inspired by natural evolution that has
been already successfully used for feature selection and reduction in many different
areas.

The idea in GA is to start by creating a population of individuals which are candi-
date solutions to the given problem. Each individual represents a subset of features
that can be used with the C4.5 classifier. In particular, individuals are represented as
binary strings of Os and 1s, indicating which features are included in the subset. A new
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Fig. 3: The best results of GA

dataset is created for each individual. This dataset is then passed to a C4.5 classifier,
whose performance on the dataset is evaluated using 10-fold cross validation. Finally,
a fitness score is assigned to each individual based on this performance and a new
population is created by applying classic genetic operators (selection, crossover, and
mutation) to the previous population. The evolutionary process generally continues
until a number of generations has passed and, at that point, returns the best individ-
ual.

We used the J48 implementation of C4.5 with its default parameters and the ecj20
toolkit [ecj 2012] for the genetic algorithm implementation. 2

The fitness score is evaluated based on the detection rate and the false positive rate
of the classifier with the given feature set. Figure 3 shows the best results obtained
with the least number of features. The numbers on the plots represent the size of the
feature set passed to the classifier. Since the detection rate is reasonably high for all
cases, choosing a feature set resulting in a low false positive rate could be a reasonable
choice. By applying this simple feature reduction approach, the false positive rate was
decreased to almost half of the original value (obtained by using all the features).

The feature set giving the lowest false positive rate is presented in Table II. Even
though the costly time-based features could not be eliminated, we were still able to
considerably minimize the feature set - from 26 to 14 elements. More importantly,
we were also able to achieve a lower amount of false positives by using this reduced
feature set. From this experiment, we can conclude that using atomic features and
letting the classifier find the relationships between them should be preferred instead
of using composite features.

6. EVALUATION
6.1. DNS Data Collection for Offline Experiments

Our sensors for the STE DNS feeds receive a large volume of traffic (1 million queries
per minute on average). Therefore, during our offline experimental period of two and
a half months, we monitored approximately 100 billion DNS queries. Unfortunately,
tracking, recording and post-processing this volume of traffic without applying any

2The genetic algorithm’s parameters are selected as follows: 100 for population size, 100 for generations, 0.9
for crossover probability, 0.01 for mutation probability and 2 for tournament size. The parameters not listed
here are the default parameters of the toolkit.
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[ Type | Feature |
Time-based features Feature 1a, Feature 2, Feature 3a,b
DNS answer-based features Feature 5, Feature 6, Feature 7b,c,e
TTL value-based features Feature 11, Feature 12, Feature 13a
Domain name-based features | Feature 14, Feature 15

Table II: The feature set obtained with GA

filtering were not feasible in practice. Hence, we reduced the volume of traffic that we
wished to analyze to a more manageable size by using two filtering policies. The goal
of these policies was to eliminate as many queries as possible that were not relevant
for us. However, we also had to make sure that we did not miss relevant, malicious
domains.

The first policy we used whitelisted popular, well-known domains that were very
unlikely to be malicious. To create this whitelist, we used the Alexa Top 1000 Global
Sites [ale 2009] list. Our premise was that the most popular 1000 websites on the In-
ternet would not likely to be associated with domains that were involved in malicious
activity. These sites typically attract many users, and are well-maintained and moni-
tored. Hence, a malicious popular domain cannot hide its malicious activities for long.
Therefore, we did not record the queries targeting the domains in this whitelist. The
domains in the whitelist received 20 billion queries during two and a half months. By
applying this first filtering policy, we were able to reduce 20% of the traffic we were
observing.

The second filtering policy targeted domains that were older than one year. The
reasoning behind this policy was that many malicious domains are disclosed after a
short period of activity, and are blacklisted. As a result, some miscreants have re-
sorted to using domain generation algorithms (DGA) to make it more difficult for the
authorities to blacklist their domains. For example, well-known botnets such as Meb-
root [Stone-Gross et al. 2009] and Conficker [Porras et al. 2009] deploy such algorithms
for connecting to their command and control servers. Typically, the domains that are
generated by DGAs and registered by the attackers are new domains that are at most
several months old. In our data set, we found 45,000 domains that were older than
one year. These domains received 40 billion queries. Hence, the second filtering policy
reduced 50% of the remaining traffic, and made it manageable in practice.

Clearly, filtering out domains that do not satisfy our age requirements could mean
that we may miss malicious domains for the training that are older than one year.
However, our premise is that if a domain is older than one year and has not been
detected by any malware analysis tool, it is not likely that the domain serves malicious
activity. To verify the correctness of our assumption, we checked if we had filtered out
any domains that were suspected to be malicious by malware analysis tools such as
Anubis and Wepawet. Furthermore, we also queried reports produced by Alexa [ale
2009], McAfee Site Advisor [sit 2010], Google Safe Browsing [goo 2010] and Norton
Safe Web [nor 2010]. 40 out of the 45,000 filtered out domains (i.e., only 0.09%) were
reported by these external sources to be “risky” or “shady”. We therefore believe that
our filtering policy did not miss a significant number of malicious domains because of
the pre-filtering we performed during the offline experiments.

6.2. Evaluation of the Classifier

To evaluate the accuracy of the J48 DecisionTree Classifier, we classified our training
set with 10-fold cross-validation and percentage split, where 66% of the training set
is used for training, and the rest is used to check the correctness. Table 4 reports
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the results of the experiment. The Area Under the ROC curve [Bradley 1997] for the
classifier is high for both methods.

\ || AUC | Detection Rate | False Positives |

Full data 0.999 99.5% 0.3%
10-folds Cross-Validation || 0.987 98.5% 0.9%
66% Percentage Split 0.987 98.4% 1.1%

Fig. 4: Classification accuracy. (AUC=Area Under the ROC Curve)

Note that the false positive rate is low (i.e., around 1% for both methods). After inves-
tigating the reasons for the misclassifications, we saw that the classifier had identified
8 benign domains as being malicious. The reason for the misclassification was that
these domains were only requested a small number of times during the two and half
months of experiments (i.e., making the classifier conclude that they were short-lived)
and because they exhibited TTL behavior that looked anomalous (e.g., possibly because
there was a configuration error, or because the site maintainers were experimenting
to determine the optimal TTL value).

6.3. Experiments with the Recorded Data Set

During the two and a half month offline experimental period, we recorded and then
analyzed 4.8 million distinct domain names that were queried by real Internet users.
Note that a domain that only receives a few requests cannot produce a time series
that can then be used for the time-based features we are analyzing. This is because a
time series analysis produces accurate results only when the sampling count is high
enough. In order to find the threshold for the minimum number of queries required for
each domain, we trained our known malicious and benign domain list with differing
threshold values. Figure 5 shows the detection and false positive rates for the threshold
values we tested. Based on these empirical results, we set the threshold to 20 queries,
and excluded the 4.5 million domains from our experiments that received less than 20
requests in the two and a half months duration of our monitoring.

Minimum Requests Targetting a Domain

FalsePositives
TruePositives =======

08 | ]

H
0.6 H 4

TP/FP rate

02 ¢ 1

0 { 1 1 T
0 10 20 30 40 50
Threshold

Fig. 5: The effect of the minimum request count on detection rate
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For further experiments, we then focused on the remaining 300,000 domains that
were queried more than 20 times. EXPOSURE decided that 17,686 out of the 300,000
domains were malicious (5.9%).

6.3.1. Evaluation of the Detection Rate. The percentage split and cross-validation evalu-
ations on the training set show that the detection rate of our classifier is around 98%.
Since our goal is to be able to detect unknown malicious domains that have not been
reported by any malicious domain analyzer, our evaluation of the classifier needs to
show that we are able to detect malicious domains that do not exist in our training set.
To this end, we used malwareurls.com, a malware domains list that we had not used
as a source for the initial malicious domains training set.

During the period we performed our experiments, malwareurls.com reported 569
domains as being malicious. Out of these 569 domains, 216 domains were queried by
the infected machines in the networks that we were monitoring. The remaining 363
malware domains were not requested. Therefore, in our detection rate evaluation, we
take into account only the 216 requested domains.

5 of the 216 domains were queried less than 20 times during entire monitoring pe-
riod. Since we filter out domains that are requested less than 20 times, we only fed
the remaining 211 domains to our system. In the experiments, all of these domains
(that were previously unknown to us) were automatically detected as being malicious
by EXPOSURE. Hence, the detection rate we observed was similar to the detection rate
(i.e. 98%) estimated by the percentage split and cross-validation evaluations on the
training set.

Obviously, our approach is not comprehensive and cannot detect all malicious do-
mains on the Internet. However, its ability to detect a high number of unknown mali-
cious domains from DNS traffic is a significant improvement over previous work.

6.3.2. Evaluation of the False Positives. As the domains in our data set are not labeled,
determining the real false positive rate is a challenge. Unfortunately, manually check-
ing all 17,686 domains that were identified as being malicious is not feasible. This is
because it is difficult, in practice, to determine with certainty (in a limited amount of
time) that a domain that is engaged in suspicious behavior is indeed malicious. Nev-
ertheless, we conducted three experiments to make estimates about the false positives
of our detection.

In order to obtain more information about the domains in our list, we first tried
to automatically categorize them into different groups. For each domain, we started
Google searches, checked well-known spamlists, and fed the domains into Norton Safe
Web (i.e., Symantec provided us internal access to the information they were collect-
ing about web pages). We divided the domains into ten groups: spam domains (Spam),
black-listed domains (BlackList), malicious Fast-Flux domains (FastFlux), domains
that are queried by malware that are analyzed by malware analysis tools (Malware),
Conficker domains (Conficker), domains that have adult content, domains that are
suspected to be risky by Norton Safe Web and McAfee Site Advisor (Risky), phishing
domains (Phishing), domains about which we were not able to get any information ei-
ther from Google or from other sources (No Info), and finally, benign domains that are
detected to be malicious (False Positives) (See Table III).

In the first experiment, we manually investigated 50 random malicious domains
from our list of 17,686. We queried Google, checked websites that discuss malicious
networks, and tried to identify web links that reported a malicious behavior by the
domain. Among the 50 randomly chosen domains, the classifier detected three benign
domains as being malicious. All these domains had an abnormal TTL change behavior.

In the second experiment, we automatically cross-checked the malicious and suspi-
cious domains that we had identified with our classifier using online site rating tools
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| MW-Group || Rand 50 | Malicious | | MW-Group | Rand 50 | Malicious |

Spam 18 3691 Adult 3 1716
Black-List 8 1734 Risky - 788
FastFlux - 114 Phishing 3 0
Malware 6 979 No Info 5 2854
Conficker 4 3693 False Positives 3 (6%) 1408 (7.9%)

Table III: Tests for False Positives

such as McAfee Site Advisor, [sit 2010], Google Safe Browsing [goo 2010] and Norton
Safe Web [nor 2010]. The 7.9% of the domains were not known to be malicious by these
services. Concerning that these services determine whether a domain is malicious or
not by crawling the web pages to find indications for maliciousness, it is very well
possible that they misclassified many domain names that are used for botnet C&C
servers. Therefore, this 7.9% cannot be used for estimating the false positives but for
defining an upperbound.

6.3.3. A Look Under the Radar. We have already discussed in the previous section the
importance of having a sufficiently large amount of queries per domain to be able to
produce accurate results. In particular, for our features to work well (in particular the
time-series ones) we set a threshold of 20 DNS requests. This value was extracted
experimentally, by comparing the false positive rates produced by different training
sets that we generated using different thresholds values. According to the results of our
experiments, if we collect less than 20 queries for a given domain during the analysis
period, which experimentally is estimated to be one week for accurate results, the data
is too scarce for EXPOSURE to successfully discriminate between benign and suspicious
behaviors.

However, a quick look at the data collected by our sensors shows that the majority of
the domains are queried less than 3 times per day (i.e., the average number of requests
that should be received a day to pass the threshold test), and therefore “fly” under the
EXPOSURE radar. Unfortunately, it is very hard to know what we are missing: The
domains are too many to perform a manual inspection, and the queries too few to
apply an automated classification technique.

A possible way to estimate what is inside this gray area is to extract the IP addresses
to which these domains resolve to, and to intersect them with the ones associated to
other domains for which we have more data. In other words, if EXPOSURE classifies
domain X as malicious, and domain Y for which we do not have enough queries resolves
to the same set of IPs, there are good chances that we missed potentially a suspicious
domain.

We performed this simple test for seven consecutive days (EXPOSURE does not nor-
mally store information about the domains under the threshold).

Luckily, only 192 domains matched our criteria. If we consider that in the same
period EXPOSURE detected over 1348 malicious domains, we can estimate that the
fraction of malicious domains we missed because of the threshold is acceptable. In
particular, these potentially malicious domains that we missed are only queried once or
twice per day (considering a pool of several millions users) and therefore their impact
is minimal compared to the other domains we identify.
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Fig. 6: The screen shot of exposure.iseclab.org

7. REAL-TIME DEPLOYMENT OF EXPOSURE

After the publication of the conference paper describing EXPOSURE [Bilge et al. 2011]
in which we presented the original design and evaluation of the domain detection al-
gorithm, we created a free, public online service. We deployed EXPOSURE on server
with 8 cores Intel(R) Xeon(R) CPU L5640 @ 2.27GHz and 16GB of memory to process
DNS queries obtained from SIE. We report a daily list of the domains that exhibit a
malicious behavior with half a day of processing time. The service (reachable at the ad-
dress hitp:/ /exposure.iseclab.org) has been running since the 28th of December 2010.
Over 17 months of operation, the website received over 9 thousand unique visitors.
Unfortunately, EXPOSURE stopped providing these daily lists in August 2012 due to
data access problems.

Figure 6 shows a snapshot of the main page of the EXPOSURE service, representing
a world map of the current malicious domain resolution. From the map, it is possible
to obtain the list of domains that are hosted in specific countries. In addition, in order
to get a better understanding of the reasons for which each domain was detected as be-
ing malicious, the service provides additional information including: 1) a graph of the
trend of the request count over time, 2) the geographical locations where the domain’s
machines are hosted, and 3) a graph of the IP addresses mapped to the domain. As
some of the malicious domains share some (or all) IP addresses with others domains,
our graphical representations allow an analyst to quickly identify links between dif-
ferent malicious activities.

In the following sections, we provide general statistics about the domains that were
detected as malicious during approximately one year and half of operation. Afterward,
we briefly discuss general trends we observed over time on the behavior of the domains.

7.1. Detection Results

The real-time deployment of EXPOSURE has been running since 28th of December,
2010 with three shorts gaps (in July 2011, August 2011 and March 2012) in which a
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Fig. 7: Number of domains detected by EXPOSURE during a period of 17 months

| # of domains | # of IP addresses || # of domains | # of IP addresses |

1 17008 || > 10 300
[2, 4] 1973 | > 100 81
[5,7] 256 | > 1000 19
8,10] 96 || > 10,000 9

Table IV: Number of occurrences of IP addresses that are shared by a specific number
of domains.

data acquisition problem did not allow us to produce any result. During the period of
17 months, EXPOSURE reported a total of 100,261 distinct domains as being malicious.
That is, EXPOSURE identified an average of 200 new malicious domains per day, as
summarized in Figure 7.

The domains identified as malicious by EXPOSURE map to 19.742 unique IP ad-
dresses. Therefore, there exists a large number of domains that are hosted by the same
machines. As can be seen from Table IV, although a majority of the IP addresses belong
to only one domain, some IP addresses are shared by thousands or tens of thousands of
different domains. Typically, this behavior is common for botnet-related domains that
are generated using a domain generation algorithm.

Since a significant number of IP addresses map to more than one domain, it is pos-
sible to cluster those domains according to the IP addresses they share, and use this
information to find the different “campaigns” that are behind these domains. Figure 8,
which was generated by using Gephi [gep 2013], shows an example of this clustering,
in which red dots represent IP addresses and blue dots represent domain names. If
properly used, this can be used to identify important relationships between different
malicious campaigns, malicious activities, or criminal networks. However, it is impor-
tant to be careful before drawing any conclusions. In fact, the observation that an IP
address is used by two separate domains in different points in time could be due to
many different reasons. For example, the same website can be exploited by different
attackers, or the address of a home DSL line can be re-assigned to another user.
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Fig. 8: Relationship between domains and IP addresses.
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Fig. 9: Country codes and TLDs associated with the malicious domains detected by
EXPOSURE.

Figure 9(a) and Figure 9(b) illustrate, respectively, the most common TLDs in the
detected malicious domains, and the countries in which they are hosted. The majority
of the domains belongs to the .info, .org, or .biz TLDs, and are hosted in United
States, Germany, or South Korea.

The majority of the domains detected by EXPOSURE are probably generated with
a DGA since they are queried only for a limited number of days before completely
disappearing. As shown in Figure 10, the lifetime of approximately 90% of the domains
is less than 2 days. However, we also observed some malicious domains that were used
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Fig. 10: Lifetime of domains detected by EXPOSURE.
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Blacklists # of domains | # of domains | # of domains detected
in common first by Exposure

amada.abuse.ch 0 92 N/A
blade-defender.org 0 387 N/A
malware.com.br 5 2880 2
malwaredomainlist.com 5 2533 4
malwaredomains.com 98 16587 93
phishtank.com 39 80780 21
securi.net 1 1836 N/A
spyeyetracker.abuse.ch 11 380 N/A
vxvalut.siri-urz.net 9 5265 3
zeustracker.abuse.ch 5 562 N/A
conficker.b generator 23216 195132 N/A

Table V: Comparison of malicious domains detections between EXPOSURE and others.

for more than a year, and to the best of our knowledge, were never detected by any
other source.

Finally, to find out whether EXPOSURE is able to detect malicious domains before
other sources, we compared the detection time of EXPOSURE with the other 11 pub-
lic blacklists for a period of six months (July 2011-December 2011). Table V lists the
number of domains reported by various sources and the number of domains detected
by both EXPOSURE and others. At the time of this experiment, the total number of do-
mains detected by EXPOSURE was approximately 50K out of which over 50% of them
were only detected by EXPOSURE. The table also shows the number of domains that
were detected by EXPOSURE before being detected by the other sources. Unfortunately,
we were not able to discover the detection time of the malicious domains from all of
the blacklists listed in the Table V due to the lack of information provided by the
websites of these blacklists. Only malware.com.br, malwaredomainlist.com, malware-
domains.com and vxvalut.siri-urz.net specify the time of detection for the malicious
domains. As it can be seen from the table, around 80% of the domains also detected by
other services were detected first by EXPOSURE. Again, it is important to stress the
fact that timing is extremely important: since the vast majority of domains are only
used for a couple of days, if they are not promptly detected it may be too late to take
the appropriate countermeasures.

7.2. The Dynamics of Malicious Infrastructures

In the last decade, we have witnessed an essential evolution of different aspects of ma-
licious infrastructures. For example, today, malware often uses a command and control
channel such that it can be updated and controlled by a remote attacker. In the past, it
was enough to blacklist the IP address of a C&C server to stop its operation. Unfortu-
nately, today, blacklisting is not enough anymore as criminals can easily migrate their
servers from one location to the other.

As EXPOSURE has been monitoring the DNS behavior of real users for a period of
one and a half year, the DNS behavior of the malicious domains that are detected by
it can be used for better understanding of the dynamics of malicious infrastructures
over time. For this reason, we tracked the percentage of malicious domains (and their
corresponding IP addresses) that are hosted in specific autonomous systems and coun-
tries. For each autonomous system and country, we recorded the number of distinct
domains and the distinct IP addresses per month. Note that when performing this an-
laysis, the according IP addresses and AS numbers for Conficker are filtered out to
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Fig. 12: The most popular countries where criminals are hosting their infrastructures
among time.

avoid the results to be biased by them. Figure 11(a) and Figure 11(b) show the time
series produced for the most common autonomous systems hosting malicious domains,
according to number of domains and IP addresses they contained over time. The trend
shows an observable change on how the domains and their IP addresses are distributed
over the autonomous systems. For example, while SynNET-WE was hosting 80% of the
malicious domains in February 2011, afterward it never appeared again in the most
popular ASN.

Moreover, the graphs show that the preferred autonomous systems are different if
we count the number of malicious domains or the number of unique IP addresses.
Figure 11(b) clearly shows that some autonomous systems were used only for a short
period and then lost their popularity among criminals. For example, in September
2011, CableBahamas was hosting a significant amount of malicious servers. Later,
those servers were migrated to other locations.

Figure 12(a) and Figure 12(b), in comparison, summarize the evolution of the coun-
tries that hosted most of the malicious infrastructures. As the graphs show, even
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though the top country changed over time, the majority of the domains and IP ad-
dresses were hosted in the US (approximately 90% of the domains and 60% of the IP
addresses). In particular, Figure 12(a) shows the evolution of the most popular coun-
tries with respect to both number of domains and number of IP addresses. Interest-
ingly, while Germany is one of the countries that hosts the majority of the domains,
only less than 10% of the IP addresses are located in Germany. Finally, Figure 12(b)
shows the countries that are most often chosen to host the malicious servers. In this
case, the list contains US, Germany, India, Korea, China, and Bahamas.

8. RELATED WORK

The Domain Name System (DNS) has been increasingly being used by attackers to
maintain and manage their malicious infrastructures. As a result, recent research on
botnet detection has proposed number of approaches that leverage the distinguishing
features between malicious and benign DNS usage.

The first study [Weimer 2005] in this direction proposed to collect real-world DNS
data for analyzing malicious behavior. The results of the passive DNS analysis showed
that malicious domains that are used in Fast-Flux networks exhibit behavior that is
different than benign domains. Similarly, Zdrnja et al. [Zdrnja et al. 2007] performed
passive monitoring to identify DNS anomalies. In their paper, although they discuss
the possibility of distinguishing abnormal DNS behavior from benign DNS behavior,
the authors do not define DNS features that can be used to do so.

In general, botnet detection through DNS analysis follows two lines of research: The
first line of research tries to detect domains that are involved in malicious activities.
The goal is to identify infected hosts by monitoring the DNS traffic. The second line of
research focuses on the behaviors of groups of machines in order to determine if they
are infected (e.g., a collection of computers always contact the same domain repeat-
edly).

8.1. Identifying Malicious Domains

To detect malicious domains, previous approaches make use of passive DNS analysis,
active DNS probing, and WHOIS [who 1995] information. For example, recent work by
Perdisci et al. [Perdisci et al. 2009] performs passive DNS analysis on recursive DNS
traffic collected from a number of ISP networks with the aim of detecting malicious
Fast-Flux services. Contrary to the previous work [Konte et al. 2009; Nazario and
Holz 2008; Passerini et al. 2008; T.Holz et al. 2008], Perdisci’s work does not rely on
analyzing blacklisted domains, and domains that are extracted from spam mails. Our
work significantly distinguishes itself from theirs as we are able to detect all different
kinds of malicious domains such as phishing sites, spamming domains, dropzones,
and botnet command and control servers. We do not only focus on detecting Fast-Flux
service networks.

A second branch of study that aims to detect malicious domains [Ma et al. 2009;
T.Holz et al. 2008] leverages active DNS probing methods. That is, the domains that
are advertised to be malicious by various sources (e.g. spam mails) are repeatedly
queried to detect the abnormal behavior. The main drawback of active DNS analysis
is the possibility of being detected by the miscreants who manage the domains under
analysis. Passive DNS analysis, in comparison, is more stealthy because of its non-
intrusiveness characteristics.

Based on URL features they extract from spam mails, Ma et. al. [Ma et al. 2009]
study a number of statistical methods for machine learning for classifying websites. In
particular, they analyze spam URLs according to their lexical construction, and the in-
formation contained in the host name part of the URL. To obtain the information from
the host name, they perform active probing to determine the number of IP addresses
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associated with the domain. Once they obtain the IP address list, they analyze the
location of the IP address and to which ANS it belongs to. The main limitation of this
system is that it performs the analysis only based on the domains that are included in
spam mails. Hence, the system cannot see other classes of malicious domains such as
command and control servers.

Another type of study on detecting malicious domains leverages properties inher-
ent to domain registrations and their appearance in DNS zone files [Felegyhazi et al.
2010]. That is, they associate the registration information and DNS zone properties of
domains with the properties of known blacklisted domains for proactive domain black-
listing. This method completely relies on historical information. Therefore, it is not
able to detect domains that do not have any registration information and DNS zone
commonalities with known blacklisted domains. On the other hand, our work, which
does not require any historical information, is able to detect such domains.

8.2. Identifying Infected Machines by Monitoring Their DNS Activities

In [Choi et al. 2007], the authors propose an anomaly-based botnet detection mecha-
nisms by monitoring group activities in the DNS traffic of a local network. The authors
claim that there exist distinguishing features to differentiate DNS traffic generated by
botnets and benign clients. Similarly, [Villamarn-Salomn and Brustoloni 2009] also at-
tempts to identify botnet DNS access behavior in a local network. The authors use a
bayesian algorithm. In comparison to these existing works, we aim to identify mali-
cious domains from DNS traffic in general, and do not only focus on botnets.

8.3. Generic Identification of Malicious Domains Using Passive DNS Monitoring

To date, there are three systems proposed by Antonakakis et.al. [Antonakakis et al.
2010; Antonakakis et al. 2011; Antonakakis et al. 2012] that aim to detect malicious
domains using passive DNS analysis besides as EXPOSURE does. In a concurrent and
independent work to EXPOSURE, the authors present Notos. Notos dynamically as-
signs reputation scores to domain names whose maliciousness has not been discovered
yet.

EXPOSURE eliminates several shortcomings of Notos. It does not require a wide
overview of malicious activities on the Internet, a much shorter training time, and
is able to classify domains that Notos would misclassify.

The second work was proposed after EXPOSURE and Notos by Antonakakis et.
al. [Antonakakis et al. 2011]. The malware domains detection system, which is named
as Kopis, employs DNS data collected from upper DNS hierarchy. Therefore, they were
able to analyze global DNS query resolution patterns. Kopis leverages the fact that in
their data the IP addresses of the clients who issued the DNS queries are visible. Al-
though Kopis performs well to detect emerging new botnets, it cannot be deployed as
a real-time botnet detection system on a local network. On the other hand, EXPOSURE
can be also deployed in an independent network to monitor clients DNS activity.

Recently presented third work proposes a system that analyzes Non-eXistent (NX)
domain responses to detect domains that are automatically generated by an algorithm
without reversing [Antonakakis et al. 2012]. This work is complementary to the previ-
ous DNS-based malicious domains detection systems including EXPOSURE, Notos and
Kopis which do not analyze NX domain responses.

9. LIMITATIONS

A determined attacker who knows how EXPOSURE works and who is informed about
the features we are looking for in DNS traffic might try to evade detection. To evade
EXPOSURE, the attackers could try to avoid the specific features and behavior that we
are looking for in DNS traffic. For example, an attacker could decide to assign uniform
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TTL values across all compromised machines. However, this would mean that the at-
tackers would not be able to distinguish between more reliable, and less reliable hosts
anymore and would take a reliability hit on their malicious infrastructures. As another
example, the attackers could try to reduce the number of DNS lookups for a malicious
domain so that only a single lookup is performed every hour (i.e., so that the malicious
domain is whitelisted). Note that EXPOSURE’s detection module does not rely on a sin-
gle feature but combination of all. Even if an attacker manages to avoid employing
some of the features, it would be hard to evade all as long as she/her wants to pursue
her/his nefarious intentions. First because this would reduce the attack’s impact, then
because it would require a higher degree of coordination on the attacker’s side. Even
though it is possible for an attacker to stay below our detection radar by avoiding the
use of these features, we believe that this comes with a cost for the attacker. Hence,
our system helps increase the difficulty bar for the attackers, forces them to abandon
the use of features that are useful for them in practice, and makes it more complex for
them to manage their infrastructures.

Clearly, our detection rate also depends on the training set. We do not train for the
family of malicious domains that constitute attacks that are conceptually unknown
and have not been encountered before in the wild by malware analyzers, tools, or ex-
perts. However, we believe that the more malicious domains are fed to the system, the
more comprehensive our approach becomes over time.

Note that if the networks that we are monitoring and training our system on are
not infected, obviously, we will not see any malicious domains. We believe that we can
improve our ability to see more malicious attacks by having access to larger networks
and having more installations of EXPOSURE.

In addition to all these limitations, it is important to state that EXPOSURE cannot
detect all kinds of malicious domains. EXPOSURE does not provide solution for iden-
tifying domain names of web sites that include malicious code, infected compromised
web sites that are not employed as botnet C&C servers, infected search engines, bot-
nets that abuse social networking websites to spread their commands and of course the
domain names that are involved in more sophisticated attacks that could stay under
the threshold of 20 we have explained in the Evaluation section. Very good example
for this would be advanced persisting threats (APT) that by their nature do not employ
large-scale attacks but instead performs more stealthy attacks.

10. CONCLUSIONS

The domain service is a crucial component of the Internet, both for benign services as
well as for malicious activities that need to deal with the problem of managing large
distributed networks of infected machines.

For this reason, the use of passive DNS analysis has been recently proposed by many
authors as a very effective and precise way to detect malicious infrastructures. EXPO-
SURE has been one of the first of such efforts, and the first to offer a public service that
can be freely used by users, organizations, and security analysts. This paper presented
a summary of the results obtained in over 17 months of operation.

The results show that our system works well in practice, and that it is useful in
automatically identifying a wide category of malicious domains and the relationships
between them.
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